MATH 140B - HW 8 SOLUTIONS

Problem 1 (WR Ch 8 #13).
Put f(x) = xif 0 < x < 27, and apply Parseval’s Theorem to conclude that
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Solution. First we calculate the Fourier coefficients of f(x) = x using integration by parts.
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Parseval’s identity says that
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Computing the right side we get
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And the left side is .
1 ) 1 [ 1 278 n?
27 J-x 2 3., 2m 3
Putting this together,
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Problem 2 (WR Ch 8 #19).
Suppose f is a continuous function on R!, f(x +27m) = f(x), and a/x is irrational. Prove

that
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for every x.

Solution. First we prove it for f(x) = e'** with k€ Z and k #0.
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and since a/n is irrational, that means ka is not a multiple of 7, so e'*@ £ 1, and we can use
the partial sum formula from page 61 of Rudin to get
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so the sum is bounded by M. Therefore,
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This establishes the equality for f(x) = e!** with k # 0. If k = 0, we have f(x) = 1, so
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Now that we've shown it for all functions of the form e’¥*, we set some ¢ > 0 and we use Theo-
rem 8.15 to get a trigonometric polynomial P(x) = ZIk(:_K ckeikx such that |P(x) — f(x)| <e/2



for all real x. Then
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Since € was arbitrary, this proves the equality.

Problem 3 (Supp-3 #1). Suppose f : [0,7] — R is continuous and fo f(x)sinnx =0,
n=1,2,.... Does it follow that f = 0? Proof or counterexample.

Solution. Letc= %fonf(x) dx and define g: [-m, 7] — R by
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Then g is an odd function (i.e. g(—x) = —g(x)), and since cos nx is an even function, that
means that g(x) - cos nx is an odd function, and therefore
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because integrating an odd function symmetrically around 0 gives 0. Also note that, (with a
change of variables in the first integral using u = —x)
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Calculating the Fourier coefficients for g for n = 0:
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Now by Parseval’s identity,
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and since g2 is continuous and g2 = 0, then we have g = 0 by Problem 6.2 proved on a

previous homework. Therefore, g =0, so f =0.

Problem 4 (Supp-3 #3). If f is real analytic in a neighborhood of xy and f(xg) = 0, show
that f(x)/(x — xp) is real analytic in the same neighborhood.

Solution. If f isreal analytic in a neighborhood of xy and f(x¢) = 0 then there is some € > 0
such that for x € B(xp;¢€),
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Letting fi. = Y. cn(x—xp)", we have fi. = f on B(xy;€) because f is real analytic on B(xp;e€).
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Also, by Theorem 8.1, f,é = Y ncy(x—xp)" ! is such that {flé} converges uniformly to f’ on
n=1
B(xyp;€) (this means the radius of convergence of f]é is some number R’ = ¢). We're going to

prove that fi./(x - xo) has the same radius of convergence as f;, and that will finish the proof.

Therefore,
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and checking the radius of convergence R of this last power series, we have
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since lim,,_o, "v/7 = 1. Then R = R’ = ¢. That means f;/(x — xp) converges uniformly on
B(xo;€), and thus f(x)/(x — xp) is real analytic on B(xp;€).

Problem 5 (Supp #4). Prove thatif f(x) is real analytic on (a, b) and c € (a, b), then F(x) =
/. Cx f(t)dtis also real analytic on (a, b).

Solution. Let xo = % (the point in the middle of a and b). If f is real analytic on (a, b) and
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c€ (a, b), then letting fi(x) = Y. ¢, (x—x0)" we have fi; = f on [a, b]. Let R, be the radius of
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convergence of f;.. What we have shown so far is that Ry = % . Now we set
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then the radius of convergence R, of this last power series is given by
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[a, b]. If we let G(x) = f;g f(t)dt, then by Theorem 7.16 we have Gy = G on [a, b]. Lastly, if
welet C = [ f(1) dt, we have

X X0 X
F(x)=f f(t)dtzf f(t)dt+f f(Hdt=Gx)+C,
c c Xo

and similarly we define Fy(x) = Gi(x)+C, so that Fy. = F, and thus F is real analytic on [a, b].



