Math 140b-HW 8 Solutions

Problem 1 (WR Ch 8 \#13).

Put $f(x)=x$ if $0 \leq x<2 \pi$, and apply Parseval's Theorem to conclude that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Solution. First we calculate the Fourier coefficients of $f(x)=x$ using integration by parts. For $n \neq 0$,

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} x e^{-i n x} d x \\
& =\frac{1}{2 \pi}\left[x \frac{e^{-i n x}}{-i n}\right]_{-\pi}^{\pi}-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{-i n x}}{-i n} d x \\
& =\frac{1}{2 \pi}\left[2 \pi \frac{(-1)^{n}}{-i n}\right]-\frac{1}{2 \pi}\left[\frac{\left.e^{-i n x}\right)^{\pi}}{-n^{2}}\right]_{-\pi} \\
& =i \frac{(-1)^{n}}{n} . \\
c_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x d x=0 .
\end{aligned}
$$

Parseval's identity says that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x=\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}
$$

Computing the right side we get

$$
\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}=\sum_{n \neq 0}\left|i \frac{(-1)^{n}}{n}\right|^{2}=2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

And the left side is

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|x|^{2} d x=\frac{1}{2 \pi}\left[\frac{x^{3}}{3}\right]_{-\pi}^{\pi}=\frac{1}{2 \pi} \cdot \frac{2 \pi^{3}}{3}=\frac{\pi^{2}}{3}
$$

Putting this together,

$$
\frac{\pi^{2}}{3}=2 \sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad \Longrightarrow \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Problem 2 (WR Ch 8 \#19).

Suppose f is a continuous function on $\mathbb{R}^{1}, f(x+2 \pi)=f(x)$, and α / π is irrational. Prove that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(x+n \alpha)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t
$$

for every x.

Solution. First we prove it for $f(x)=e^{i k x}$ with $k \in \mathbb{Z}$ and $k \neq 0$.

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k t} d t=\frac{1}{2 \pi}\left[\frac{e^{i k x}}{i k}\right]_{-\pi}^{\pi}=0
$$

Also,

$$
\begin{aligned}
\left|\frac{1}{N} \sum_{n=1}^{N} e^{i k(x+n \alpha)}\right| & =\frac{1}{N}\left|\sum_{n=1}^{N} e^{i k x} e^{i k n \alpha}\right| \\
& =\frac{1}{N}\left|e^{i k x} \sum_{n=1}^{N} e^{i k n \alpha}\right| \\
& =\frac{1}{N}\left|e^{i k x}\right|\left|\sum_{n=1}^{N} e^{i k n \alpha}\right| \\
& =\frac{1}{N}\left|\sum_{n=1}^{N} e^{i k n \alpha}\right| \\
& =\frac{1}{N}\left|\sum_{n=1}^{N}\left(e^{i k \alpha}\right)^{n}\right|
\end{aligned}
$$

and since α / π is irrational, that means $k \alpha$ is not a multiple of π, so $e^{i k \alpha} \neq 1$, and we can use the partial sum formula from page 61 of Rudin to get

$$
\left|\sum_{n=1}^{N}\left(e^{i k \alpha}\right)^{n}\right|=\left|\sum_{n=0}^{N}\left(e^{i k \alpha}\right)^{n}-1\right|=\left|\frac{1-\left(e^{i k \alpha}\right)^{N+1}}{1-\left(e^{i k \alpha}\right)}-1\right|<\frac{2}{\left|1-e^{i k \alpha}\right|}+1=M
$$

so the sum is bounded by M. Therefore,

$$
\left|\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{i k(x+n \alpha)}\right|=\lim _{N \rightarrow \infty}\left|\frac{1}{N} \sum_{n=1}^{N} e^{i k(x+n \alpha)}\right| \leq \lim _{N \rightarrow \infty} \frac{M}{N}=0
$$

This establishes the equality for $f(x)=e^{i k x}$ with $k \neq 0$. If $k=0$, we have $f(x)=1$, so

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(x+n \alpha)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} 1=\lim _{N \rightarrow \infty} \frac{1}{N} N=1=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t
$$

Now that we've shown it for all functions of the form $e^{i k x}$, we set some $\epsilon>0$ and we use Theorem 8.15 to get a trigonometric polynomial $P(x)=\sum_{k=-K}^{K} c_{k} e^{i k x}$ such that $|P(x)-f(x)|<\epsilon / 2$
for all real x. Then

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(x+n \alpha) & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}([f(x+n \alpha)-P(x+n \alpha)]+P(x+n \alpha)) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}[f(x+n \alpha)-P(x+n \alpha)]+\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} P(x+n \alpha) \\
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}[f(t)-P(t)]+P(t) d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}[f(t)-P(t)]+\frac{1}{2 \pi} \int_{-\pi}^{\pi} P(t) d t . \\
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} P(x+n \alpha) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} P(t) d t \\
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(x+n \alpha) & \left.-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t \right\rvert\, \\
& \leq\left|\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}[f(x+n \alpha)-P(x+n \alpha)]-\frac{1}{2 \pi} \int_{-\pi}^{\pi}[f(t)-P(t)] d t\right| \\
& \leq\left|\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}[f(x+n \alpha)-P(x+n \alpha)]\right|+\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi}[f(t)-P(t)] d t\right| \\
& \leq \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}|f(x+n \alpha)-P(x+n \alpha)|+\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)-P(t)| d t \\
& <\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \epsilon / 2+\frac{1}{2 \pi} \int_{-\pi}^{\pi} \epsilon / 2 d t \\
& =\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Since ϵ was arbitrary, this proves the equality.

Problem 3 (Supp-3 \#1). Suppose $f:[0, \pi] \rightarrow \mathbb{R}$ is continuous and $\int_{0}^{\pi} f(x) \sin n x=0$, $n=1,2, \ldots$. Does it follow that $f \equiv 0$? Proof or counterexample.

Solution. Let $c=\frac{1}{\pi} \int_{0}^{\pi} f(x) d x$ and define $g:[-\pi, \pi] \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}f(x) & x \in[0, \pi] \\ -f(-x) & x \in[-\pi, 0) .\end{cases}
$$

Then g is an odd function (i.e. $g(-x)=-g(x)$), and since $\cos n x$ is an even function, that means that $g(x) \cdot \cos n x$ is an odd function, and therefore

$$
\int_{-\pi}^{\pi} g(x) \cos n x d x=0
$$

because integrating an odd function symmetrically around 0 gives 0 . Also note that, (with a change of variables in the first integral using $u=-x$)

$$
\begin{aligned}
\int_{-\pi}^{\pi} g(x) \sin n x d x & =\int_{-\pi}^{0}-f(-x) \sin n x d x+\int_{0}^{\pi} f(x) \sin n x d x \\
& =\int_{0}^{\pi} f(u) \sin n u d u+\int_{0}^{\pi} f(x) \sin n x d x \\
& =2 \int_{0}^{\pi} f(x) \sin n x d x \\
& =0
\end{aligned}
$$

Calculating the Fourier coefficients for g for $n \geq 0$:

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x)(\cos n x-i \sin n x) d x \\
& =\frac{1}{2 \pi}\left(\int_{-\pi}^{\pi} g(x) \cos n x d x-i \int_{-\pi}^{\pi} g(x) \sin n x d x\right) \\
& =0 \\
c_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x) d x \\
& =\frac{1}{2 \pi} 2 \int_{0}^{\pi}(f(x)-c) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} f(x) d x-\frac{1}{\pi} \int_{0}^{\pi} c d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} f(x) d x-c \\
& =0 .
\end{aligned}
$$

Now by Parseval's identity,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(x)|^{2} d x=\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}=0
$$

and since g^{2} is continuous and $g^{2} \geq 0$, then we have $g^{2} \equiv 0$ by Problem 6.2 proved on a previous homework. Therefore, $g \equiv 0$, so $f \equiv 0$.

Problem 4 (Supp-3 \#3). If f is real analytic in a neighborhood of x_{0} and $f\left(x_{0}\right)=0$, show that $f(x) /\left(x-x_{0}\right)$ is real analytic in the same neighborhood.

Solution. If f is real analytic in a neighborhood of x_{0} and $f\left(x_{0}\right)=0$ then there is some $\epsilon>0$ such that for $x \in B\left(x_{0} ; \epsilon\right)$,

$$
f(x)=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} \quad \text { and } \quad 0=f\left(x_{0}\right)=c_{0} \quad \Longrightarrow \quad f(x)=\sum_{n=1}^{\infty} c_{n}\left(x-x_{0}\right)^{n}
$$

Letting $f_{k}=\sum_{n=1}^{k} c_{n}\left(x-x_{0}\right)^{n}$, we have $f_{k} \rightrightarrows f$ on $B\left(x_{0} ; \epsilon\right)$ because f is real analytic on $B\left(x_{0} ; \epsilon\right)$. Also, by Theorem 8.1, $f_{k}^{\prime}=\sum_{n=1}^{k} n c_{n}\left(x-x_{0}\right)^{n-1}$ is such that $\left\{f_{k}^{\prime}\right\}$ converges uniformly to f^{\prime} on $B\left(x_{0} ; \epsilon\right)$ (this means the radius of convergence of f_{k}^{\prime} is some number $R^{\prime} \geq \epsilon$). We're going to prove that $f_{k} /\left(x-x_{0}\right)$ has the same radius of convergence as f_{k}^{\prime}, and that will finish the proof. Therefore,

$$
\frac{f_{k}(x)}{x-x_{0}}=\left(x-x_{0}\right)^{-1} \sum_{n=1}^{k} c_{n}\left(x-x_{0}\right)^{n}=\sum_{n=1}^{k} c_{n}\left(x-x_{0}\right)^{n-1}
$$

and checking the radius of convergence R of this last power series, we have

$$
\frac{1}{R}=\limsup _{n \rightarrow \infty} \sqrt[n-1]{\left|c_{n}\right|}=\limsup _{n \rightarrow \infty} \sqrt[n-1]{n} \sqrt[n-1]{\left|c_{n}\right|}=\limsup _{n \rightarrow \infty} \sqrt[n-1]{n\left|c_{n}\right|}=\frac{1}{R^{\prime}}
$$

since $\lim _{n \rightarrow \infty} \sqrt[n-1]{n}=1$. Then $R=R^{\prime} \geq \epsilon$. That means $f_{k} /\left(x-x_{0}\right)$ converges uniformly on $B\left(x_{0} ; \epsilon\right)$, and thus $f(x) /\left(x-x_{0}\right)$ is real analytic on $B\left(x_{0} ; \epsilon\right)$.

Problem 5 (Supp \#4). Prove that if $f(x)$ is real analytic on (a, b) and $c \in(a, b)$, then $F(x)=$ $\int_{c}^{x} f(t) d t$ is also real analytic on (a, b).

Solution. Let $x_{0}=\frac{b+a}{2}$ (the point in the middle of a and b). If f is real analytic on (a, b) and $c \in(a, b)$, then letting $f_{k}(x)=\sum_{n=0}^{k} c_{n}\left(x-x_{0}\right)^{n}$ we have $f_{k} \rightrightarrows f$ on $[a, b]$. Let R_{1} be the radius of convergence of f_{k}. What we have shown so far is that $R_{1} \geq\left|\frac{b-a}{2}\right|$. Now we set

$$
G_{k}(x)=\int_{x_{0}}^{x} f_{k}(t) d t=\int_{x_{0}}^{x} \sum_{n=0}^{k} c_{n}\left(t-x_{0}\right)^{n} d t=\sum_{n=0}^{k} \int_{x_{0}}^{x} c_{n}\left(t-x_{0}\right)^{n} d t=\sum_{n=0}^{k} \frac{c_{n}}{n+1}\left(x-x_{0}\right)^{n+1}
$$

then the radius of convergence R_{2} of this last power series is given by

$$
\frac{1}{R_{2}}=\limsup _{n \rightarrow \infty} \sqrt[n+1]{\frac{\left|c_{n}\right|}{n+1}}=\limsup _{n \rightarrow \infty} \frac{1}{\sqrt[n+1]{n+1}} \sqrt[n+1]{\left|c_{n}\right|}=\limsup _{n \rightarrow \infty} \sqrt[n+1]{\left|c_{n}\right|}=\frac{1}{R_{1}}
$$

since $\lim _{n \rightarrow \infty} \sqrt[n+1]{n+1}=1$, and thus we have $R_{2}=R_{1} \geq\left|\frac{b-a}{2}\right|$, so G_{k} converges uniformly on $[a, b]$. If we let $G(x)=\int_{x_{0}}^{x} f(t) d t$, then by Theorem 7.16 we have $G_{k} \rightrightarrows G$ on [$\left.a, b\right]$. Lastly, if we let $C=\int_{c}^{x_{0}} f(t) d t$, we have

$$
F(x)=\int_{c}^{x} f(t) d t=\int_{c}^{x_{0}} f(t) d t+\int_{x_{0}}^{x} f(t) d t=G(x)+C,
$$

and similarly we define $F_{k}(x)=G_{k}(x)+C$, so that $F_{k} \rightrightarrows F$, and thus F is real analytic on $[a, b]$.

