
MATH 140B - HW 8 SOLUTIONS

Problem 1 (WR Ch 8 #13).

Put f (x) = x if 0 ≤ x < 2π, and apply Parseval’s Theorem to conclude that

∞∑
n=1

1

n2 = π2

6
.

Solution. First we calculate the Fourier coefficients of f (x) = x using integration by parts.

For n 6= 0,

cn = 1

2π

∫ π

−π
f (x)e−i nx d x

= 1

2π

∫ π

−π
x e−i nx d x

= 1

2π

[
x

e−i nx

−i n

]π
−π

− 1

2π

∫ π

−π
e−i nx

−i n
d x

= 1

2π

[
2π

(−1)n

−i n

]
− 1

2π�
����[

e−i nx

−n2

]π
−π

= i
(−1)n

n
.

c0 = 1

2π

∫ π

−π
f (x)d x = 1

2π

∫ π

−π
x d x = 0.

Parseval’s identity says that
1

2π

∫ π

−π
| f (x)|2 d x =

∞∑
−∞

|cn |2.

Computing the right side we get

∞∑
−∞

|cn |2 =
∑

n 6=0

∣∣∣∣i (−1)n

n

∣∣∣∣2

= 2
∞∑

n=1

1

n2 .

And the left side is
1

2π

∫ π

−π
|x|2 d x = 1

2π

[
x3

3

]π
−π

= 1

2π
· 2π3

3
= π2

3
.

Putting this together,
π2

3
= 2

∞∑
n=1

1

n2 =⇒
∞∑

n=1

1

n2 = π2

6
.
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Problem 2 (WR Ch 8 #19).

Suppose f is a continuous function on R1, f (x +2π) = f (x), and α/π is irrational. Prove

that

lim
N→∞

1

N

N∑
n=1

f (x +nα) = 1

2π

∫ π

−π
f (t )d t

for every x.

Solution. First we prove it for f (x) = e i kx with k ∈Z and k 6= 0.

1

2π

∫ π

−π
e i kt d t = 1

2π

[
e i kx

i k

]π
−π

= 0.

Also, ∣∣∣∣∣ 1

N

N∑
n=1

e i k(x+nα)

∣∣∣∣∣= 1

N

∣∣∣∣∣ N∑
n=1

e i kx e i knα

∣∣∣∣∣
= 1

N

∣∣∣∣∣e i kx
N∑

n=1
e i knα

∣∣∣∣∣
= 1

N

∣∣∣e i kx
∣∣∣ ∣∣∣∣∣ N∑

n=1
e i knα

∣∣∣∣∣
= 1

N

∣∣∣∣∣ N∑
n=1

e i knα

∣∣∣∣∣
= 1

N

∣∣∣∣∣ N∑
n=1

(
e i kα

)n
∣∣∣∣∣ ,

and since α/π is irrational, that means kα is not a multiple of π, so e i kα 6= 1, and we can use

the partial sum formula from page 61 of Rudin to get∣∣∣∣∣ N∑
n=1

(
e i kα

)n
∣∣∣∣∣=

∣∣∣∣∣ N∑
n=0

(
e i kα

)n −1

∣∣∣∣∣=
∣∣∣∣∣1− (

e i kα
)N+1

1− (
e i kα

) −1

∣∣∣∣∣< 2

|1−e i kα| +1 = M ,

so the sum is bounded by M . Therefore,∣∣∣∣∣ lim
N→∞

1

N

N∑
n=1

e i k(x+nα)

∣∣∣∣∣= lim
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

e i k(x+nα)

∣∣∣∣∣≤ lim
N→∞

M

N
= 0.

This establishes the equality for f (x) = e i kx with k 6= 0. If k = 0, we have f (x) = 1, so

lim
N→∞

1

N

N∑
n=1

f (x +nα) = lim
N→∞

1

N

N∑
n=1

1 = lim
N→∞

1

N
N = 1 = 1

2π

∫ π

−π
f (t )d t .

Now that we’ve shown it for all functions of the form e i kx , we set some ε> 0 and we use Theo-

rem 8.15 to get a trigonometric polynomial P (x) =∑K
k=−K ck e i kx such that |P (x)− f (x)| < ε/2
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for all real x. Then

lim
N→∞

1

N

N∑
n=1

f (x +nα) = lim
N→∞

1

N

N∑
n=1

([
f (x +nα)−P (x +nα)

]+P (x +nα)
)

= lim
N→∞

1

N

N∑
n=1

[
f (x +nα)−P (x +nα)

]+ lim
N→∞

1

N

N∑
n=1

P (x +nα)

1

2π

∫ π

−π
f (t )d t = 1

2π

∫ π

−π
[ f (t )−P (t )]+P (t )d t

= 1

2π

∫ π

−π
[ f (t )−P (t )]+ 1

2π

∫ π

−π
P (t )d t .

lim
N→∞

1

N

N∑
n=1

P (x +nα) = 1

2π

∫ π

−π
P (t )d t

∣∣∣∣∣ lim
N→∞

1

N

N∑
n=1

f (x +nα) − 1

2π

∫ π

−π
f (t )d t

∣∣∣∣
≤

∣∣∣∣∣ lim
N→∞

1

N

N∑
n=1

[ f (x +nα)−P (x +nα)]− 1

2π

∫ π

−π
[ f (t )−P (t )]d t

∣∣∣∣∣
≤

∣∣∣∣∣ lim
N→∞

1

N

N∑
n=1

[ f (x +nα)−P (x +nα)]

∣∣∣∣∣+
∣∣∣∣ 1

2π

∫ π

−π
[ f (t )−P (t )]d t

∣∣∣∣
≤ lim

N→∞
1

N

N∑
n=1

| f (x +nα)−P (x +nα)|+ 1

2π

∫ π

−π
| f (t )−P (t )|d t

< lim
N→∞

1

N

N∑
n=1

ε/2+ 1

2π

∫ π

−π
ε/2d t

= ε

2
+ ε

2
= ε.

Since ε was arbitrary, this proves the equality.

Problem 3 (Supp-3 #1). Suppose f : [0,π] → R is continuous and
∫ π

0 f (x) sinnx = 0,

n = 1,2, . . .. Does it follow that f ≡ 0? Proof or counterexample.

Solution. Let c = 1
π

∫ π
0 f (x)d x and define g : [−π,π] →R by

g (x) =
{

f (x) x ∈ [0,π],

− f (−x) x ∈ [−π,0).

Then g is an odd function (i.e. g (−x) = −g (x)), and since cosnx is an even function, that

means that g (x) ·cosnx is an odd function, and therefore∫ π

−π
g (x) cosnx d x = 0,
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because integrating an odd function symmetrically around 0 gives 0. Also note that, (with a

change of variables in the first integral using u =−x)∫ π

−π
g (x) sinnx d x =

∫ 0

−π
− f (−x) sinnx d x +

∫ π

0
f (x) sinnx d x

=
∫ π

0
f (u) sinnu du +

∫ π

0
f (x) sinnx d x

= 2
��������∫ π

0
f (x) sinnx d x

= 0.

Calculating the Fourier coefficients for g for n ≥ 0:

cn = 1

2π

∫ π

−π
g (x)e−i nx d x

= 1

2π

∫ π

−π
g (x) (cosnx − i sinnx) d x

= 1

2π

(
��������∫ π

−π
g (x)cosnx d x − i

��������∫ π

−π
g (x) sinnx d x

)
= 0.

c0 = 1

2π

∫ π

−π
g (x)d x

= 1

2π
2
∫ π

0
( f (x)− c)d x

= 1

π

∫ π

0
f (x)d x − 1

π

∫ π

0
c d x

= 1

π

∫ π

0
f (x)d x − c

= 0.

Now by Parseval’s identity,

1

2π

∫ π

−π
|g (x)|2 d x =

∞∑
−∞

|cn |2 = 0,

and since g 2 is continuous and g 2 ≥ 0, then we have g 2 ≡ 0 by Problem 6.2 proved on a

previous homework. Therefore, g ≡ 0, so f ≡ 0.

Problem 4 (Supp-3 #3). If f is real analytic in a neighborhood of x0 and f (x0) = 0, show

that f (x)/(x −x0) is real analytic in the same neighborhood.

Solution. If f is real analytic in a neighborhood of x0 and f (x0) = 0 then there is some ε> 0

such that for x ∈ B(x0;ε),

f (x) =
∞∑

n=0
cn(x −x0)n and 0 = f (x0) = c0 =⇒ f (x) =

∞∑
n=1

cn(x −x0)n .
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Letting fk =
k∑

n=1
cn(x − x0)n , we have fk â f on B(x0;ε) because f is real analytic on B(x0;ε).

Also, by Theorem 8.1, f ′
k =

k∑
n=1

ncn(x − x0)n−1 is such that { f ′
k } converges uniformly to f ′ on

B(x0;ε) (this means the radius of convergence of f ′
k is some number R ′ ≥ ε). We’re going to

prove that fk /(x−x0) has the same radius of convergence as f ′
k , and that will finish the proof.

Therefore,
fk (x)

x −x0
= (x −x0)−1

k∑
n=1

cn(x −x0)n =
k∑

n=1
cn(x −x0)n−1,

and checking the radius of convergence R of this last power series, we have

1

R
= limsup

n→∞
n−1
√
|cn | = limsup

n→∞
n−1
p

n n−1
√
|cn | = limsup

n→∞
n−1
√

n|cn | = 1

R ′ ,

since limn→∞ n−1
p

n = 1. Then R = R ′ ≥ ε. That means fk /(x − x0) converges uniformly on

B(x0;ε), and thus f (x)/(x −x0) is real analytic on B(x0;ε).

Problem 5 (Supp #4). Prove that if f (x) is real analytic on (a,b) and c ∈ (a,b), then F (x) =∫ x
c f (t )d t is also real analytic on (a,b).

Solution. Let x0 = b+a
2 (the point in the middle of a and b). If f is real analytic on (a,b) and

c ∈ (a,b), then letting fk (x) =
k∑

n=0
cn(x − x0)n we have fk â f on [a,b]. Let R1 be the radius of

convergence of fk . What we have shown so far is that R1 ≥
∣∣∣ b−a

2

∣∣∣. Now we set

Gk (x) =
∫ x

x0

fk (t )d t =
∫ x

x0

k∑
n=0

cn(t −x0)n d t =
k∑

n=0

∫ x

x0

cn(t −x0)n d t =
k∑

n=0

cn

n +1
(x −x0)n+1,

then the radius of convergence R2 of this last power series is given by

1

R2
= limsup

n→∞
n+1

√
|cn |

n +1
= limsup

n→∞
1

n+1pn +1
n+1
√
|cn | = limsup

n→∞
n+1
√
|cn | = 1

R1
,

since lim
n→∞

n+1pn +1 = 1, and thus we have R2 = R1 ≥
∣∣∣ b−a

2

∣∣∣, so Gk converges uniformly on

[a,b]. If we let G(x) = ∫ x
x0

f (t )d t , then by Theorem 7.16 we have Gk â G on [a,b]. Lastly, if

we let C = ∫ x0
c f (t )d t , we have

F (x) =
∫ x

c
f (t )d t =

∫ x0

c
f (t )d t +

∫ x

x0

f (t )d t =G(x)+C ,

and similarly we define Fk (x) =Gk (x)+C , so that Fk â F , and thus F is real analytic on [a,b].
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