
MATH 140B - HW 7 SOLUTIONS

Problem 1 (WR Ch 8 #1). Define

f (x) =
{

e−1/x2
(x 6= 0),

0 (x = 0).

Prove that f has derivatives of all orders at x = 0, and that f (n)(0) = 0 for n = 1,2,3, . . ..

Solution.

Claim 1. For any rational function R(x), limx→0 R(x)e−1/x2 = 0.

Let R(x) = p(x)
q(x) for polynomials p and q . Let m be the smallest power of x in q . Then

by dividing the top and bottom of the fraction p(x)
q(x) by xm , we have that the bottom does not

vanish, and then the claim follows from the linearity of limits and Theorem 8.6(f), which says

limx→∞ xne−x = 0 for any n ∈Z.

Claim 2. For x 6= 0, f (n)(x) = Rn(x)e−1/x2
for some rational function Rn(x).

We prove this by induction. For n = 1, we have f ′(x) = e−1/x2 d
d x

(
−1
x2

)
= 2

x3 e−1/x2
, which

satisfies the requirement. Now assume for our induction hypothesis that f (n)(x) = p(x)
q(x) e−1/x2

.

Then by the product rule and the quotient rule:

f (n+1)(x) = p(x)

q(x)

(
2

x3 e−1/x2
)
+

(
q(x)p ′(x)−q ′(x)p(x)

q2(x)

)
e−1/x2

=
(

2p(x)

x3q(x)
+ q(x)p ′(x)−q ′(x)p(x)

q2(x)

)
e−1/x2

=
(

2p(x)q(x)+x3q(x)p ′(x)−x3q ′(x)p(x)

x3q2(x)

)
e−1/x2

which satisfies the claim.

Now we solve the problem by induction using the two claims. For n = 1,

f ′(0) = lim
h→0

f (h)− f (0)

h
= lim

h→0

e−1/h2 −0

h
= 0.

Assuming that f (n)(0) = 0, we then have

f (n+1)(0) = lim
h→0

f (n)(h)− f (n)(0)

h
= lim

h→0

Rn(h)e−1/h2 −0

h
= 0.

1



Problem 2 (WR Ch 8 #2). Let ai j be the number in the i th row and j th column of the

array

−1 0 0 0 · · ·
1
2 −1 0 0 · · ·
1
4

1
2 −1 0 · · ·

1
8

1
4

1
2 −1 · · ·

...
...

...
...

. . .

so that

ai j =


0 (i < j ),

−1 (i = j ),

2 j−i (i > j ).

Prove that ∑
i

∑
j

ai j =−2,
∑

j

∑
i

ai j = 0.

Solution. Summing over columns first, we have

for any j ,
∑

i
ai j =−1+

∞∑
n=1

1
2n =−1+1 = 0 =⇒ ∑

j

∑
i

ai j =
∑

j
0 = 0.

Summing over rows first, using the identity
N∑

n=0
xn = 1−xN+1

1−x , we have

∑
j

ai j =−1+
i−1∑
n=1

1

2n −1 =−1+
1− 1

2i

1− 1
2

= −1

2i−1
=⇒ ∑

i

∑
j

ai j =
∑

i

−1

2i−1
=−2.

Problem 3 (WR Ch 8 #5).

(a) lim
x→0

e − (1+x)1/x

x
.

(b) lim
n→∞

n

logn
[n1/n −1].

Solution.
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(a)

lim
x→0

e − (1+x)1/x

x
= lim

x→0

e −e
1
x log(1+x)

x

= lim
x→0

−e
1
x log(1+x)

(
−1
x2 log(1+x)+ 1

x(x+1)

)
1

= lim
x→0

−(1+x)1/x
(− log(1+x)

x2 + 1

x(x +1)

)
= lim

x→0
−(1+x)1/x lim

x→0

(−(1+x) log(1+x)+x

x2(x +1)

)
=−e lim

x→0

(− log(1+x)− 1+x
1+x +1

3x2 +2x

)

= e lim
x→0

(
log(1+x)

3x2 +2x

)
= e lim

x→0

(
1

1+x

6x +2

)
= e

2
.

(b) Since 1
n logn → 0 as n →∞, we have

lim
n→∞

n

logn
[n1/n −1] = lim

n→∞
n

logn

[
e

1
n logn −1

]

= lim
n→∞

e
1
n logn −1
1
n logn

= lim
h→0

eh −1

h

=
(

d

d x
ex

)∣∣∣∣
x=0

= e0

= 1.

Problem 4 (WR Ch 8 #6). Suppose f (x) f (y) = f (x + y) for all real x and y .

(a) Assuming that f is differentiable and not zero, prove that

f (x) = ecx

where c is a constant.

(b) Prove the same thing, assuming only that f is continuous.
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Solution. We simply prove part (b). Assuming f is not identically zero, there exists some x

such that f (x) 6= 0. Then

f (0) f (x) = f (0+x) = f (x) =⇒ f (0) = 1.

By continuity at 0 this means there is a neighborhood (−ε,ε) (for ε> 0) on which f is greater

than 0. This means that for any n,m ∈Zwith n > 1
ε we have

f ( m
n ) = f ( 1

n ) · . . . · f ( 1
n )︸ ︷︷ ︸

m times

= [ f ( 1
n )]m > 0,

so f is positive on a dense set of R and thus is positive everywhere. Next, we let c = log f (1),

and let g (x) = f (x)− ecx , which is a continuous function. We will prove that g vanishes on

a dense set, and thus by continuity must vanish everywhere. For any nonzero n ∈ Z, by the

uniqueness of the positive nth root, we have

f ( 1
n )n = f (1) = ec =

(
e

c
n

)n =⇒ f ( 1
n ) = e

c
n =⇒ g ( 1

n ) = 0.

Now for any m ∈N and nonzero n ∈Z

g ( m
n ) = f ( m

n )−ec m
n = (

f ( 1
n )

)m −
(
e

c
n

)m
= 0.
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