Math 140b - HW 7 Solutions

Problem 1 (WR Ch 8 \#1). Define

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & (x \neq 0) \\ 0 & (x=0)\end{cases}
$$

Prove that f has derivatives of all orders at $x=0$, and that $f^{(n)}(0)=0$ for $n=1,2,3, \ldots$.

Solution.

Claim 1. For any rational function $R(x), \lim _{x \rightarrow 0} R(x) e^{-1 / x^{2}}=0$.
Let $R(x)=\frac{p(x)}{q(x)}$ for polynomials p and q. Let m be the smallest power of x in q. Then by dividing the top and bottom of the fraction $\frac{p(x)}{q(x)}$ by x^{m}, we have that the bottom does not vanish, and then the claim follows from the linearity of limits and Theorem 8.6(f), which says $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0$ for any $n \in \mathbb{Z}$.

Claim 2. For $x \neq 0, f^{(n)}(x)=R_{n}(x) e^{-1 / x^{2}}$ for some rational function $R_{n}(x)$.
We prove this by induction. For $n=1$, we have $f^{\prime}(x)=e^{-1 / x^{2}} \frac{d}{d x}\left(\frac{-1}{x^{2}}\right)=\frac{2}{x^{3}} e^{-1 / x^{2}}$, which satisfies the requirement. Now assume for our induction hypothesis that $f^{(n)}(x)=\frac{p(x)}{q(x)} e^{-1 / x^{2}}$. Then by the product rule and the quotient rule:

$$
\begin{aligned}
f^{(n+1)}(x) & =\frac{p(x)}{q(x)}\left(\frac{2}{x^{3}} e^{-1 / x^{2}}\right)+\left(\frac{q(x) p^{\prime}(x)-q^{\prime}(x) p(x)}{q^{2}(x)}\right) e^{-1 / x^{2}} \\
& =\left(\frac{2 p(x)}{x^{3} q(x)}+\frac{q(x) p^{\prime}(x)-q^{\prime}(x) p(x)}{q^{2}(x)}\right) e^{-1 / x^{2}} \\
& =\left(\frac{2 p(x) q(x)+x^{3} q(x) p^{\prime}(x)-x^{3} q^{\prime}(x) p(x)}{x^{3} q^{2}(x)}\right) e^{-1 / x^{2}}
\end{aligned}
$$

which satisfies the claim.

Now we solve the problem by induction using the two claims. For $n=1$,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}-0}{h}=0 .
$$

Assuming that $f^{(n)}(0)=0$, we then have

$$
f^{(n+1)}(0)=\lim _{h \rightarrow 0} \frac{f^{(n)}(h)-f^{(n)}(0)}{h}=\lim _{h \rightarrow 0} \frac{R_{n}(h) e^{-1 / h^{2}}-0}{h}=0 .
$$

Problem 2 (WR Ch 8 \#2). Let $a_{i j}$ be the number in the i th row and j th column of the array

$$
\begin{array}{rrrrl}
-1 & 0 & 0 & 0 & \cdots \\
\frac{1}{2} & -1 & 0 & 0 & \cdots \\
\frac{1}{4} & \frac{1}{2} & -1 & 0 & \cdots \\
\frac{1}{8} & \frac{1}{4} & \frac{1}{2} & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

so that

$$
a_{i j}= \begin{cases}0 & (i<j) \\ -1 & (i=j) \\ 2^{j-i} & (i>j)\end{cases}
$$

Prove that

$$
\sum_{i} \sum_{j} a_{i j}=-2, \quad \sum_{j} \sum_{i} a_{i j}=0
$$

Solution. Summing over columns first, we have

$$
\text { for any } j, \quad \sum_{i} a_{i j}=-1+\sum_{n=1}^{\infty} \frac{1}{2^{n}}=-1+1=0 \quad \Longrightarrow \quad \sum_{j} \sum_{i} a_{i j}=\sum_{j} 0=0 \text {. }
$$

Summing over rows first, using the identity $\sum_{n=0}^{N} x^{n}=\frac{1-x^{N+1}}{1-x}$, we have

$$
\sum_{j} a_{i j}=-1+\sum_{n=1}^{i-1} \frac{1}{2^{n}}-1=-1+\frac{1-\frac{1}{2^{i}}}{1-\frac{1}{2}}=\frac{-1}{2^{i-1}} \quad \Longrightarrow \quad \sum_{i} \sum_{j} a_{i j}=\sum_{i} \frac{-1}{2^{i-1}}=-2
$$

Problem 3 (WR Ch 8 \#5).

(a) $\lim _{x \rightarrow 0} \frac{e-(1+x)^{1 / x}}{x}$.
(b) $\quad \lim _{n \rightarrow \infty} \frac{n}{\log n}\left[n^{1 / n}-1\right]$.

Solution.
(a)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e-(1+x)^{1 / x}}{x} & =\lim _{x \rightarrow 0} \frac{e-e^{\frac{1}{x} \log (1+x)}}{x} \\
& =\lim _{x \rightarrow 0} \frac{-e^{\frac{1}{x} \log (1+x)}\left(\frac{-1}{x^{2}} \log (1+x)+\frac{1}{x(x+1)}\right)}{1} \\
& =\lim _{x \rightarrow 0}-(1+x)^{1 / x}\left(\frac{-\log (1+x)}{x^{2}}+\frac{1}{x(x+1)}\right) \\
& =\lim _{x \rightarrow 0}-(1+x)^{1 / x} \lim _{x \rightarrow 0}\left(\frac{-(1+x) \log (1+x)+x}{x^{2}(x+1)}\right) \\
& =-e \lim _{x \rightarrow 0}\left(\frac{-\log (1+x)-\frac{1+x}{1+x}+1}{3 x^{2}+2 x}\right) \\
& =e \lim _{x \rightarrow 0}\left(\frac{\log (1+x)}{3 x^{2}+2 x}\right) \\
& =e \lim _{x \rightarrow 0}\left(\frac{\frac{1}{1+x}}{6 x+2}\right) \\
& =\frac{e}{2} .
\end{aligned}
$$

(b) Since $\frac{1}{n} \log n \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n}{\log n}\left[n^{1 / n}-1\right] & =\lim _{n \rightarrow \infty} \frac{n}{\log n}\left[e^{\frac{1}{n} \log n}-1\right] \\
& =\lim _{n \rightarrow \infty} \frac{e^{\frac{1}{n} \log n}-1}{\frac{1}{n} \log n} \\
& =\lim _{h \rightarrow 0} \frac{e^{h}-1}{h} \\
& =\left.\left(\frac{d}{d x} e^{x}\right)\right|_{x=0} \\
& =e^{0} \\
& =1
\end{aligned}
$$

Problem 4 (WR Ch 8 \#6). Suppose $f(x) f(y)=f(x+y)$ for all real x and y.
(a) Assuming that f is differentiable and not zero, prove that

$$
f(x)=e^{c x}
$$

where c is a constant.
(b) Prove the same thing, assuming only that f is continuous.

Solution. We simply prove part (b). Assuming f is not identically zero, there exists some x such that $f(x) \neq 0$. Then

$$
f(0) f(x)=f(0+x)=f(x) \quad \Longrightarrow \quad f(0)=1
$$

By continuity at 0 this means there is a neighborhood $(-\epsilon, \epsilon)$ (for $\epsilon>0$) on which f is greater than 0 . This means that for any $n, m \in \mathbb{Z}$ with $n>\frac{1}{\epsilon}$ we have

$$
f\left(\frac{m}{n}\right)=\underbrace{f\left(\frac{1}{n}\right) \cdot \ldots \cdot f\left(\frac{1}{n}\right)}_{m \text { times }}=\left[f\left(\frac{1}{n}\right)\right]^{m}>0,
$$

so f is positive on a dense set of \mathbb{R} and thus is positive everywhere. Next, we let $c=\log f(1)$, and let $g(x)=f(x)-e^{c x}$, which is a continuous function. We will prove that g vanishes on a dense set, and thus by continuity must vanish everywhere. For any nonzero $n \in \mathbb{Z}$, by the uniqueness of the positive nth root, we have

$$
f\left(\frac{1}{n}\right)^{n}=f(1)=e^{c}=\left(e^{\frac{c}{n}}\right)^{n} \quad \Longrightarrow \quad f\left(\frac{1}{n}\right)=e^{\frac{c}{n}} \quad \Longrightarrow \quad g\left(\frac{1}{n}\right)=0
$$

Now for any $m \in \mathbb{N}$ and nonzero $n \in \mathbb{Z}$

$$
g\left(\frac{m}{n}\right)=f\left(\frac{m}{n}\right)-e^{c \frac{m}{n}}=\left(f\left(\frac{1}{n}\right)\right)^{m}-\left(e^{\frac{c}{n}}\right)^{m}=0
$$

