Math 140b - HW 6 Solutions

Problem 1 (WR Ch 7 \#18). Let $\left\{f_{n}\right\}$ be a uniformly bounded sequence of functions which are Riemann-integrable on $[a, b]$, and put

$$
F_{n}(x)=\int_{a}^{x} f_{n}(t) d t \quad(a \leq x \leq b)
$$

Prove that there exists a subsequence $\left\{F_{n_{k}}\right\}$ which converges uniformly on $[a, b]$.

Solution. By Theorem 7.25, all we need to show is that $\left\{F_{n}\right\}$ is pointwise bounded and equicontinuous. Since $\left\{f_{n}\right\}$ is uniformly bounded, there exists some $M>0$ such that $\left|f_{n}(t)\right|<M$ for all $t \in[a, b]$ and all n. Therefore,

$$
\left|F_{n}(x)\right|=\left|\int_{a}^{x} f_{n}(t) d t\right| \leq \int_{a}^{x}\left|f_{n}(t)\right| d t \leq \int_{a}^{x} M d t=M(x-a) \quad \text { for all } n
$$

which proves pointwise boundedness of $\left\{F_{n}\right\}$. To prove equicontinuity, given some $\epsilon>0$, we choose $\delta=\epsilon / M$ so that for any $x, y \in[a, b]$ such that $|x-y|<\delta$, we have

$$
\left|F_{n}(x)-F_{n}(y)\right|=\left|\int_{a}^{x} f_{n}(t) d t-\int_{a}^{y} f_{n}(t) d t\right|=\left|\int_{y}^{x} f_{n}(t) d t\right| \leq \int_{y}^{x}\left|f_{n}(t)\right| d t<M \delta=\epsilon .
$$

Problem 2 (WR Ch 7 \#19). Let K be a compact metric space, let S be a subset of $\mathscr{C}(K)$. Prove that S is compact (with respect to the metric defined in Section 7.14) if and only if S is uniformly closed, pointwise bounded, and equicontinuous. (If S is not equicontinuous, then S contains a sequence which has no equicontinuous subsequence, hence has no subsequence that converges uniformly on K.)

Solution.

\Longrightarrow Assume S is compact in $\mathscr{C}(K)$. By Theorem 2.34, S is uniformly closed. Let $x \in K$. Define the sets

$$
U_{n}=\{f \in \mathscr{C}(K):\|f\|<n\},
$$

(which are the open balls of radius n around the function $g \equiv 0$ in the uniform metric). Notice that $\cup U_{n} \supset \mathscr{C}(K) \supset S$. By compactness (and the fact that $U_{n} \subset U_{n+1}$), there is some N such that $S \subset U_{N}$, which means $\|f\| \leq N$ for all $f \in S$. This means that S is uniformly bounded, and thus pointwise bounded.

Lastly, we need to check equicontinuity. Set $\epsilon>0$. First we want to prove that there are some finite number of functions $f_{1}, \ldots, f_{n} \in S$ such that for each $f \in S,\left\|f-f_{i}\right\|<\epsilon / 3$ for some i. Assume otherwise. Then the balls $B(f ; \epsilon / 3)$ form an open cover of S which does not have a finite subcover, contradicting compactness.
Next, since each f_{i} for $1 \leq i \leq n$ is continuous on a compact set K, each one is uniformly continuous, so that there exists some $\delta_{i}>0$ such that $\left|f_{i}(x)-f_{i}(y)\right|<\frac{\epsilon}{3}$ whenever $d(x, y)<\delta_{i}$.

Now, given any $f \in S$, we choose i such that $\left\|f-f_{i}\right\|<\frac{\epsilon}{3}$, and then for $\delta=\max \left\{\delta_{1}, \ldots, \delta_{n}\right\}$ we have
$|x-y|<\delta \Longrightarrow|f(x)-f(y)| \leq\left|f(x)-f_{i}(x)\right|+\left|f_{i}(x)-f_{i}(y)\right|+\left|f_{i}(y)-f(y)\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$.
$=$ Assume S is uniformly closed, pointwise bounded, and equicontinuous. By Theorem 7.25, any infinite subset of S has a limit point, and since S is uniformly closed, this limit point is in S. Therefore, by Exercise 2.26 (which we proved last quarter), S is compact.

Problem 3 (WR Ch 7 \#20). If f is continuous on $[0,1]$ and if

$$
\int_{0}^{1} f(x) x^{n} d x=0 \quad(n=0,1,2, \ldots)
$$

prove that $f(x)=0$ on $[0,1]$.

Solution. Since f is continuous on a compact set, it is bounded. So there exists some M such that $|f(x)| \leq M$ on $[0,1]$. By the Weierstrass Approximation Theorem, there exists some sequence of polynomials $\left\{p_{n}\right\}$ such that $p_{n} \rightrightarrows f$. Thus or any $\epsilon>0$ we can choose some $N \in \mathbb{N}$ s.t. $\left|f(x)-p_{n}(x)\right|<\frac{\epsilon}{M}$ for $n \geq N$. But this means that

$$
\left|f(x) p_{n}(x)-f^{2}(x)\right|=|f(x)|\left|f(x)-p_{n}(x)\right| \leq M\left|f(x)-p_{n}(x)\right|<\epsilon \quad \text { for } n \geq N,
$$

so $f p_{n} \rightrightarrows f^{2}$. At this point we should mention that, by the linearity of the integral, $\int_{0}^{1} f(x) p(x) d x=$ 0 for any polynomial. Therefore by Theorem 7.16 we have

$$
\int_{0}^{1} f^{2}(x) d x=\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) p_{n}(x) d x=\lim _{n \rightarrow \infty} 0=0
$$

and thus $f(x)=0$ on $[0,1]$ by Exercise 6.2.

Problem 4 (WR Ch 7 \#22). Assume $f \in \mathscr{R}(\alpha)$ on $[a, b]$, and prove that there are polynomials P_{n} such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|f-P_{n}\right|^{2} d \alpha=0
$$

Solution. We need to show that for every $\epsilon>0$ there exists some polynomial $P(x)$ such that $\int_{a}^{b}|f-P|^{2} d \alpha<\epsilon$. Since $f \in \mathscr{R}(\alpha)$ on $[a, b]$, by Exercise 6.12 there exists a continuous function g such that

$$
\left\{\int_{a}^{b}|f-g|^{2} d \alpha\right\}^{1 / 2}<\sqrt{\frac{\epsilon}{2}}
$$

By the Weierstrass Approximation Theorem there exists a polynomial $P(X)$ such that

$$
\|g-p\|<\sqrt{\frac{\epsilon}{2 \int_{a}^{b} d \alpha}} .
$$

Putting this together, we have

$$
\int_{a}^{b}|f-P|^{2} d \alpha \leq \int_{a}^{b}|f-g|^{2} d \alpha+\int_{a}^{b}|g-P|^{2} d \alpha<\frac{\epsilon}{2}+\frac{\epsilon}{2 \int_{a}^{b} d \alpha} \int_{a}^{b} d \alpha=\epsilon
$$

