
MATH 140B - HW 6 SOLUTIONS

Problem 1 (WR Ch 7 #18). Let { fn} be a uniformly bounded sequence of functions which

are Riemann-integrable on [a,b], and put

Fn(x) =
∫ x

a
fn(t )d t (a ≤ x ≤ b).

Prove that there exists a subsequence {Fnk } which converges uniformly on [a,b].

Solution. By Theorem 7.25, all we need to show is that {Fn} is pointwise bounded and equicon-

tinuous. Since { fn} is uniformly bounded, there exists some M > 0 such that | fn(t )| < M for

all t ∈ [a,b] and all n. Therefore,

|Fn(x)| =
∣∣∣∣∫ x

a
fn(t )d t

∣∣∣∣≤ ∫ x

a
| fn(t )|d t ≤

∫ x

a
M d t = M(x −a) for all n,

which proves pointwise boundedness of {Fn}. To prove equicontinuity, given some ε> 0, we

choose δ= ε/M so that for any x, y ∈ [a,b] such that |x − y | < δ, we have

|Fn(x)−Fn(y)| =
∣∣∣∣∫ x

a
fn(t )d t −

∫ y

a
fn(t )d t

∣∣∣∣= ∣∣∣∣∫ x

y
fn(t )d t

∣∣∣∣≤ ∫ x

y
| fn(t )|d t < Mδ= ε.

Problem 2 (WR Ch 7 #19). Let K be a compact metric space, let S be a subset of C (K ).

Prove that S is compact (with respect to the metric defined in Section 7.14) if and only if

S is uniformly closed, pointwise bounded, and equicontinuous. (If S is not equicontinu-

ous, then S contains a sequence which has no equicontinuous subsequence, hence has

no subsequence that converges uniformly on K .)

Solution.

=⇒ Assume S is compact in C (K ). By Theorem 2.34, S is uniformly closed. Let x ∈ K .

Define the sets

Un = { f ∈C (K ) : ‖ f ‖ < n},

(which are the open balls of radius n around the function g ≡ 0 in the uniform metric).

Notice that
⋃

Un ⊃ C (K ) ⊃ S. By compactness (and the fact that Un ⊂ Un+1), there is

some N such that S ⊂ UN , which means ‖ f ‖ ≤ N for all f ∈ S. This means that S is

uniformly bounded, and thus pointwise bounded.
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Lastly, we need to check equicontinuity. Set ε> 0. First we want to prove that there are

some finite number of functions f1, . . . , fn ∈ S such that for each f ∈ S, ‖ f − fi‖ < ε/3

for some i . Assume otherwise. Then the balls B( f ;ε/3) form an open cover of S which

does not have a finite subcover, contradicting compactness.

Next, since each fi for 1 ≤ i ≤ n is continuous on a compact set K , each one is uni-

formly continuous, so that there exists some δi > 0 such that | fi (x)− fi (y)| < ε
3 when-

ever d(x, y) < δi .

Now, given any f ∈ S, we choose i such that ‖ f − fi‖ < ε
3 , and then forδ= max{δ1, . . . ,δn}

we have

|x−y | < δ =⇒ | f (x)− f (y)| ≤ | f (x)− fi (x)|+| fi (x)− fi (y)|+| fi (y)− f (y)| < ε
3+ ε

3+ ε
3 = ε.

⇐= Assume S is uniformly closed, pointwise bounded, and equicontinuous. By Theorem

7.25, any infinite subset of S has a limit point, and since S is uniformly closed, this limit

point is in S. Therefore, by Exercise 2.26 (which we proved last quarter), S is compact.

Problem 3 (WR Ch 7 #20). If f is continuous on [0,1] and if∫ 1

0
f (x) xn d x = 0 (n = 0,1,2, . . .),

prove that f (x) = 0 on [0,1].

Solution. Since f is continuous on a compact set, it is bounded. So there exists some M

such that | f (x)| ≤ M on [0,1]. By the Weierstrass Approximation Theorem, there exists some

sequence of polynomials {pn} such that pn â f . Thus or any ε> 0 we can choose some N ∈N
s.t. | f (x)−pn(x)| < ε

M for n ≥ N . But this means that

| f (x)pn(x)− f 2(x)| = | f (x)| | f (x)−pn(x)| ≤ M | f (x)−pn(x)| < ε for n ≥ N ,

so f pn â f 2. At this point we should mention that, by the linearity of the integral,
∫ 1

0 f (x)p(x)d x =
0 for any polynomial. Therefore by Theorem 7.16 we have∫ 1

0
f 2(x)d x = lim

n→∞

∫ 1

0
f (x)pn(x)d x = lim

n→∞0 = 0,

and thus f (x) = 0 on [0,1] by Exercise 6.2.
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Problem 4 (WR Ch 7 #22). Assume f ∈R(α) on [a,b], and prove that there are polyno-

mials Pn such that

lim
n→∞

∫ b

a
| f −Pn |2 dα= 0.

Solution. We need to show that for every ε > 0 there exists some polynomial P (x) such that∫ b
a | f −P |2 dα< ε. Since f ∈R(α) on [a,b], by Exercise 6.12 there exists a continuous function

g such that {∫ b

a
| f − g |2 dα

}1/2

<
√
ε

2
.

By the Weierstrass Approximation Theorem there exists a polynomial P (X ) such that

‖g −p‖ <
√

ε

2
∫ b

a dα
.

Putting this together, we have∫ b

a
| f −P |2 dα≤

∫ b

a
| f − g |2 dα+

∫ b

a
|g −P |2 dα< ε

2
+ ε

2
∫ b

a dα

∫ b

a
dα= ε.
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