Math 140b-HW 5 Solutions

Problem 1 (WR Ch 7 \#8). If

$$
I(x)= \begin{cases}0 & (x \leq 0) \\ 1 & (x>0)\end{cases}
$$

if $\left\{x_{n}\right\}$ is a sequence of distinct points of (a, b), and if $\sum\left|c_{n}\right|$ converges, prove that the series

$$
f(x)=\sum_{n=1}^{\infty} c_{n} I\left(x-x_{n}\right) \quad(a \leq x \leq b)
$$

converges uniformly, and that f is continuous for every $x \neq x_{n}$.

Solution. Let

$$
f_{k}(x)=\sum_{n=1}^{k} c_{n} I\left(x-x_{n}\right)
$$

By the Weierstrass M-test (Theorem 7.10) with $M_{n}=\left|c_{n}\right|,\left\{f_{k}(x)\right\}$ converges uniformly to $f(x)$. Let $E=[a, b] \backslash\left\{x_{n}: n \in \mathbb{N}\right\}$. Since each $f_{k}(x)$ is continuous on E, then by Theorem 7.12 we know that f is continuous on E.

Problem 2 (WR Ch 7 \#9). Let $\left\{f_{n}\right\}$ be a sequence of continuous functions which converge uniformly to a function f on a set E. Prove that

$$
\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)
$$

for every sequence of points $x_{n} \in E$ such that $x_{n} \rightarrow x$, and $x \in E$. Is the converse of this true?

Solution. Since f is the uniform limit of continuous functions, it is continuous (Theorem 7.12). Since f is continuous and $x_{n} \rightarrow x$, we know that $f\left(x_{n}\right) \rightarrow f(x)$ (Theorem 4.2). Set $\epsilon>0$. Then there is some $N_{1} \in \mathbb{N}$ such that

$$
\left|f\left(x_{n}\right)-f(x)\right|<\frac{\epsilon}{2} \quad \text { for } n \geq N_{1}
$$

Since each $f_{n} \rightrightarrows f$, there exists some $N_{2} \in \mathbb{N}$ such that

$$
\left|f_{n}(t)-f_{n}(t)\right|<\frac{\epsilon}{2} \quad \text { for } n \geq N_{2} \text { and for all } t \in E
$$

Putting this together, for $n \geq N=\max \left(N_{1}, N_{2}\right)$ we have

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

The converse is "If $\left\{f_{n}\right\}$ is a sequence of continuous functions for which $f_{n}\left(x_{n}\right) \rightarrow f(x)$ for every sequence $x_{n} \rightarrow x$ in E, then $f_{n} \rightrightarrows f$ on E." This is not true by the following counterexample. Let $f_{n}(x)=\frac{x}{n}$. This sequence of functions converges pointwise to 0 but not uniformly, since $\left|f_{n}(x)-f(x)\right|=\left|\frac{x}{n}\right|>\epsilon$ for $x>\frac{\epsilon}{n}$. The other property we need to check is that $f_{n}\left(x_{n}\right) \rightarrow f(x)$ for every sequence $x_{n} \rightarrow x$. Since $\left\{x_{n}\right\}$ is a convergent sequence, it is bounded, so $\left|x_{n}\right|<M$. Then given any $\epsilon>0$, we choose $N>\frac{M}{\epsilon}$, so that for $n \geq N$ we have

$$
\left|f_{n}\left(x_{n}\right)-f(x)\right|=\left|\frac{x_{n}}{n}-0\right|=\frac{\left|x_{n}\right|}{n} \leq \frac{M}{N}<\epsilon .
$$

This proves that $f_{n}\left(x_{n}\right) \rightarrow f(x)$.

Problem 3 (WR Ch 7 \#10). Letting (x) denote the fractional part of the real number x, consider the function

$$
f(x)=\sum_{n=1}^{\infty} \frac{(n x)}{n^{2}} \quad(x \text { real })
$$

Find all discontinuities of f, and show that they form a countable dense set. Show that f is nevertheless Riemann-integrable on every bounded interval.

Solution. First notice that the function $g(x)=(x)$ is discontinuous on \mathbb{Z} and continuous on $\mathbb{R} \backslash \mathbb{Z}$. This means that $g_{n}(x)=(n x)$ is discontinuous at all x such that $n x \in \mathbb{Z}$, which means only at rational numbers of the form $\frac{m}{n}$ (where $m, n \in \mathbb{Z}$ and $\operatorname{gcd}(m, n)=1$). Let $E=\mathbb{R} \backslash \mathbb{Q}$. As n ranges over all positive integers, we see that $g_{n}(x)$ only has discontinuities at points which lie outside E, so that if we let

$$
f_{k}(x)=\sum_{n=1}^{k} \frac{g_{n}(x)}{n^{2}}=\sum_{n=1}^{k} \frac{(n x)}{n^{2}},
$$

we see that each $f_{k}(x)$ is continuous on E. By the Weierstrass M-test (Theorem 7.10) with $M_{n}=\frac{1}{n^{2}}$, we know that $\left\{f_{k}(x)\right\}$ converges uniformly to $f(x)$, and thus by Theorem 7.12 we know that f is continuous on E since each $f_{k}(x)$ is continuous on E.

What remains is to prove that f is discontinuous at all rational points. Let $x=\frac{a}{b}$ for $a, b \in \mathbb{Z}$, $\operatorname{gcd}(a, b)=1$. Then $g_{b}(x)$ is discontinuous at x, or more specifically $\lim _{y \rightarrow x-} g_{b}(x)=1$ and $\lim _{y \rightarrow x+}=0$. More generally, at any discontinuity of g_{n}, we will have that the limit from the left will be larger than the limit from the right, meaning that

$$
\lim _{y \rightarrow x-} f_{k}(y)-\lim _{y \rightarrow x+} f_{k}(y) \geq \frac{1}{b^{2}} \quad \text { for } k \geq b
$$

Since $f_{k}(x) \rightarrow f(x)$ pointwise (the series is bounded by $\sum_{n=1}^{\infty} 1 / n^{2}$), there exists some $N \in \mathbb{N}$ ($N>b$) such that $\sum_{n=N+1}^{\infty} \frac{(n x)}{n^{2}}<\frac{1}{3 b^{2}}$, so that

$$
\begin{aligned}
\lim _{y \rightarrow x-} f(y)-\lim _{y \rightarrow x+} f(y) & =\left(\lim _{y \rightarrow x-} f_{N}(y)-\lim _{y \rightarrow x+} f_{N}(y)\right)+\left(\lim _{y \rightarrow x-} f \sum_{n=N+1}^{\infty} \frac{(n x)}{n^{2}}-\lim _{y \rightarrow x+} f \sum_{n=N+1}^{\infty} \frac{(n x)}{n^{2}}\right) \\
& >\frac{1}{b^{2}}-2 \frac{1}{3 b^{2}}=\frac{1}{3 b^{2}}>0 .
\end{aligned}
$$

Therefore f is discontinuous at every rational point. The fact that f is Riemann integrable follows directly from Theorem 7.16.

Problem 4 (WR Ch 7 \#11). Suppose $\left\{f_{n}\right\},\left\{g_{n}\right\}$ are defined on E, and
(a) $\sum f_{n}$ has uniformly bounded partial sums;
(b) $g_{n} \rightarrow 0$ uniformly on E;
(c) $g_{1}(x) \geq g_{2}(x) \geq g_{3}(x) \geq \cdots$ for every $x \in E$.

Prove that $\sum f_{n} g_{n}$ converges uniformly on E.

Solution. Let $A_{n}(x)=\sum_{k=1}^{n} f_{n}$. Choose M such that $\left|A_{n}(x)\right| \leq M$ for all n. Given $\epsilon>0$, by uniform continuity there is an integer N such that $g_{N}(x) \leq(\epsilon / 2 M)$ for all $x \in E$. For $N \leq p \leq q$, we have

$$
\begin{aligned}
\left|\sum_{n=p}^{q} f_{n}(x) g_{n}(x)\right| & =\left|\sum_{n=p}^{q-1} A_{n}(x)\left(g_{n}(x)-g_{n+1}(x)\right)+A_{q}(x) g_{q}(x)-A_{p-1}(x) g_{p}(x)\right| \\
& \leq M\left|\sum_{n=p}^{q-1}\left(g_{n}(x)-g_{n+1}(x)\right)+g_{q}(x)+g_{p}(x)\right| \\
& =2 M g_{p}(x) \leq 2 M g_{N}(x) \leq \epsilon .
\end{aligned}
$$

Convergence follows from the Cauchy criterion for uniform convergence.

Problem 5 (WR Ch 7 \#15). Suppose f is a real continuous function on $\mathbb{R}^{1}, f_{n}(t)=f(n t)$ for $n=1,2,3, \ldots$, and $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$. What conclusion can you draw about f ?

Solution. We can conclude f is constant on $[0, \infty)$. The fact that $\left\{f_{n}\right\}$ is equicontinuous means that for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
|s-t|<\delta \quad \Longrightarrow \quad\left|f_{n}(s)-f_{n}(t)\right|<\epsilon \quad \text { for all } n \in \mathbb{N} \text {. }
$$

For any $x \in[0, \infty)$, set $\epsilon>0$ and find a $\delta>0$ so that the above inequality holds. Then choose N to be the smallest integer such that $N>x / \delta$ (so that $x / N<\delta$). Then if we set $s=0$ and $t=x / N$, we have $|s-t|=x / N<\delta$, so by the inequality above we have

$$
|f(0)-f(x)|=\left|f_{n}(s)-f_{n}(t)\right|<\epsilon .
$$

But our choice of ϵ was arbitrary, so that means $f(0)=f(x)$ for all $x \in[0, \infty)$, proving our claim.

Problem 6 (Supp. HW2 \#4). Given an example of a metric space X and a sequence of functions $\left\{f_{n}\right\}$ on X such that $\left\{f_{n}\right\}$ is equicontinuous but not uniformly bounded.

Solution. Let $X=\mathbb{R}$ and $f_{n}(x)=n$. Then for any $\epsilon>0$, choose any $\delta>0$ and we have

$$
\left|f_{n}(x)-f_{n}(y)\right|=|n-n|=0<\epsilon
$$

whenever $|x-y|<\delta$, so $\left\{f_{n}\right\}$ is equicontinuous. If it were uniformly bounded then there would be some $M>0$ such that $\left|f_{n}(x)\right|<M$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$, but this is clearly not possible by taking $n>M$.

Problem 7 (Supp. HW2 \#5). Give an example of a uniformly bounded and equicontinuous sequence of functions on \mathbb{R} which does not have any uniformly convergent subsequences.

Solution. Let

$$
f_{n}(x)= \begin{cases}2(x-n) & n \leq x \leq n+\frac{1}{2} \\ 2(n+1-x) & n+\frac{1}{2}<x \leq n+1 \\ 0 & \text { otherwise }\end{cases}
$$

For example, we graph $f_{3}(x)$ below. In loose terms, $f_{n}(x)$ is zero everywhere except for a "triangle" of height 1 on the interval [$n, n+1$].

From this definition it's clear that $\left|f_{n}(x)\right| \leq 1$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$, so the sequence is uniformly bounded. To prove equicontinuity, set some $1>\epsilon>0$ and choose $\delta=\epsilon / 2$, so that if
$|x-y|<\delta$ and $x<y$ we have

$$
\left|f_{n}(x)-f_{n}(y)\right| \leq \max \left(\begin{array}{l}
|0-2(y-n)| \\
|2(x-n)-2(y-n)|, \\
|2(x-n)-2(n+1-y)|, \\
|2(n+1-x)-2(n+1-y)|, \\
|2(n+1-x)-0|
\end{array}\right)=2|x-y|<2 \delta<\epsilon
$$

The reason this sequence doesn't have any uniformly convergent subsequences is that the sequence converges pointwise to 0 , so any subsequence must converge pointwise to 0 , but $f_{n}\left(n+\frac{1}{2}\right)=1$, so if we have some subsequence $\left\{f_{n_{k}}\right\}$ and we set $\epsilon<1$, then

$$
\sup _{x \in \mathbb{R}}\left|f_{n_{k}}(x)-f(x)\right| \geq 1>\epsilon \quad \text { for all } k
$$

