
MATH 140B - HW 5 SOLUTIONS

Problem 1 (WR Ch 7 #8). If

I (x) =
{

0 (x ≤ 0),

1 (x > 0),

if {xn} is a sequence of distinct points of (a,b), and if
∑ |cn | converges, prove that the

series

f (x) =
∞∑

n=1
cn I (x −xn) (a ≤ x ≤ b)

converges uniformly, and that f is continuous for every x 6= xn .

Solution. Let

fk (x) =
k∑

n=1
cn I (x −xn).

By the Weierstrass M-test (Theorem 7.10) with Mn = |cn |, { fk (x)} converges uniformly to f (x).

Let E = [a,b] \ {xn : n ∈ N}. Since each fk (x) is continuous on E , then by Theorem 7.12 we

know that f is continuous on E .

Problem 2 (WR Ch 7 #9). Let { fn} be a sequence of continuous functions which converge

uniformly to a function f on a set E . Prove that

lim
n→∞ fn(xn) = f (x)

for every sequence of points xn ∈ E such that xn → x, and x ∈ E . Is the converse of this

true?

Solution. Since f is the uniform limit of continuous functions, it is continuous (Theorem

7.12). Since f is continuous and xn → x, we know that f (xn) → f (x) (Theorem 4.2). Set ε> 0.

Then there is some N1 ∈N such that

| f (xn)− f (x)| < ε

2
for n ≥ N1.

Since each fn â f , there exists some N2 ∈N such that

| fn(t )− fn(t )| < ε

2
for n ≥ N2 and for all t ∈ E .

Putting this together, for n ≥ N = max(N1, N2) we have

| fn(xn)− f (x)| ≤ | fn(xn)− f (xn)|+ | f (xn)− f (x)| < ε

2
+ ε

2
= ε.
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The converse is “If { fn} is a sequence of continuous functions for which fn(xn) → f (x) for

every sequence xn → x in E , then fn â f on E .” This is not true by the following coun-

terexample. Let fn(x) = x
n . This sequence of functions converges pointwise to 0 but not

uniformly, since | fn(x)− f (x)| = | x
n | > ε for x > ε

n . The other property we need to check is that

fn(xn) → f (x) for every sequence xn → x. Since {xn} is a convergent sequence, it is bounded,

so |xn | < M . Then given any ε> 0, we choose N > M
ε , so that for n ≥ N we have

| fn(xn)− f (x)| = | xn
n −0| = |xn |

n ≤ M
N < ε.

This proves that fn(xn) → f (x).

Problem 3 (WR Ch 7 #10). Letting (x) denote the fractional part of the real number x,

consider the function

f (x) =
∞∑

n=1

(nx)

n2 (x real ).

Find all discontinuities of f , and show that they form a countable dense set. Show that

f is nevertheless Riemann-integrable on every bounded interval.

Solution. First notice that the function g (x) = (x) is discontinuous on Z and continuous on

R \Z. This means that gn(x) = (nx) is discontinuous at all x such that nx ∈ Z, which means

only at rational numbers of the form m
n (where m,n ∈Z and gcd(m,n) = 1). Let E =R\Q. As

n ranges over all positive integers, we see that gn(x) only has discontinuities at points which

lie outside E , so that if we let

fk (x) =
k∑

n=1

gn(x)

n2 =
k∑

n=1

(nx)

n2 ,

we see that each fk (x) is continuous on E . By the Weierstrass M-test (Theorem 7.10) with

Mn = 1
n2 , we know that { fk (x)} converges uniformly to f (x), and thus by Theorem 7.12 we

know that f is continuous on E since each fk (x) is continuous on E .

What remains is to prove that f is discontinuous at all rational points. Let x = a
b for a,b ∈Z,

gcd(a,b) = 1. Then gb(x) is discontinuous at x, or more specifically limy→x− gb(x) = 1 and

limy→x+ = 0. More generally, at any discontinuity of gn , we will have that the limit from the

left will be larger than the limit from the right, meaning that

lim
y→x− fk (y)− lim

y→x+ fk (y) ≥ 1

b2 for k ≥ b.

Since fk (x) → f (x) pointwise (the series is bounded by
∑∞

n=1 1/n2), there exists some N ∈ N
(N > b) such that

∑∞
n=N+1

(nx)
n2 < 1

3b2 , so that

lim
y→x− f (y)− lim

y→x+ f (y) =
(

lim
y→x− fN (y)− lim

y→x+ fN (y)

)
+

(
lim

y→x− f
∞∑

n=N+1

(nx)
n2 − lim

y→x+ f
∞∑

n=N+1

(nx)
n2

)

> 1

b2 −2
1

3b2 = 1

3b2 > 0.
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Therefore f is discontinuous at every rational point. The fact that f is Riemann integrable

follows directly from Theorem 7.16.

Problem 4 (WR Ch 7 #11). Suppose { fn}, {gn} are defined on E , and

(a)
∑

fn has uniformly bounded partial sums;

(b) gn → 0 uniformly on E ;

(c) g1(x) ≥ g2(x) ≥ g3(x) ≥ ·· · for every x ∈ E .

Prove that
∑

fn gn converges uniformly on E .

Solution. Let An(x) = ∑n
k=1 fn . Choose M such that |An(x)| ≤ M for all n. Given ε > 0, by

uniform continuity there is an integer N such that gN (x) ≤ (ε/2M) for all x ∈ E . For N ≤ p ≤ q ,

we have ∣∣∣∣∣ q∑
n=p

fn(x)gn(x)

∣∣∣∣∣=
∣∣∣∣∣q−1∑
n=p

An(x)(gn(x)− gn+1(x))+ Aq (x)gq (x)− Ap−1(x)gp (x)

∣∣∣∣∣
≤ M

∣∣∣∣∣q−1∑
n=p

(gn(x)− gn+1(x))+ gq (x)+ gp (x)

∣∣∣∣∣
= 2M gp (x) ≤ 2M gN (x) ≤ ε.

Convergence follows from the Cauchy criterion for uniform convergence.

Problem 5 (WR Ch 7 #15). Suppose f is a real continuous function on R1, fn(t ) = f (nt )

for n = 1,2,3, . . ., and { fn} is equicontinuous on [0,1]. What conclusion can you draw

about f ?

Solution. We can conclude f is constant on [0,∞). The fact that { fn} is equicontinuous means

that for every ε> 0, there exists a δ> 0 such that

|s − t | < δ =⇒ | fn(s)− fn(t )| < ε for all n ∈N.

For any x ∈ [0,∞), set ε> 0 and find a δ> 0 so that the above inequality holds. Then choose

N to be the smallest integer such that N > x/δ (so that x/N < δ). Then if we set s = 0 and

t = x/N , we have |s − t | = x/N < δ, so by the inequality above we have

| f (0)− f (x)| = | fn(s)− fn(t )| < ε.

But our choice of ε was arbitrary, so that means f (0) = f (x) for all x ∈ [0,∞), proving our

claim.
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Problem 6 (Supp. HW2 #4). Given an example of a metric space X and a sequence of

functions { fn} on X such that { fn} is equicontinuous but not uniformly bounded.

Solution. Let X =R and fn(x) = n. Then for any ε> 0, choose any δ> 0 and we have

| fn(x)− fn(y)| = |n −n| = 0 < ε

whenever |x − y | < δ, so { fn} is equicontinuous. If it were uniformly bounded then there

would be some M > 0 such that | fn(x)| < M for all n ∈ N and x ∈ R, but this is clearly not

possible by taking n > M .

Problem 7 (Supp. HW2 #5). Give an example of a uniformly bounded and equicontin-

uous sequence of functions on Rwhich does not have any uniformly convergent subse-

quences.

Solution. Let

fn(x) =


2(x −n) n ≤ x ≤ n + 1

2

2(n +1−x) n + 1
2 < x ≤ n +1

0 otherwise

.

For example, we graph f3(x) below. In loose terms, fn(x) is zero everywhere except for a

“triangle” of height 1 on the interval [n,n +1].

From this definition it’s clear that | fn(x)| ≤ 1 for all n ∈ N and x ∈ R, so the sequence is uni-

formly bounded. To prove equicontinuity, set some 1 > ε > 0 and choose δ = ε/2, so that if
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|x − y | < δ and x < y we have

| fn(x)− fn(y)| ≤ max



∣∣0−2(y −n)
∣∣ ,∣∣2(x −n)−2(y −n)

∣∣ ,∣∣2(x −n)−2(n +1− y)
∣∣ ,∣∣2(n +1−x)−2(n +1− y)

∣∣ ,

|2(n +1−x)−0|

= 2|x − y | < 2δ< ε.

The reason this sequence doesn’t have any uniformly convergent subsequences is that the

sequence converges pointwise to 0, so any subsequence must converge pointwise to 0, but

fn(n + 1
2 ) = 1, so if we have some subsequence { fnk } and we set ε< 1, then

sup
x∈R

| fnk (x)− f (x)| ≥ 1 > ε for all k.
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