MATH 140B - HW 3 SOLUTIONS

Problem 1. Suppose *f* is a real, continuous differentiable function on [a, b] with f(a) = f(b) = 0, and

$$\int_{a}^{b} f^{2}(x) \, dx = 1.$$

Show that

$$\int_{a}^{b} x f(x) f'(x) \, dx = -1/2.$$

Solution. By integration by parts with

$$u = x f(x) \qquad dv = f'(x) dx$$
$$du = [x f'(x) + f(x)] dx \qquad v = f(x),$$

we have

$$\int_{a}^{b} x f(x) f'(x) dx = \left[x f^{2}(x) \right]_{a}^{b} - \int_{a}^{b} f(x) \left[x f'(x) + f(x) \right] dx$$
$$= -\int_{a}^{b} x f(x) f'(x) dx - \int_{a}^{b} f^{2}(x) dx$$
$$= -\int_{a}^{b} x f(x) f'(x) dx - 1$$
$$2 \int_{a}^{b} x f(x) f'(x) dx = -1$$
$$\int_{a}^{b} x f(x) f'(x) dx = -1/2.$$

Problem 2. Prove that if $f \in \mathscr{R}[a, b]$ and *g* is a function for which g(x) = f(x) for all *x* except for a finite number of points, then *g* is Riemann integrable. Is the result still true if g(x) = f(x) for all *x* except for a countable number of points?

Solution. Set $\epsilon > 0$. Since $f \in \mathcal{R}[a, b]$, by Theorem 6.6 there exists a partition $P = \{a = x_0, x_1, \dots, x_{n-1}, x_n = b\}$ such that

$$U(P,f)-L(P,f)<\frac{\epsilon}{3}.$$

Let the finite set on which g differs from f be $C = \{c_1, ..., c_m\}$ and let $M = \max_{c \in C} |g(c) - f(c)|$. We define the refinement P_k of P inductively by letting $P_0 = P$ and once we have defined P_{k-1} ,

we define P_k by adding the points $(c_i - \frac{1}{n})$ and $(c_i + \frac{1}{n})$ for each $1 \le i \le m$ if they are in [a, b]. Let n_k be the number of points in P_k . Then we have

$$\begin{split} U(P_k,g) &= \sum_{j=1}^{n_k-1} \left(\sup_{\substack{x_{j-1} \le x \le x_j \\ x_{j-1} \le x \le x_j}} g(x) \right) \Delta x_j \\ &\leq \sum_{j=1}^{n_k-1} \left(\sup_{\substack{x_{j-1} \le x \le x_j \\ x_{j-1} \le x \le x_j}} f(x) \right) \Delta x_j + \sum_{\substack{\exists \ c \in C \ \text{s.t.} \\ c \in (x_{k-1}, x_k)}} |g(c) - f(c)| \Delta x_j \\ &\leq \sum_{j=1}^{n_k-1} \left(\sup_{\substack{x_{j-1} \le x \le x_j \\ x_{j-1} \le x \le x_j}} f(x) \right) \Delta x_j + \frac{mM}{k} \\ &= U(P_k, f) + \frac{mM}{k}. \end{split}$$

Choose the *K* to be the smallest integer larger than $\frac{3mM}{\epsilon}$. That way $\frac{mM}{k} < \frac{\epsilon}{3}$ for $k \ge K$. Then for the lower Riemann sum we have:

$$\begin{split} L(P_k,g) &= \sum_{j=1}^{n_k-1} \left(\inf_{\substack{x_{j-1} \leq x \leq x_j \\ x_{j-1} \leq x \leq x_j}} g(x) \right) \Delta x_j \\ &\geq \sum_{j=1}^{n_k-1} \left(\inf_{\substack{x_{j-1} \leq x \leq x_j \\ x_{j-1} \leq x \leq x_j}} f(x) \right) \Delta x_j - \sum_{\substack{\exists \ c \in C \\ c \in (x_{k-1}, x_k)}} |g(c) - f(c)| \Delta x_j \\ &\geq \sum_{j=1}^{n_k-1} \left(\inf_{\substack{x_{j-1} \leq x \leq x_j \\ x_{j-1} \leq x \leq x_j}} f(x) \right) \Delta x_j - \frac{mM}{k} \\ &= L(P_k, f) - \frac{mM}{k}. \end{split}$$

Because P_K is a refinement of P, we have

$$U(P_K, f) - L(P_K, f) \le U(P, f) - L(P, f) < \epsilon,$$

and finally putting this all together,

$$\begin{aligned} U(P_K,g) - L(P_K,g) &\leq \left(U(P_K,g) - U(P_K,f) \right) + \left(U(P_K,f) - L(P_K,f) \right) + \left(L(P_K,f) - L(P_K,g) \right) \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon. \end{aligned}$$

Therefore $g \in \mathcal{R}[a, b]$ by Theorem 6.6.

The result is not true if g(x) = f(x) for all *x* except for a countable number of points by the following counterexample. Let

$$g(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}.$$

Then $g \notin \mathscr{R}[a, b]$ but g(x) = 0 for except for a countable number of points (the rationals in [a, b]) and $0 \in \mathscr{R}[a, b]$.

Problem 3. Let $f : [0,\infty) \to \mathbb{R}$ be defined as f(x) = 0 if $0 \le x \le 1/2$ and f(x) = 1 if $1/2 \le x < \infty$. Show that the function

$$F(x) = \int_0^x f(t) \, dt,$$

defined for $0 \le x < \infty$, is differentiable for $x \ne 1/2$ and is not differentiable for x = 1/2.

Solution. f is continuous except at x = 1/2. By Theorem 6.20, this means that *F* is differentiable everywhere except possibly at x = 1/2, and F'(x) = f(x) when $x \neq 1/2$.

$$\lim_{h \to 0+} \frac{F(1/2+h) - F(1/2)}{h} = \lim_{h \to 0+} \frac{\int_0^{1/2+h} f(t) dt - \int_0^{1/2} f(t) dt}{h}$$
$$= \lim_{h \to 0+} \frac{1}{h} \int_{1/2}^{1/2+h} f(t) dt$$
$$= \lim_{h \to 0+} \frac{1}{h} h$$
$$= 1.$$
$$\lim_{h \to 0-} \frac{F(1/2+h) - F(1/2)}{h} = \lim_{h \to 0-} \frac{\int_0^{1/2+h} f(t) dt - \int_0^{1/2} f(t) dt}{h}$$
$$= \lim_{h \to 0-} \frac{1}{h} \int_{1/2}^{1/2+h} f(t) dt$$
$$= \lim_{h \to 0-} \frac{1}{h} 0$$
$$= 0.$$

Therefore the limit does not exist, so *F* is not differentiable at x = 1/2.

Problem 4. Prove that if *f* and *g* are Riemann integrable on [a, b] (i.e. $f, g \in \mathcal{R}[a, b]$) and there exists N > 0 such that $g(x) \ge 1/N$ for all $x \in [a, b]$, then $f/g \in \mathcal{R}[a, b]$.

Solution. Let *g* be bounded above by *M* on [*a*, *b*]. By Theorem 6.11, since $\phi(x) = \frac{1}{x}$ is continuous on $[\frac{1}{N}, M]$ (because it doesn't contain 0), then $\phi(g(x)) = \frac{1}{g(x)}$ is Riemann integrable on [*a*, *b*]. Now by Theorem 6.13(a), $f/g = f \cdot \frac{1}{g}$ is Riemann integrable on [*a*, *b*].