Math 140b - HW 2 Solutions

Problem 1 (WR Ch 5 \#11). Suppose f is defined in a neighborhood of x, and suppose $f^{\prime \prime}(x)$ exists. Show that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=f^{\prime \prime}(x)
$$

Show by an example that the limit may exist even if $f^{\prime \prime}(x)$ does not.

Solution. Since $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}$, and since $h \rightarrow 0$ iff $-h \rightarrow 0$, if we replace h by $-h$ in this expression, we have

$$
f^{\prime}(x)=\lim _{(-h) \rightarrow 0} \frac{f^{\prime}(x+(-h))-f^{\prime}(x)}{(-h)}=\lim _{h \rightarrow 0} \frac{f^{\prime}(x)-f^{\prime}(x-h)}{h} .
$$

Therefore,

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{\lim _{h_{1} \rightarrow 0} \frac{f(x+h)-f\left(x+h-h_{1}\right)}{h_{1}}-\lim _{h_{2} \rightarrow 0} \frac{f(x)-f\left(x-h_{2}\right)}{h_{2}}}{h},
$$

and letting $h_{1}=h=h_{2}$, i.e. taking them all to zero at the same rate (which we can do by Theorem 4.2), we have

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{f(x+h)-f(x+h-h)}{h}-\frac{f(x)-f(x-h)}{h}}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}} .
$$

For the second portion, we would like to find an f so that $f^{\prime}(x)=|x|$. One such choice of f could be $f(x)=\int_{0}^{x}|t| d t=\frac{1}{2} x|x|$. Now let $x=0$. By continuity of f at $x=0$ we have

$$
\lim _{h \rightarrow 0}[f(x+h)+f(x-h)-2 f(x)]=f(0)+f(0)-2 f(0)=0
$$

Also, clearly $\lim _{h \rightarrow 0} h^{2}=0$. So by L'Hôpital's rule we have

$$
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}} \stackrel{\text { L'H }^{\prime} H}{=} \lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x-h)}{2 h}=\lim _{h \rightarrow 0} \frac{|0+h|-|0-h|}{2 h}=0 .
$$

That means the limit exists at $x=0$, but $f^{\prime}(x)=|x|$ is not differentiable at 0 , so $f^{\prime \prime}(0)$ does not exist.

Problem 2 (WR Ch 5 \#12). If $f(x)=|x|^{3}$, compute $f^{\prime}(x), f^{\prime \prime}(x)$ for all real x, and show that $f^{(3)}(0)$ does not exist.

Solution. For $x \neq 0,|x|$ is a differentiable function with derivative

$$
\operatorname{sgn}(x)=\left\{\begin{array}{rl}
1 & \text { if } x>0 \\
-1 & \text { if } x<0
\end{array} .\right.
$$

Thus by the chain rule in the first line and by the product rule in the second line,

$$
\begin{aligned}
f^{\prime}(x) & =3|x|^{2} \operatorname{sgn}(x)=3 x|x| \\
f^{\prime \prime}(x) & =3|x|+3 x \operatorname{sgn}(x)=3|x|+3|x|=6|x|
\end{aligned}
$$

Checking the cases for $x=0$ by hand, we have

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|h|^{3}-0}{h}=\lim _{h \rightarrow 0} h|h|=0 . \\
f^{\prime \prime}(0) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{3 h|h|-0}{h}=\lim _{h \rightarrow 0} 3|h|=0 . \\
f^{\prime \prime \prime}(0) & =\lim _{h \rightarrow 0} \frac{f^{\prime \prime}(x+h)-f^{\prime \prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{6|h|-0}{h}=6 \lim _{h \rightarrow 0} \frac{|h|}{h}=\text { DNE }
\end{aligned}
$$

Problem 3 (WR Ch 6 \#2). Suppose $f \geq 0, f$ is continuous on $[a, b]$, and $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.

Solution. Assume by way of contradiction that there is some $y \in[a, b]$ such that $f(y)>0$, and let $\epsilon=\frac{f(y)}{2}$. Since f is continuous, there exists a $\delta>0$ such that

$$
0<|y-x|<\delta \quad \Longrightarrow \quad|f(y)-f(x)|<\epsilon=\frac{f(y)}{2}
$$

for $x \in[a, b]$. This last inequality gives us

$$
f(y)-f(x) \leq|f(y)-f(x)|<\frac{f(y)}{2} \quad \Longrightarrow \quad f(x)>\frac{f(y)}{2}>0 .
$$

Let $I=(y-\delta, y+\delta) \cap[a, b]$. What we have shown so far is that if $x \in I$, then $f(x)>\frac{f(y)}{2}>0$. Now, given some partition P of $[a, b]$, we make a refinement P^{*} by adding if necessary (and if possible) a point in $(y-\delta, y) \cap[a, b]$ and a point in $(y, y+\delta) \cap[a, b]$ so that $y \in\left(x_{k-1}, x_{k}\right) \subset I$ with $x_{k-1}, x_{k} \in P^{*}$ for some $1 \leq k \leq n$. Then

$$
0=\int_{a}^{b} f(x) d x=\sup _{P} L(P, f) \geq L\left(P^{*}, f\right)=\sum_{i=1}^{n}\left(\inf _{x_{i-1} \leq x \leq x_{i}} f(x)\right) \Delta x_{i} \geq \frac{f(y)}{2} \Delta x_{k}>0,
$$

a contradiction.

Problem 4 (WR Ch 6 \#4). If $f(x)=0$ for all irrational $x, f(x)=1$ for all rational x, prove that $f \notin \mathscr{R}$ on $[a, b]$ for any $a<b$.

Solution. For any partition $P=\left\{a=x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=b\right\}$, we have

$$
\begin{array}{cc}
L(P, f)=\sum_{i=1}^{n}\left(\inf _{x_{i-1} \leq x \leq x_{i}} f(x)\right) \Delta x_{i}=\sum_{i=1}^{n}(0) \Delta x_{i}=0 & \text { by the density of } \mathbb{Q}^{c}, \\
U(P, f)=\sum_{i=1}^{n}\left(\sup _{x_{i-1} \leq x \leq x_{i}} f(x)\right) \Delta x_{i}=\sum_{i=1}^{n}(1) \Delta x_{i}=(b-a) & \text { by the density of } \mathbb{Q} . \\
\int_{a}^{b} f=\sup _{P} L(P, f)=0 \neq(b-a)=\inf _{P} U(P, f)=\int_{a}^{b} f,
\end{array}
$$

so $f \notin \mathscr{R}$ on $[a, b]$.

Problem 5 (WR Ch 6 \#5). Suppose f is a bounded real function on $[a, b]$, and $f^{2} \in \mathscr{R}$ on $[a, b]$. Does it follow that $f \in \mathscr{R}$? Does the answer change if we assume that $f^{3} \in \mathscr{R}$?

Solution. In the first case, we have the following counterexample. Let

$$
f(x)=\left\{\begin{array}{rl}
1 & \text { if } x \in\left(\mathbb{Q}^{c} \cap[a, b]\right) \\
-1 & \text { if } x \in(\mathbb{Q} \cap[a, b])
\end{array} .\right.
$$

Then by the previous proof with -1 in place of $0, f \notin \mathscr{R}$ on $[a, b]$. But $f^{2} \equiv 1 \in \mathscr{R}$ on $[a, b]$. So it does not necessarily follow that if $f^{2} \in \mathscr{R}$ on $[a, b]$ then $f \in \mathscr{R}$.

In the second case, it does necessarily follow that if $f^{3} \in \mathscr{R}$ on $[a, b]$ then $f \in \mathscr{R}$ by the following proof. The reason this works for f^{3} and not for f^{2} is that the inverse of the cube function on \mathbb{R} is well-defined and is $\phi(x)=\sqrt[3]{x}$. The square function does not have a welldefined inverse on all of \mathbb{R} (since if $y=x^{2}$ then $x= \pm \sqrt{y}$).

By Theorem 6.11, since ϕ is continuous on all of \mathbb{R}, then

$$
\phi\left(f^{3}(x)\right)=\sqrt[3]{f^{3}(x)}=f(x) \text { is in } \mathscr{R} \text { on }[a, b]
$$

Problem 6 (WR Ch 6 \#10). Let p and q be positive real numbers such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Prove the following statements.
(a) If $u \geq 0$ and $v \geq 0$, then

$$
u v \leq \frac{u^{p}}{p}+\frac{v^{q}}{q}
$$

Equality holds if and only if $u^{p}=v^{q}$.
(b) If $f \in \mathscr{R}(\alpha), g \in \mathscr{R}(\alpha), f \geq 0, g \geq 0$, and

$$
\int_{a}^{b} f^{p} d \alpha=1=\int_{a}^{b} g^{q} d \alpha
$$

then

$$
\int_{a}^{b} f g d \alpha=1
$$

(c) If f and g are complex functions in $\mathscr{R}(\alpha)$, then

$$
\left|\int_{a}^{b} f g d \alpha\right| \leq\left\{\int_{a}^{b}|f|^{p} d \alpha\right\}^{1 / p}\left\{\int_{a}^{b}|g|^{q} d \alpha\right\}^{1 / q}
$$

This is Hölder's inequality. When $p=q=2$ it is usually called the Schwarz inequality.
(d) Show that Hölder's inequality is also true for the "improper" integrals described in Exercises 6.7 and 6.8.

Solution.

Claim. $f(x)=e^{x}$ is a convex function.
Let $x<t<y$. By the Mean Value Theorem, there exists some $a \in(x, t)$ such that

$$
f(t)-f(x)=(t-x) f^{\prime}(a) \quad \text { which means } \quad f^{\prime}(a)=\frac{f(t)-f(x)}{t-x}
$$

Once again, by the Mean Value Theorem, there exists some $b \in(t, y)$ such that

$$
f(y)-f(t)=(y-t) f^{\prime}(b) \quad \text { which means } \quad f^{\prime}(b)=\frac{f(y)-f(t)}{y-t}
$$

Notice that $f^{\prime \prime}(x)=e^{x}>0$ for all $x \in \mathbb{R}$. This means that $f^{\prime}(x)$ is strictly increasing. Therefore, since $a<b$, we have $f^{\prime}(a) \leq f^{\prime}(b)$, so

$$
\frac{f(t)-f(x)}{t-x}=f^{\prime}(a) \leq f^{\prime}(b)=\frac{f(y)-f(t)}{y-t} .
$$

Now for any $\lambda \in(0,1)$ we have $x<(\lambda x+(1-\lambda) y)<y$, so letting $t=(\lambda x+(1-\lambda) y)$ the above
inequality becomes

$$
\begin{aligned}
\frac{f(t)-f(x)}{(\lambda x+(1-\lambda) y)-x} & \leq \frac{f(y)-f(t)}{y-(\lambda x+(1-\lambda) y)} \\
\frac{f(t)-f(x)}{(1-\lambda)(y-x)} & \leq \frac{f(y)-f(t)}{\lambda(y-x)} \\
\lambda f(t)-\lambda f(x) & \leq(1-\lambda) f(y)-(1-\lambda) f(t) \\
f(t) & \leq \lambda f(x)+(1-\lambda) f(y) \\
f(\lambda x+(1-\lambda) y) & \leq \lambda f(x)+(1-\lambda) f(y),
\end{aligned}
$$

so $f(x)=e^{x}$ is convex.
(a) From here, we let $\lambda=\frac{1}{p}$, so that $(1-\lambda)=\frac{1}{q}$. The desired result is trivial if $u=0$ or $\nu=0$, so assume they are both strictly positive. Letting $x=\log u^{p}$ and $y=\log \nu^{q}$, the above inequality becomes

$$
\begin{aligned}
e^{\frac{1}{p} \log u^{p}+\frac{1}{q} \log \nu^{q}} & \leq \frac{1}{p} e^{\log u^{p}}+\frac{1}{q} e^{\log \nu^{q}} \\
e^{\log u+\log v} & \leq \frac{u^{p}}{p}+\frac{\nu^{q}}{q} \\
u v & \leq \frac{u^{p}}{p}+\frac{v^{q}}{q} .
\end{aligned}
$$

(b) By part (a), for every $x \in[a, b]$ we have

$$
f(x) g(x) \leq \frac{(f(x))^{p}}{p}+\frac{(g(x))^{q}}{q} .
$$

Therefore, taking integrals, we have

$$
\int_{a}^{b} f g d \alpha \leq \frac{\int_{a}^{b} f^{p} d \alpha}{p}+\frac{\int_{a}^{b} g^{q} d \alpha}{q}=\frac{1}{p}+\frac{1}{q}=1
$$

(c) If $\int_{a}^{b}|f| d \alpha=0$ or $\int_{a}^{b}|g| d \alpha=0$ the inequality is trivial. Otherwise, let $A=\left\{\int_{a}^{b}|f|^{p} d \alpha\right\}^{1 / p}>$ 0 and let $B=\left\{\int_{a}^{b}|g|^{q} d \alpha\right\}^{1 / q}>0$, and let

$$
F(x)=\frac{|f(x)|}{A} \quad \text { and } \quad G(x)=\frac{|g(x)|}{B}
$$

These functions satisfy the hypotheses of part (b), so

$$
\begin{gathered}
\int_{a}^{b} F G d \alpha \leq 1 \\
\int_{a}^{b} \frac{|f|}{A} \frac{|g|}{B} d \alpha \leq 1 \\
\left|\int_{a}^{b} f g d \alpha\right| \leq \int_{a}^{b}|f||g| d \alpha \leq A B=\left\{\int_{a}^{b}|f|^{p} d \alpha\right\}^{1 / p}\left\{\int_{a}^{b}|g|^{q} d \alpha\right\}^{1 / q} .
\end{gathered}
$$

(c) Since $x \mapsto|x|$ and $x \mapsto x^{1 / p}$ and $x \mapsto x^{1 / q}$ are continuous functions (for $x>0$), we have

$$
\begin{aligned}
\left|\int_{0}^{1} f g d \alpha\right| & =\left|\lim _{c \rightarrow 0} \int_{c}^{1} f g d \alpha\right|=\lim _{c \rightarrow 0}\left|\int_{c}^{1} f g d \alpha\right| \\
& \leq \lim _{c \rightarrow 0}\left(\left\{\int_{c}^{1}|f|^{p} d \alpha\right\}^{1 / p}\left\{\int_{c}^{1}|g|^{q} d \alpha\right\}^{1 / q}\right) \\
& =\left\{\lim _{c \rightarrow 0}\left\{\int_{c}^{1}|f|^{p} d \alpha\right\}^{1 / p}\right) \cdot\left(\lim _{c \rightarrow 0}\left\{\int_{c}^{1}|g|^{q} d \alpha\right\}^{1 / q}\right\} \\
& =\left\{\lim _{c \rightarrow 0} \int_{c}^{1}|f|^{p} d \alpha\right\}^{1 / p} \cdot\left\{\lim _{c \rightarrow 0} \int_{c}^{1}|g|^{q} d \alpha\right\}^{1 / q} \\
& =\left\{\int_{0}^{1}|f|^{p} d \alpha\right\}^{1 / p}\left\{\int_{0}^{1}|g|^{q} d \alpha\right\}^{1 / q},
\end{aligned}
$$

assuming the integrals are all nonzero and finite. If they are not, the inequality is trivial. The proof follows similarly for \int_{a}^{∞}.

