MATH 140B - HW 2 SOLUTIONS

Problem 1 (WR Ch 5 #11). Suppose f is defined in a neighborhood of x, and suppose
f"(x) exists. Show that
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Show by an example that the limit may exist even if f”(x) does not.
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Solution. Since f'(x) = }Iin?) , and since h — 0 iff —h — 0, if we replace h by —h in

this expression, we have
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and letting hy = h = hy, i.e. taking them all to zero at the same rate (which we can do by
Theorem 4.2), we have
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For the second portion, we would like to find an f so that f’(x) = |x|. One such choice of f
could be f(x) = fox |t|dt = %xlxl. Now let x = 0. By continuity of f at x = 0 we have

}li_r% [fx+h)+ fx—h) -2f(x)] = f(0)+ f(0)—2f(0) =0.

Also, clearly }lir% h? = 0. So by LUHbpital’s rule we have
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That means the limit exists at x = 0, but f’(x) = |x| is not differentiable at 0, so f”'(0) does not

exist.

Problem 2 (WR Ch 5 #12). If f(x) = |x|3, compute f'(x), f"(x) for all real x, and show
that £ (0) does not exist.




Solution. For x # 0, | x| is a differentiable function with derivative

1 ifx>0

sgn(x) = .
gnix) { -1 ifx<0
Thus by the chain rule in the first line and by the product rule in the second line,

f'(x) = 3|x|? sgn(x) = 3x|x]|.
f"(x) = 3] x| +3x sgn(x) = 3| x| + 3| x| = 6|x|.

Checking the cases for x = 0 by hand, we have
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Problem 3 (WR Ch 6 #2). Suppose f =0, f is continuous on [a, b], and fff(x) dx=0.
Prove that f(x) =0forall x € [a, D].

Solution. Assume by way of contradiction that there is some y € [a, b] such that f(y) >0, and
lete = % Since f is continuous, there exists a § > 0 such that

0<|y—x|<é = If(y)—f(x)|<e=%,
for x € [a, b]. This last inequality gives us
f(y)—f(x)slf(y)—f(X)I<f(y) = f(x)>f(y) 0.

Let I = (y—-6,y+6)nla,b]l. What we have shown so far is that if x € I, then f(x) > @ > 0.
Now, given some partition P of [a, b], we make a refinement P* by adding if necessary (and
if possible) a pointin (y— 98, y) N [a, b] and a pointin (y, y +6) N [a, b] so that y € (xg_1,xx) < I
with x_1, X € P* for some 1 < k < n. Then

f fedx=supLBf) = LP", f) = Z( inf x}f(x))Ax,zf—yAxk>O

Xji-1=X=
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a contradiction.



Problem 4 (WR Ch 6 #4). If f(x) =0 for all irrational x, f(x) = 1 for all rational x, prove
that f ¢ Z on [a, b] for any a < b.

Solution. For any partition P = {a = xy, X1,..., Xy—1, X, = b}, we have
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L(Pf)= Z (x in£ . f(x)) Ax; = Z (0)Ax; =0 by the density of Q¢,
=1 \Ni-1SXSX i=1
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UPRS=) ( sup f(x)) Axi=) (DAx;=(b-a) by the density of Q.
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so f¢ % on [a,b].

Problem 5 (WR Ch 6 #5). Suppose f is a bounded real function on [a, b], and f2 € % on
[a, b]. Does it follow that f € 2?2 Does the answer change if we assume that f SeR?

Solution. In the first case, we have the following counterexample. Let
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Then by the previous proof with —1 in place of 0, f ¢ % on [a, b]. But f2 =1 € % on [a, b]. So
it does not necessarily follow that if f> € % on [a, b] then f € Z.

In the second case, it does necessarily follow that if f3 € Z on [a,b] then f € Z by the
following proof. The reason this works for f3 and not for f? is that the inverse of the cube
function on R is well-defined and is ¢p(x) = ¢/x. The square function does not have a well-
defined inverse on all of R (since if y = x? then x = +,/7).

By Theorem 6.11, since ¢ is continuous on all of R, then

S(FP)) =/ f3(x) = f(x) isin 2% on [a,b].

Problem 6 (WR Ch 6 #10). Let p and g be positive real numbers such that




Prove the following statements.

(@ Ifu=0and v =0, then
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Equality holds if and only if u? = v4.

(b) ffeZ(a),ge (@), f=0,g=0,and
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then

(o) If f and g are complex functions in Z(a), then
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This is Holder’s inequality. When p = g = 2 it is usually called the Schwarz

1/q

inequality.

(d) Show that Holder’s inequality is also true for the “improper” integrals described in
Exercises 6.7 and 6.8.

Solution.
Claim. f(x)=e*isaconvex function.

Let x < t < y. By the Mean Value Theorem, there exists some a € (x, t) such that

) - fx) f(x)

fO)=fx)=t-x)f(a) which means f(a) = P

Once again, by the Mean Value Theorem, there exists some b € (¢, y) such that

f-fO=w-0f b which means f'(b) = fn-ro f(t)

Notice that f”(x) = ¢* > 0 for all x € R. This means that f'(x) is strictly increasing. Therefore,
since a < b, we have f'(a) < f'(b), so

f-fx)

/ / fo-fn f(t)
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Now for any A € (0,1) we have x < (Ax+ (1 - A)y) < y, so letting t = (Ax + (1 — 1) y) the above



inequality becomes
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fAx+Q - < AfX)+A-Mf(),

so f(x) = e is convex.

(a) From here, welet A = %, sothat (1-A1) = %. The desired result is trivial if # =0 or v =0, so
assume they are both strictly positive. Letting x = logu” and y =log v, the above inequality
becomes
e%logu”+é logv? < lelogu” + lelog v
p q
logu+logv _ uP | v9
e =5 *3
<u vl
uv< S+

(b) By part (a), for every x € [a, b] we have

(f(x))* N (g(x)1
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Therefore, taking integrals, we have
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These functions satisfy the hypotheses of part (b), so
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(¢) Since x — |x|] and x — x''P and x — x/9 are continuous functions (for x > 0), we have
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assuming the integrals are all nonzero and finite. If they are not, the inequality is trivial. The
proof follows similarly for [7°.



