MATH 140B - HW 2 SOLUTIONS

Problem 1 (WR Ch 5 #11). Suppose *f* is defined in a neighborhood of *x*, and suppose f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

Show by an example that the limit may exist even if f''(x) does not.

Solution. Since $f'(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$, and since $h \to 0$ iff $-h \to 0$, if we replace h by -h in this expression, we have

$$f'(x) = \lim_{(-h)\to 0} \frac{f'(x+(-h)) - f'(x)}{(-h)} = \lim_{h\to 0} \frac{f'(x) - f'(x-h)}{h}.$$

Therefore,

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{\lim_{h_1 \to 0} \frac{f(x+h) - f(x+h-h_1)}{h_1} - \lim_{h_2 \to 0} \frac{f(x) - f(x-h_2)}{h_2}}{h}$$

and letting $h_1 = h = h_2$, i.e. taking them all to zero at the same rate (which we can do by Theorem 4.2), we have

$$f''(x) = \lim_{h \to 0} \frac{\frac{f(x+h) - f(x+h-h)}{h} - \frac{f(x) - f(x-h)}{h}}{h} = \lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}$$

For the second portion, we would like to find an *f* so that f'(x) = |x|. One such choice of *f* could be $f(x) = \int_0^x |t| dt = \frac{1}{2}x|x|$. Now let x = 0. By continuity of *f* at x = 0 we have

$$\lim_{h \to 0} \left[f(x+h) + f(x-h) - 2f(x) \right] = f(0) + f(0) - 2f(0) = 0.$$

Also, clearly $\lim_{h\to 0} h^2 = 0$. So by L'Hôpital's rule we have

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} \stackrel{\text{L'H}}{=} \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h} = \lim_{h \to 0} \frac{|0+h| - |0-h|}{2h} = 0.$$

That means the limit exists at x = 0, but f'(x) = |x| is not differentiable at 0, so f''(0) does not exist.

Problem 2 (WR Ch 5 #12). If $f(x) = |x|^3$, compute f'(x), f''(x) for all real x, and show that $f^{(3)}(0)$ does not exist.

Solution. For $x \neq 0$, |x| is a differentiable function with derivative

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{if } x > 0\\ -1 & \text{if } x < 0 \end{cases}$$

Thus by the chain rule in the first line and by the product rule in the second line,

$$f'(x) = 3|x|^2 \operatorname{sgn}(x) = 3x|x|.$$

$$f''(x) = 3|x| + 3x \operatorname{sgn}(x) = 3|x| + 3|x| = 6|x|.$$

Checking the cases for x = 0 by hand, we have

$$f'(0) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{|h|^3 - 0}{h} = \lim_{h \to 0} h|h| = 0.$$

$$f''(0) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{3h|h| - 0}{h} = \lim_{h \to 0} 3|h| = 0.$$

$$f'''(0) = \lim_{h \to 0} \frac{f''(x+h) - f''(x)}{h} = \lim_{h \to 0} \frac{6|h| - 0}{h} = 6\lim_{h \to 0} \frac{|h|}{h} = \text{DNE}$$

Problem 3 (WR Ch 6 #2). Suppose $f \ge 0$, f is continuous on [a, b], and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.

Solution. Assume by way of contradiction that there is some $y \in [a, b]$ such that f(y) > 0, and let $\epsilon = \frac{f(y)}{2}$. Since *f* is continuous, there exists a $\delta > 0$ such that

$$0 < |y - x| < \delta \qquad \Longrightarrow \qquad |f(y) - f(x)| < \epsilon = \frac{f(y)}{2},$$

for $x \in [a, b]$. This last inequality gives us

$$f(y) - f(x) \le |f(y) - f(x)| < \frac{f(y)}{2} \qquad \Longrightarrow \qquad f(x) > \frac{f(y)}{2} > 0.$$

Let $I = (y - \delta, y + \delta) \cap [a, b]$. What we have shown so far is that if $x \in I$, then $f(x) > \frac{f(y)}{2} > 0$. Now, given some partition P of [a, b], we make a refinement P^* by adding if necessary (and if possible) a point in $(y - \delta, y) \cap [a, b]$ and a point in $(y, y + \delta) \cap [a, b]$ so that $y \in (x_{k-1}, x_k) \subset I$ with $x_{k-1}, x_k \in P^*$ for some $1 \le k \le n$. Then

$$0 = \int_{a}^{b} f(x) \, dx = \sup_{P} L(P, f) \ge L(P^*, f) = \sum_{i=1}^{n} \left(\inf_{x_{i-1} \le x \le x_i} f(x) \right) \Delta x_i \ge \frac{f(y)}{2} \Delta x_k > 0$$

a contradiction.

Problem 4 (WR Ch 6 #4). If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove that $f \notin \mathcal{R}$ on [a, b] for any a < b.

Solution. For any partition $P = \{a = x_0, x_1, \dots, x_{n-1}, x_n = b\}$, we have

$$L(P,f) = \sum_{i=1}^{n} \left(\inf_{x_{i-1} \le x \le x_i} f(x) \right) \Delta x_i = \sum_{i=1}^{n} (0) \Delta x_i = 0 \qquad \text{by the density of } \mathbb{Q}^c,$$
$$U(P,f) = \sum_{i=1}^{n} \left(\sup_{x_{i-1} \le x \le x_i} f(x) \right) \Delta x_i = \sum_{i=1}^{n} (1) \Delta x_i = (b-a) \qquad \text{by the density of } \mathbb{Q}.$$
$$\int_a^b f = \sup_P L(P,f) = 0 \neq (b-a) = \inf_P U(P,f) = \int_a^b f,$$

so $f \notin \mathcal{R}$ on [a, b].

Problem 5 (WR Ch 6 #5). Suppose *f* is a bounded real function on [*a*, *b*], and $f^2 \in \mathscr{R}$ on [*a*, *b*]. Does it follow that $f \in \mathscr{R}$? Does the answer change if we assume that $f^3 \in \mathscr{R}$?

Solution. In the first case, we have the following counterexample. Let

$$f(x) = \begin{cases} 1 & \text{if } x \in (\mathbb{Q}^c \cap [a, b]) \\ -1 & \text{if } x \in (\mathbb{Q} \cap [a, b]) \end{cases}$$

Then by the previous proof with -1 in place of 0, $f \notin \mathscr{R}$ on [a, b]. But $f^2 \equiv 1 \in \mathscr{R}$ on [a, b]. So it does **not** necessarily follow that if $f^2 \in \mathscr{R}$ on [a, b] then $f \in \mathscr{R}$.

In the second case, it **does** necessarily follow that if $f^3 \in \mathscr{R}$ on [a, b] then $f \in \mathscr{R}$ by the following proof. The reason this works for f^3 and not for f^2 is that the inverse of the cube function on \mathbb{R} is well-defined and is $\phi(x) = \sqrt[3]{x}$. The square function does not have a well-defined inverse on all of \mathbb{R} (since if $y = x^2$ then $x = \pm \sqrt{y}$).

By Theorem 6.11, since ϕ is continuous on all of \mathbb{R} , then

$$\phi(f^3(x)) = \sqrt[3]{f^3(x)} = f(x) \text{ is in } \mathscr{R} \text{ on } [a, b].$$

Problem 6 (WR Ch 6 #10). Let p and q be positive real numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Prove the following statements.

(a) If $u \ge 0$ and $v \ge 0$, then

$$uv \leq \frac{u^p}{p} + \frac{v^q}{q}.$$

Equality holds if and only if $u^p = v^q$.

(b) If $f \in \mathscr{R}(\alpha)$, $g \in \mathscr{R}(\alpha)$, $f \ge 0$, $g \ge 0$, and

$$\int_{a}^{b} f^{p} d\alpha = 1 = \int_{a}^{b} g^{q} d\alpha,$$

then

$$\int_{a}^{b} fg \, d\alpha = 1$$

(c) If f and g are complex functions in $\mathscr{R}(\alpha)$, then

$$\left|\int_{a}^{b} fg \, d\alpha\right| \leq \left\{\int_{a}^{b} |f|^{p} \, d\alpha\right\}^{1/p} \left\{\int_{a}^{b} |g|^{q} \, d\alpha\right\}^{1/q}.$$

This is *Hölder's inequality*. When p = q = 2 it is usually called the Schwarz inequality.

(d) Show that Hölder's inequality is also true for the "improper" integrals described in Exercises 6.7 and 6.8.

Solution.

Claim. $f(x) = e^x$ is a convex function.

Let x < t < y. By the Mean Value Theorem, there exists some $a \in (x, t)$ such that

$$f(t) - f(x) = (t - x)f'(a)$$
 which means $f'(a) = \frac{f(t) - f(x)}{t - x}$.

Once again, by the Mean Value Theorem, there exists some $b \in (t, y)$ such that

$$f(y) - f(t) = (y - t)f'(b)$$
 which means $f'(b) = \frac{f(y) - f(t)}{y - t}$.

Notice that $f''(x) = e^x > 0$ for all $x \in \mathbb{R}$. This means that f'(x) is strictly increasing. Therefore, since a < b, we have $f'(a) \le f'(b)$, so

$$\frac{f(t) - f(x)}{t - x} = f'(a) \le f'(b) = \frac{f(y) - f(t)}{y - t},$$

Now for any $\lambda \in (0, 1)$ we have $x < (\lambda x + (1 - \lambda)y) < y$, so letting $t = (\lambda x + (1 - \lambda)y)$ the above

inequality becomes

$$\begin{aligned} \frac{f(t) - f(x)}{(\lambda x + (1 - \lambda)y) - x} &\leq \frac{f(y) - f(t)}{y - (\lambda x + (1 - \lambda)y)} \\ \frac{f(t) - f(x)}{(1 - \lambda)(y - x)} &\leq \frac{f(y) - f(t)}{\lambda(y - x)} \\ \lambda f(t) - \lambda f(x) &\leq (1 - \lambda)f(y) - (1 - \lambda)f(t) \\ f(t) &\leq \lambda f(x) + (1 - \lambda)f(y) \\ f(\lambda x + (1 - \lambda)y) &\leq \lambda f(x) + (1 - \lambda)f(y), \end{aligned}$$

so $f(x) = e^x$ is convex.

(a) From here, we let $\lambda = \frac{1}{p}$, so that $(1 - \lambda) = \frac{1}{q}$. The desired result is trivial if u = 0 or v = 0, so assume they are both strictly positive. Letting $x = \log u^p$ and $y = \log v^q$, the above inequality becomes

$$e^{\frac{1}{p}\log u^{p} + \frac{1}{q}\log v^{q}} \leq \frac{1}{p}e^{\log u^{p}} + \frac{1}{q}e^{\log v^{q}}$$
$$e^{\log u + \log v} \leq \frac{u^{p}}{p} + \frac{v^{q}}{q}$$
$$uv \leq \frac{u^{p}}{p} + \frac{v^{q}}{q}.$$

(b) By part (a), for every $x \in [a, b]$ we have

$$f(x) g(x) \le \frac{(f(x))^p}{p} + \frac{(g(x))^q}{q}.$$

Therefore, taking integrals, we have

$$\int_{a}^{b} fg \, d\alpha \leq \frac{\int_{a}^{b} f^{p} \, d\alpha}{p} + \frac{\int_{a}^{b} g^{q} \, d\alpha}{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

(c) If $\int_{a}^{b} |f| d\alpha = 0$ or $\int_{a}^{b} |g| d\alpha = 0$ the inequality is trivial. Otherwise, let $A = \left\{ \int_{a}^{b} |f|^{p} d\alpha \right\}^{1/p} > 0$ and let $B = \left\{ \int_{a}^{b} |g|^{q} d\alpha \right\}^{1/q} > 0$, and let

$$F(x) = \frac{|f(x)|}{A}$$
 and $G(x) = \frac{|g(x)|}{B}$.

These functions satisfy the hypotheses of part (b), so

$$\int_{a}^{b} FG \, d\alpha \leq 1$$
$$\int_{a}^{b} \frac{|f|}{A} \frac{|g|}{B} \, d\alpha \leq 1$$
$$\int_{a}^{b} fg \, d\alpha \bigg| \leq \int_{a}^{b} |f| |g| \, d\alpha \leq AB = \left\{ \int_{a}^{b} |f|^{p} \, d\alpha \right\}^{1/p} \left\{ \int_{a}^{b} |g|^{q} \, d\alpha \right\}^{1/q}.$$

(c) Since $x \mapsto |x|$ and $x \mapsto x^{1/p}$ and $x \mapsto x^{1/q}$ are continuous functions (for x > 0), we have

$$\begin{split} \left| \int_{0}^{1} fg \, d\alpha \right| &= \left| \lim_{c \to 0} \int_{c}^{1} fg \, d\alpha \right| = \lim_{c \to 0} \left| \int_{c}^{1} fg \, d\alpha \right| \\ &\leq \lim_{c \to 0} \left(\left\{ \int_{c}^{1} |f|^{p} \, d\alpha \right\}^{1/p} \left\{ \int_{c}^{1} |g|^{q} \, d\alpha \right\}^{1/q} \right) \\ &= \left(\lim_{c \to 0} \left\{ \int_{c}^{1} |f|^{p} \, d\alpha \right\}^{1/p} \right) \cdot \left(\lim_{c \to 0} \left\{ \int_{c}^{1} |g|^{q} \, d\alpha \right\}^{1/q} \right) \\ &= \left\{ \lim_{c \to 0} \int_{c}^{1} |f|^{p} \, d\alpha \right\}^{1/p} \cdot \left\{ \lim_{c \to 0} \int_{c}^{1} |g|^{q} \, d\alpha \right\}^{1/q} \\ &= \left\{ \int_{0}^{1} |f|^{p} \, d\alpha \right\}^{1/p} \left\{ \int_{0}^{1} |g|^{q} \, d\alpha \right\}^{1/q}, \end{split}$$

assuming the integrals are all nonzero and finite. If they are not, the inequality is trivial. The proof follows similarly for \int_a^∞ .