
MATH 140B - HW 2 SOLUTIONS

Problem 1 (WR Ch 5 #11). Suppose f is defined in a neighborhood of x, and suppose

f ′′(x) exists. Show that

lim
h→0

f (x +h)+ f (x −h)−2 f (x)

h2 = f ′′(x).

Show by an example that the limit may exist even if f ′′(x) does not.

Solution. Since f ′(x) = lim
h→0

f ′(x+h)− f ′(x)
h , and since h → 0 iff −h → 0, if we replace h by −h in

this expression, we have

f ′(x) = lim
(−h)→0

f ′(x + (−h))− f ′(x)

(−h)
= lim

h→0

f ′(x)− f ′(x −h)

h
.

Therefore,

f ′′(x) = lim
h→0

f ′(x +h)− f ′(x)

h
= lim

h→0

lim
h1→0

f (x+h)− f (x+h−h1)
h1

− lim
h2→0

f (x)− f (x−h2)
h2

h
,

and letting h1 = h = h2, i.e. taking them all to zero at the same rate (which we can do by

Theorem 4.2), we have

f ′′(x) = lim
h→0

f (x+h)− f (x+h−h)
h − f (x)− f (x−h)

h

h
= lim

h→0

f (x +h)+ f (x −h)−2 f (x)

h2 .

For the second portion, we would like to find an f so that f ′(x) = |x|. One such choice of f

could be f (x) = ∫ x
0 |t |d t = 1

2 x|x|. Now let x = 0. By continuity of f at x = 0 we have

lim
h→0

[
f (x +h)+ f (x −h)−2 f (x)

]= f (0)+ f (0)−2 f (0) = 0.

Also, clearly lim
h→0

h2 = 0. So by L’Hôpital’s rule we have

lim
h→0

f (x +h)+ f (x −h)−2 f (x)

h2
L’H= lim

h→0

f ′(x +h)− f ′(x −h)

2h
= lim

h→0

|0+h|− |0−h|
2h

= 0.

That means the limit exists at x = 0, but f ′(x) = |x| is not differentiable at 0, so f ′′(0) does not

exist.

Problem 2 (WR Ch 5 #12). If f (x) = |x|3, compute f ′(x), f ′′(x) for all real x, and show

that f (3)(0) does not exist.

1



Solution. For x 6= 0, |x| is a differentiable function with derivative

sgn(x) =
{

1 if x > 0

−1 if x < 0
.

Thus by the chain rule in the first line and by the product rule in the second line,

f ′(x) = 3|x|2 sgn(x) = 3x|x|.
f ′′(x) = 3|x|+3x sgn(x) = 3|x|+3|x| = 6|x|.

Checking the cases for x = 0 by hand, we have

f ′(0) = lim
h→0

f (x +h)− f (x)

h
= lim

h→0

|h|3 −0

h
= lim

h→0
h|h| = 0.

f ′′(0) = lim
h→0

f ′(x +h)− f ′(x)

h
= lim

h→0

3h|h|−0

h
= lim

h→0
3|h| = 0.

f ′′′(0) = lim
h→0

f ′′(x +h)− f ′′(x)

h
= lim

h→0

6|h|−0

h
= 6 lim

h→0

|h|
h

= DNE

Problem 3 (WR Ch 6 #2). Suppose f ≥ 0, f is continuous on [a,b], and
∫ b

a f (x)d x = 0.

Prove that f (x) = 0 for all x ∈ [a,b].

Solution. Assume by way of contradiction that there is some y ∈ [a,b] such that f (y) > 0, and

let ε= f (y)
2 . Since f is continuous, there exists a δ> 0 such that

0 < |y −x| < δ =⇒ | f (y)− f (x)| < ε= f (y)

2
,

for x ∈ [a,b]. This last inequality gives us

f (y)− f (x) ≤ | f (y)− f (x)| < f (y)

2
=⇒ f (x) > f (y)

2
> 0.

Let I = (y −δ, y +δ)∩ [a,b]. What we have shown so far is that if x ∈ I , then f (x) > f (y)
2 > 0.

Now, given some partition P of [a,b], we make a refinement P∗ by adding if necessary (and

if possible) a point in (y −δ, y)∩ [a,b] and a point in (y, y +δ)∩ [a,b] so that y ∈ (xk−1, xk ) ⊂ I

with xk−1, xk ∈ P∗ for some 1 ≤ k ≤ n. Then

0 =
∫ b

a
f (x)d x = sup

P
L(P, f ) ≥ L(P∗, f ) =

n∑
i=1

(
inf

xi−1≤x≤xi
f (x)

)
∆xi ≥ f (y)

2
∆xk > 0,

a contradiction.
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Problem 4 (WR Ch 6 #4). If f (x) = 0 for all irrational x, f (x) = 1 for all rational x, prove

that f ∉R on [a,b] for any a < b.

Solution. For any partition P = {a = x0, x1, . . . , xn−1, xn = b}, we have

L(P, f ) =
n∑

i=1

(
inf

xi−1≤x≤xi
f (x)

)
∆xi =

n∑
i=1

(0)∆xi = 0 by the density ofQc ,

U (P, f ) =
n∑

i=1

(
sup

xi−1≤x≤xi

f (x)

)
∆xi =

n∑
i=1

(1)∆xi = (b −a) by the density ofQ.

∫ b

a
f = sup

P
L(P, f ) = 0 6= (b −a) = inf

P
U (P, f ) =

∫ b

a
f ,

so f ∉R on [a,b].

Problem 5 (WR Ch 6 #5). Suppose f is a bounded real function on [a,b], and f 2 ∈R on

[a,b]. Does it follow that f ∈R? Does the answer change if we assume that f 3 ∈R?

Solution. In the first case, we have the following counterexample. Let

f (x) =
{

1 if x ∈ (Qc ∩ [a,b])

−1 if x ∈ (Q∩ [a,b])
.

Then by the previous proof with −1 in place of 0, f ∉R on [a,b]. But f 2 ≡ 1 ∈R on [a,b]. So

it does not necessarily follow that if f 2 ∈R on [a,b] then f ∈R.

In the second case, it does necessarily follow that if f 3 ∈ R on [a,b] then f ∈ R by the

following proof. The reason this works for f 3 and not for f 2 is that the inverse of the cube

function on R is well-defined and is φ(x) = 3
p

x. The square function does not have a well-

defined inverse on all of R (since if y = x2 then x =±py).

By Theorem 6.11, since φ is continuous on all of R, then

φ( f 3(x)) = 3
√

f 3(x) = f (x) is in R on [a,b].

Problem 6 (WR Ch 6 #10). Let p and q be positive real numbers such that

1

p
+ 1

q
= 1.
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Prove the following statements.

(a) If u ≥ 0 and v ≥ 0, then

uv ≤ up

p
+ v q

q
.

Equality holds if and only if up = v q .

(b) If f ∈R(α), g ∈R(α), f ≥ 0, g ≥ 0, and∫ b

a
f p dα= 1 =

∫ b

a
g q dα,

then ∫ b

a
f g dα= 1.

(c) If f and g are complex functions in R(α), then∣∣∣∣∫ b

a
f g dα

∣∣∣∣≤ {∫ b

a
| f |p dα

}1/p {∫ b

a
|g |q dα

}1/q

.

This is Hölder’s inequality. When p = q = 2 it is usually called the Schwarz

inequality.

(d) Show that Hölder’s inequality is also true for the “improper” integrals described in

Exercises 6.7 and 6.8.

Solution.

Claim. f (x) = ex is a convex function.

Let x < t < y . By the Mean Value Theorem, there exists some a ∈ (x, t ) such that

f (t )− f (x) = (t −x) f ′(a) which means f ′(a) = f (t )− f (x)

t −x
.

Once again, by the Mean Value Theorem, there exists some b ∈ (t , y) such that

f (y)− f (t ) = (y − t ) f ′(b) which means f ′(b) = f (y)− f (t )

y − t
.

Notice that f ′′(x) = ex > 0 for all x ∈R. This means that f ′(x) is strictly increasing. Therefore,

since a < b, we have f ′(a) ≤ f ′(b), so

f (t )− f (x)

t −x
= f ′(a) ≤ f ′(b) = f (y)− f (t )

y − t
.

Now for any λ ∈ (0,1) we have x < (λx + (1−λ)y) < y , so letting t = (λx + (1−λ)y) the above
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inequality becomes

f (t )− f (x)

(λx + (1−λ)y)−x
≤ f (y)− f (t )

y − (λx + (1−λ)y)

f (t )− f (x)

(1−λ)���(y −x)
≤ f (y)− f (t )

λ���(y −x)

λ f (t )−λ f (x) ≤ (1−λ) f (y)− (1−λ) f (t )

f (t ) ≤λ f (x)+ (1−λ) f (y)

f (λx + (1−λ)y) ≤λ f (x)+ (1−λ) f (y),

so f (x) = ex is convex.

(a) From here, we let λ= 1
p , so that (1−λ) = 1

q . The desired result is trivial if u = 0 or v = 0, so

assume they are both strictly positive. Letting x = logup and y = log v q , the above inequality

becomes

e
1
p logup+ 1

q log v q ≤ 1
p e logup + 1

q e log v q

e logu+log v ≤ up

p + v q

q

uv ≤ up

p + v q

q .

(b) By part (a), for every x ∈ [a,b] we have

f (x) g (x) ≤ ( f (x))p

p
+ (g (x))q

q
.

Therefore, taking integrals, we have

∫ b

a
f g dα≤

∫ b
a f p dα

p
+

∫ b
a g q dα

q
= 1

p
+ 1

q
= 1.

(c) If
∫ b

a | f |dα= 0 or
∫ b

a |g |dα= 0 the inequality is trivial. Otherwise, let A =
{∫ b

a | f |p dα
}1/p >

0 and let B =
{∫ b

a |g |q dα
}1/q > 0, and let

F (x) = | f (x)|
A

and G(x) = |g (x)|
B

.

These functions satisfy the hypotheses of part (b), so∫ b

a
FG dα≤ 1∫ b

a

| f |
A

|g |
B

dα≤ 1∣∣∣∣∫ b

a
f g dα

∣∣∣∣≤ ∫ b

a
| f | |g |dα≤ AB =

{∫ b

a
| f |p dα

}1/p {∫ b

a
|g |q dα

}1/q

.
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(c) Since x 7→ |x| and x 7→ x1/p and x 7→ x1/q are continuous functions (for x > 0), we have∣∣∣∣∫ 1

0
f g dα

∣∣∣∣= ∣∣∣∣lim
c→0

∫ 1

c
f g dα

∣∣∣∣= lim
c→0

∣∣∣∣∫ 1

c
f g dα

∣∣∣∣
≤ lim

c→0

({∫ 1

c
| f |p dα

}1/p {∫ 1

c
|g |q dα

}1/q
)

=
(

lim
c→0

{∫ 1

c
| f |p dα

}1/p
)
·
(

lim
c→0

{∫ 1

c
|g |q dα

}1/q
)

=
{

lim
c→0

∫ 1

c
| f |p dα

}1/p

·
{

lim
c→0

∫ 1

c
|g |q dα

}1/q

=
{∫ 1

0
| f |p dα

}1/p {∫ 1

0
|g |q dα

}1/q

,

assuming the integrals are all nonzero and finite. If they are not, the inequality is trivial. The

proof follows similarly for
∫ ∞

a .
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