MATH 140B - HW 0 SOLUTIONS

Problem 1 (WR Ch 5 #1). Let *f* be defined for all real *x*, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Prove that f is constant.

Solution. For $x \neq y$, from the above inequality we have $\frac{|f(x)-f(y)|}{|x-y|} \leq |x-y|$. So then

$$|f'(y)| = \left|\lim_{x \to y} \frac{f(x) - f(y)}{x - y}\right| = \lim_{x \to y} \left|\frac{f(x) - f(y)}{x - y}\right| \le \lim_{x \to y} |x - y| = 0$$

This implies that f'(y) = 0 for all $y \in \mathbb{R}$, so f is constant.

Problem 2 (WR Ch 5 #3). Suppose *g* is a real function on \mathbb{R} , with bounded derivative (say $|g'| \le M$). Fix $\epsilon > 0$, and define $f(x) = x + \epsilon g(x)$. Prove that *f* is one-to-one if ϵ is small enough.

Solution.

$$f \text{ is one-to-one} \iff \forall a, b \in \mathbb{R}, a \neq b \Rightarrow f(a) \neq f(b).$$

Assume without loss of generality that a < b. Then by the Mean Value Theorem, there exists some $c \in (a, b)$ such that g(b) - g(a) = (b - a) g'(c). Then we have

$$f(b) - f(a) = (b - \epsilon g(b)) - (a - \epsilon g(a))$$

= $(b - a) - \epsilon(g(b) - g(a))$
= $(b - a) - \epsilon(b - a)g'(c)$
= $(b - a)(1 - \epsilon g'(c)).$ (*)

In this last expression $(b - a) \neq 0$ since a < b, and if we let $\epsilon < \frac{1}{M}$, then

$$|\epsilon g'(c)| < \frac{1}{M} |g'(c)| \le \frac{1}{M} M = 1$$

so $(1 - \epsilon g'(c)) \neq 0$. This proves that (*) is nonzero, so $f(b) - f(a) \neq 0$, and thus $f(a) \neq f(b)$, completing the proof.

Problem 3 (WR Ch 5 #5). Suppose *f* is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

Solution. By the Mean Value Theorem, there exists some $y_x \in (x, x + 1)$ (we write y_x because to indicate that y_x depends on x) such that

$$f(x+1) - f(x) = ((x+1) - x)f'(y_x) = f'(y_x).$$

Since the left hand side is g(x), we have

$$\lim_{x \to +\infty} g(x) = \lim_{x \to \infty} f'(y_x) = \lim_{y \to \infty} f'(y) = 0.$$