Math 140b-HW 0 Solutions

Problem 1 (WR Ch 5 \#1). Let f be defined for all real x, and suppose that

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

for all real x and y. Prove that f is constant.
Solution. For $x \neq y$, from the above inequality we have $\frac{|f(x)-f(y)|}{|x-y|} \leq|x-y|$. So then

$$
\left|f^{\prime}(y)\right|=\left|\lim _{x \rightarrow y} \frac{f(x)-f(y)}{x-y}\right|=\lim _{x \rightarrow y}\left|\frac{f(x)-f(y)}{x-y}\right| \leq \lim _{x \rightarrow y}|x-y|=0
$$

This implies that $f^{\prime}(y)=0$ for all $y \in \mathbb{R}$, so f is constant.

Problem 2 (WR Ch 5 \#3). Suppose g is a real function on \mathbb{R}, with bounded derivative (say $\left|g^{\prime}\right| \leq M$. Fix $\epsilon>0$, and define $f(x)=x+\epsilon g(x)$. Prove that f is one-to-one if ϵ is small enough.

Solution.

$$
f \text { is one-to-one } \quad \Longleftrightarrow \quad \forall a, b \in \mathbb{R}, \quad a \neq b \Rightarrow f(a) \neq f(b)
$$

Assume without loss of generality that $a<b$. Then by the Mean Value Theorem, there exists some $c \in(a, b)$ such that $g(b)-g(a)=(b-a) g^{\prime}(c)$. Then we have

$$
\begin{align*}
f(b)-f(a) & =(b-\epsilon g(b))-(a-\epsilon g(a)) \\
& =(b-a)-\epsilon(g(b)-g(a)) \\
& =(b-a)-\epsilon(b-a) g^{\prime}(c) \\
& =(b-a)\left(1-\epsilon g^{\prime}(c)\right) . \tag{*}
\end{align*}
$$

In this last expression $(b-a) \neq 0$ since $a<b$, and if we let $\epsilon<\frac{1}{M}$, then

$$
\left|\epsilon g^{\prime}(c)\right|<\frac{1}{M}\left|g^{\prime}(c)\right| \leq \frac{1}{M} M=1
$$

so $\left(1-\epsilon g^{\prime}(c)\right) \neq 0$. This proves that $(*)$ is nonzero, so $f(b)-f(a) \neq 0$, and thus $f(a) \neq f(b)$, completing the proof.

Problem 3 (WR Ch 5 \#5). Suppose f is defined and differentiable for every $x>0$, and $f^{\prime}(x) \rightarrow$ 0 as $x \rightarrow+\infty$. Put $g(x)=f(x+1)-f(x)$. Prove that $g(x) \rightarrow 0$ as $x \rightarrow+\infty$.

Solution. By the Mean Value Theorem, there exists some $y_{x} \in(x, x+1)$ (we write y_{x} because to indicate that y_{x} depends on x) such that

$$
f(x+1)-f(x)=((x+1)-x) f^{\prime}\left(y_{x}\right)=f^{\prime}\left(y_{x}\right)
$$

Since the left hand side is $g(x)$, we have

$$
\lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow \infty} f^{\prime}\left(y_{x}\right)=\lim _{y \rightarrow \infty} f^{\prime}(y)=0
$$

