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Abstract

Wavefront construction in geometrical optics has long faced the twin difficulties of

dealing with multivalued forms and resolution of wavefront surfaces. A recent change

in viewpoint, however, has demonstrated that working in phase space on bicharacteris-

tic strips using eulerian methods can bypass both difficulties. The success of the level

set method in science and engineering makes it a suitable choice for such an eulerian

method. Unfortunately, in three-dimensional space, the setting of interest for most

practical applications, the advantages of this method are largely offset by a new prob-

lem: the high dimension of phase space. In this work, we present new types of level

set algorithms that remove this obstacle and demonstrate their abilities to accurately

construct wavefronts under high resolution. These results propel the level set method

forward significantly as a competitive approach in geometrical optics under realistic

conditions.

1 Introduction

In the high frequency regime, wave propagation can be simplified by recasting the wave
equation into an eikonal equation for phase and transport equations for amplitude terms
in what is known as the geometrical optics approximation. Solution of the phase has a
geometric interpretation, involving solution of its level sets, called wavefronts, each of which
can be viewed as manifestations of a surface flowing from an initial source through different
traveltimes under a time-dependant eikonal equation. The right combinations of viewpoint,
framework, and techniques to aid in capturing the generally multi-valued wavefront surfaces
under their deformations has been the subject of immense study in applied mathematics.

Two approaches, lagrangian and eulerian, have traditionally dominated the subject of
numerical wavefront construction. The algorithms arising from these two frameworks have
diametrically opposite characteristics: a lagrangian method easily captures multi-valued
behavior but encounters difficulties with the resolution of the surface while an eulerian
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method automatically resolves the surface but has trouble obtaining multi-valued forms.
This trade-off has been the main obstacle to producing suitable numerical solutions. See,
e.g., [15, 16] for more on lagrangian methods and [1, 3] for eulerian.

Recently, the work of [4] has advanced a different viewpoint that is able to bypass this
obstacle. Since higher-dimensional phase space unravels multi-valued wavefronts, it noted
that an eulerian method working in this setting can avoid the difficulties of multi-valued forms
while having a handle on resolution. Numerical experiments using the segment projection
method as the eulerian method provided early justification of these claims.

In light of the development, advances, and success of level set approaches in various
fields of science (see, e.g., [11, 10]), the work of [9] continued with the same philosophy but
substituted a level set method in place of the segment projection method. Given an initial
wavefront, this method represented its form in phase space, the bicharacteristic strip, as the
zeros of a vector-valued level set function. Wavefronts of other traveltimes were generated by
evolving this function in phase space under the Liouville equation, which translates from the
eikonal equation for wavefronts, up to the desired traveltime, then extracting the zeros and
projecting them down into spatial space. Numerical experiments showed that multi-valued
solutions could be captured and properly resolved in a variety of situations involving variable
indices of refraction and reflection.

However, all but one of these experiments were conducting for two spatial dimensions.
The reason for this is phase space has twice the dimension of spatial space. For two spatial
dimensions, phase space is only four-dimensional, where one further dimension can be re-
moved without complications. For three spatial dimensions, the natural and more physical
environment for wave propagation, phase space is six-dimensional. In this setting, grid-based
algorithms must place an emphasis on efficiency or face intolerably long computation times
and unacceptably large memory requirements. Thus the algorithms presented in [9] showed
level set methods could bypass traditional difficulties in geometrical optics, but were not
efficient enough to directly extend for use in three spatial dimensions. The only result given
for three spatial dimensions could only use 20 points in each dimension for its grid over a
five-dimensional reduced phase space, hardly enough to resolve details in the wavefronts.
Subsequent advances in [8] could only extend to grids with 64 points in each dimension.

In this paper, we modify the level set approach of [9] so that computations are performed
only at gridcells near the bicharacteristic strip, the traditional goal of local level set methods
[12]. This effectively reduces the complexity of the approach from the dimension of phase
space to roughly that of the bicharacteristic strip itself. The essential technology used is a
long-time semi-lagrangian approach (see, e.g., [5, 13]) for solving the Liouville equation that
provides the flexibility needed to ignore the majority of gridcells (see [8, 6] for other semi-
lagrangian level set methods). Based on this technology and the level set framework, we
consider a theoretically fast multi-resolution algorithm, introduce a practically fast growing
algorithm, and discuss advantageous combinations of the two. Section 2 introduces essential
concepts and tools used in the algorithms presented in section 3. Section 4 then investigates
the abilities of the algorithms through numerical experiments and compares results with
the competitive approach introduced in [8]. Finally, section 5 reviews the contributions and
content of this paper while section 6 acknowledges supporting factors in this paper.

2



2 Preliminary Tools

2.1 Solving the Liouville Equation

In this section, we summarize a flexible scheme for capturing the level set function as it
flows under the Liouville equation. Let Φ(x, p, t) denote a four component vector-valued
level set function existing in phase space, {(x, p)|x ∈ R3, p ∈ R3}. Suppose Φ(x, p, t = 0) is
given so that its zeros match the two-dimensional bicharacteristic strip for a given wavefront
of zero traveltime. The work of [9] gives details for finding such a level set function when
the wavefront is single-valued and stable under representation by level set function φ̃(x) in
spatial space, with the strategy consisting of setting the four components of Φ to be

(φ1, φ2, φ3) = c∇xφ̃/|∇xφ̃|

φ4 = φ̃,

where c(x) denotes the local wave speed in the medium. Here, the first three components are
dedicated to phase direction, which is orthogonal to the wavefront, and the last component
to spatial location. The relationship between level set function and bicharacteristic strip is
preserved for future traveltimes through the Liouville equation,

(φi)t + c
p

|p|
· ∇xφi − |p|∇xc · ∇pφi = 0,

on the components φi of Φ. Thus for simpler notation, we use the term bicharacteristic strip
when referring to the zero level set of Φ. An algorithm for capturing wavefronts then seeks
to solve the Liouville equation for the level set function up to the desired traveltime, extract
its zeros, and project them down into spatial space, {x|x ∈ R3}, to arrive at the wavefront
at that traveltime. Most of the complexity in this procedure lies in solving the Liouville
equation.

According to the method of characteristics, the Liouville equation is a transport equation
moving values of Φ unchangingly along integral curves of the velocity field v = (cp/|p|, |p|∇xc)
in phase space. The linear nature of the partial differential equation allows for application of
a lagrangian strategy for solving for Φ at desired locations in phase space at desired times.
Fix time T and position (xT , pT ) in phase space. To find the point (x0, p0) at time 0 that
flows to (xT , pT ) along v after time T , we may solve the ordinary differential equation

(x(t), p(t))′ = v

backwards from time T to time 0, with x(T ) = xT , p(T ) = pT given and x(0) = x0, p(0) = p0

the solution. The value of Φ at (xT , pT ) at time T can then be obtained from the value of
the initial Φ at (x0, p0) at time 0 under the relationship

Φ(xT , pT , T ) = Φ(x0, p0, 0).

This strategy becomes semi-lagrangian when the points (xT , pT ) at time T fit into a grid in
phase space. See [6] for more on this procedure in geometrical optics.
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There are two advantages to solving the Liouville equation in this manner over using
a finite differencing approach, as done in [9]. The first arises from the fact that values at
different points and times are independently calculated. This means the calculation of a
value at one point and time does not have the large domain of dependence of values needed
by the stencils of finite differencing. Related to this, the collection of points where values
can be calculated using the semi-lagrangian approach need not have a regular structure and
can in fact be composed of a random assortment of points. Finite differencing is not as well-
developed and loses many of its desirable abilities on such grids. The second advantage is the
removal of the Courant-Friedrichs-Lewy stability restriction appearing in finite differencing
approaches.

These advantages provide the flexibility needed to build efficient level set algorithms. The
first advantage allows us to calculate values only at gridcells close to the bicharacteristic strip
and also to use specialized grids to reduce the dimension of phase space, while the second
advantage allows us to take larger steps in time, unhindered by stability constraints, for
quicker computation.

2.2 Gridcells and Bicharacteristic Strips

In this section, we seek a method for checking whether a given gridcell intersects a bichar-
acteristic strip by using values of the level set function generated perhaps with the semi-
lagrangian approach of the previous section. In the absence of simple analytical equations
describing the bicharacteristic strip, obtaining an exact condition for this check is restric-
tively complicated; thus we turn to approximate conditions. Consider a grid over the six-
dimensional phase space and, as notation, let B denote the set of gridcells that intersect the
bicharacteristic strip. Fixing a gridcell of the grid, we check its acceptability using values
of Φ at judiciously chosen locations. A natural choice for these locations, and the choice we
make for simplicity, is at the gridpoints of the gridcell; however, we do note that restricting
ourselves to these locations is actually a relic of grid-based schemes that is no longer needed
with the semi-lagrangian method.

Before we list some simple options for checking gridcells, we make the general observation
that the geometry of the bicharacteristic strip in the gridcell affects the ability to confirm its
presence. If the surface enters and exits quickly out of a gridcell away from the gridpoints, it
may be difficult to identify the gridcell as an element of B from the values of Φ there. This
is well-known in the subject of interface dynamics. The common solution, refinement of the
grid, works for two reasons: it is less likely for a surface to enter and exit quickly out of a
smaller gridcell and even if it does, the effect is smaller. Thus we will always consider our
gridcells to be sufficiently small so that undercounting in this situation will be negligible.

Our first checking scheme was first proposed in [2, 9]. It involves accepting a given gridcell
as an element of B if, at the gridpoints, the values of each component of Φ change sign.
This implies, by the intermediate value theorem, that the zero level set of each component
passes through the gridcell. Such a check is fast, with only signs of values needed, but in
practice, B can be significantly overcounted in many situations, when the zero level set of
each component passes through the gridcell but they do not mutually intersect. Thus we
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seek different options.
Our second checking scheme is an improvement of the first that is ideal in specific situa-

tions. Whereas the first approach can be thought of as trying to determine the nature of the
bicharacteristic strip by viewing each of its components individually, our second considers
pairwise interactions between components. For any two components, we may determine if
the values of one change sign at the points where the zero level set of the other intersects
the one-dimensional lines composing the gridcell. If there is a sign change, then the in-
termediate value theorem implies that the zero level sets of the two components intersect.
The approach then accepts the gridcell if this condition holds for each pair of components.
One-dimensional linear interpolation can be used to determine both the needed points and
values from values of Φ at gridpoints, making the checking process fast, though slower than
the first approach. This method diminishes the overcounting of B, though overcounting
still occurs when pairwise intersections of zero level sets do not mutually intersect. It is,
however, ideal in the two-spatial dimension case, seen so often in the examples of [9], that
uses a three-dimensional reduced phase space since the level set function has exactly two
components. We now seek more accurate options.

Our third checking scheme is our most accurate but slowest one. While the second
approach considers pairwise intersections of the zero level sets of the components of the level
set function, this one considers the contributions of all components together. This essentially
involves extraction of an approximation of the piece of bicharacteristic strip in the gridcell,
if it exists. If it does exist, the gridcell is identified as being an element of B; otherwise, it
is considered outside B. Note extraction of the bicharacteristic strip is also a necessary step
for plotting the wavefront of interest. This checking process, since it arrives at an accurate,
usually second-order, representation of the bicharacteristic strip, is the slowest of the three
but will avoid serious overcounting or undercounting of B in all but the most degenerate
cases.

For extraction of the bicharacteristic strip, we may consider the four-dimensional parts
that compose the gridcell and determine whether and where the zero level sets of the four
components of the level set function intersect these parts. By forming linear approximations
of these components with normal vectors approximated using central differencing at the
center of the gridcell, one can solve a linear system of equations with four equations and
four unknowns for the intersection with a four-dimensional part. If an intersection lies
approximately within the gridcell, then it represents an extracted point of the bicharacteristic
strip. For checking, the existence of such a point for a four-dimensional part of the gridcell
leads to the acceptance of the gridcell as an element of B. For plotting, the point can be
projected to spatial space to obtain one lying on the wavefront. Small spheres drawn around
these points then form a thicker version of the bicharacteristic strip of interest that can be
visualized using surface plotting programs.

This simple approach, on the other hand, be replaced by more sophisticated options
such as that of [7] which returns triangulations of the zero level set surface of vector-valued
functions that have arbitrary numbers of components defined in arbitrary dimensions. When
plotting is concerned, however, these triangulations tend to contain large numbers of triangles
that lead to overly large memory usages in many surface plotting programs.
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We note that in [8], properties of the level set function, specifically knowledge of Lip-
schitz constants, are used to help identify elements of B. Though overcounting occurs in
this approach, and in fact is desired to a certain extent, it is another option that may be
considered or improved upon.

3 Algorithms

3.1 Multi-Resolution Algorithm

The first approach for wavefront construction we consider, seen in varying degrees in [8, 6],
makes use of the tools of the previous section to operate on a multi-resolution grid refining
at the bicharacteristic strip of interest. The algorithm can be summarized as follows:

1. Lay down a coarse grid in phase space and fix a time T .

2. For each gridcell, check if the bicharacteristic strip of traveltime T passes through that
gridcell.

3. If it does, furher check if the gridcell is smaller than a desired size; otherwise, halt
further computations for this gridcell.

4. If it is, extract the piece of bicharacteristic strip and wavefront of traveltime T from
the gridcell. Then return to the second step for another gridcell. Otherwise, refine the
gridcell and, using recursion, apply the second step to each of the refined gridcells.

Expanding on the details of the steps involved: the grid in the first step can be chosen
to be a fixed, regular grid composed of hypercube gridcells based in a fixed computational
box assumed to include the bicharacteristic strip up to the time of interest; the check in the
second step and extraction in the fourth step follow the discussions of the previous section;
and the check in the third step stops the refinement sequence.

Altogether, this produces a theoretically fast and memory efficient algorithm for wave-
front construction. To measure the computational complexity, we make two assumptions:
first, that the finest level of refinement uses gridcells of a uniform grid with N points in
each dimension, and the total number of these gridcells that intersect the two-dimensional
bicharacteristic strip is O(N2); and second, that the check performed in the third step indeed
is able to exactly identify gridcells that intersect the bicharacteristic strip using O(1) values
of Φ for each gridcell checked. With these assumptions, we can conclude that the number of
gridcells touched by the algorithm is O(N2), which is two-dimensional in nature. This means
that though all quantities live in phase space, the algorithm works mainly around the two-
dimensional bicharacteristic strip. The total complexity is dominated by the computation
of values of Φ for these gridcells, O(MN2), assuming the application of an ordinary differ-
ential equation solver in the semi-lagrangian scheme that produces values in M steps. For a
further increase in speed, the algorithm can be parallelized by allowing separate processors
to work on separate gridcells of the coarse grid. In addition, memory usage can be cut down
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to O(log N), what is needed in recursion, by discarding values of gridcells immediately after
use. Obviously, if the extracted wavefronts are remembered, this increases to O(N2), the
number of elements in B at the finest grid level.

On one computer, though, and in practical application with moderately sized N , the
number of gridcells this algorithm needs to touch can be restrictively large. The two factors
influencing this are the initial coarse grid and, to a lesser extent, the tree-based nature of
the algorithm. For example, adopting a coarse grid with just 25 points in each dimension
forces the algorithm to work on 64, 000, 000 gridcells at the coarsest level, leading to slow
computation times, as seen with even fewer gridcells in [9]. In addition, any grid coarser than
this may not produce adequate results since the checking schemes of the previous section are
not accurate for large gridcells. We thus discard this method, though reincarnate a version
of it in section 3.3, and, as the main contribution of our work, achieve faster practical speed
using a different approach.

3.2 Growing Algorithm

Consider a grid, allowably fine and uniform, placed in phase space. The philosophy of our
new approach is to improve speed by confining computations to gridcells intersecting the
bicharacteristic strip, i.e., lying in B. The main challenge will be in finding these gridcells.
We begin by identifying one element of B. Let (x0, p0) be a point of the initial given
bicharacteristic strip. Let (xT , pT ) be the point after flowing along the velocity field of the
Liouville equation for time T (i.e., ray tracing). The gridcell (xT , pT ) lies in is an element of
B. We call this gridcell the seed.

For more elements, we switch to a different strategy. We can, for example, check all
gridcells neighboring the seed to see which of them lie in B and continue this process for
the ones that do. However, to minimize the number of gridcells touched, which minimizes
the number of times the semi-lagrangian method is used, we take a different approach.
By checking which faces of the seed the bicharacteristic strip passes through, identifying
neighboring gridcells sharing those faces as elements of B, and continuing this process for
these newly identified elements, we avoid calculating additional values of Φ. Visually, this
approach grows gridcells in B outwards from the initial seed.

The algorithm can be characterized as follows:

1. Lay down a fine grid in phase space and fix a time T .

2. Choose a point of the initial bicharacteristic strip and solve the ordinary differential
equation along the velocity field of the Liouville equation to determine its position at
time T .

3. Add the gridcell containing that point to the end of a list of recently identified elements
of B and label it as the first generation of gridcells identified.

4. Proceeding through the list in order, consider one of its gridcells. Remove elements
from the list whose generations are one or two less than that of the current gridcell.
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5. Extract the piece of bicharacteristic strip and wavefront of traveltime T from the
gridcell.

6. Check which faces of the gridcell the bicharacteristic strip exits out of and add the
neighboring gridcells that share those faces, if not redundant, to the end of the list
with generation label one above that of the current one. Then return to the fourth
step for another gridcell.

This algorithm can be viewed as employing a breadth-first search strategy with constraints
on inclusion. Elements of B are identified in an expansion out of the seed, ordered from least
to furthest distance away under the taxicab metric. Thus, geometrically, the bicharacteristic
strip is extracted as a surface expanding out of the seed. Due to this type of growth,
note when there are disconnected components of bicharacteristic strips, the algorithm only
constructs the specific component connected to the seed.

Expanding on the details of certain steps: the grid of the first step is fine enough to
provide the desired resolution but need not physically exist in memory; the second and third
steps seed an initial gridcell of B for iteration of the fourth, fifth, and sixth steps; the fourth
step culls the list, removing elements that are not of recent origin and thus no longer needed
for the redundancy search in the sixth step; and the extraction in the fifth step follows the
discussions of section 2.2 to obtain a piece of the wavefront for plotting, as does the check
in the sixth step when faces are viewed as lower-dimensional gridcells.

The number of gridcells the algorithm touches, if we can indeed determine which faces of a
gridcell a bicharacteristic strip exits out of, is just the number of gridcells the bicharacteristic
strip intersects. Thus, comparing with the multi-resolution algorithm that uses the same
grid at its finest scale, our growing algorithm computes on fewer gridcells. The size of the
list of recently identified elements, however, adds to the complexity of the approach. The
gridcells needed in the list are those neighboring the boundary of the growing set of identified
elements of B. This means the elements of the list lie near the one-dimensional boundary
of the expanding extracted bicharacteristic strip surface. Thus, using the same notations
and under the same assumptions made for the multi-resolution algorithm, we expect the
number of elements in the list to be O(N). A direct consequence of this is that memory
storage requirements for the list, and algorithm, when gridcells not in use are discarded,
will be O(N), or O(N log N) if the list is additionally stored as a tree. In terms of speed,
each redundancy search will have complexity O(N) with linear searching through the list,
or O(log N) with tree-based searching. Thus the algorithm’s total complexity will receive
contributions of O(MN2) from computing values of Φ at O(N2) gridcells and either O(N3)
or O(N2 log N) from searching. In the case where M is of the same size as N , the complexity
will be the same as for the multi-resolution approach.

From this analysis, we see that the growing algorithm may have the same complexity as
the multi-resolution algorithm for large N ; however, it performs much faster for N used in
practical situations. We show experimental results of its speed, memory, and constructed
wavefronts in section 4.
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3.3 Variations

One variation of our algorithms involves replacing the six-dimensional phase space with the
one-dimension lower reduced phase space {(x, p/|p|)|x ∈ R3, p/|p| ∈ S2}. In this setting,
the level set function has three components and evolves under the appropriate translation
of the Liouville equation. Good parametrizations of the sphere, however, are lacking. The
attempts made in [9] were far from optimal due to use of spherical coordinates which are
notably bad around the poles of the sphere. The semi-lagrangian method for solving the
Liouville equation allows us to consider other options. Choosing a good triangulation of
the sphere, we may work on a grid composed of gridcells that are products of hypercube
gridcells of the spatial grid with triangles from the the triangulation of the sphere. Both
of our algorithms carry through as usual using these new gridcells and the correct Liouville
equation.

The advantage of using reduced phase space is an increase in speed due to reduction
of dimension from six to five, which lowers the number of gridpoints from 64 to 24 and
faces and neighbors from 12 to 9 for each gridcell. Furthermore, the level set function is
reduced by one component. One disadvantage is the slight complication arising from the
use of triangulations and how to generate, store, and access them. We currently just store
the complete triangulation in memory, increasing memory requirements to O(N2). Another
disadvantage is related to initialization of the level set function. The approach of assigning
the components φ1 and φ2 for phase direction and φ3 for spatial location will often lead to the
creation of a level set function encoding two bicharacteristic strips: one moving in the desired
direction and the other in the opposite direction. This is not a problem for the growing
algorithm, which will only pick out the correct one since the two are disconnected; however,
the multi-resolution approach needs modification so that additional work in capturing a
spurious surface is avoided.

Other variations involve hybrids of the multi-resolution and growing algorithms. The
growing algorithm used first over a coarse grid can identify gridcells that intersect the bichar-
acteristic strip. The multi-resolution process can then continue on these gridcells, eliminating
the need to initially try out all gridcells of the coarse grid. This removes the main obstacle
to fast computations for practical N in the multi-resolution algorithm while preserving the
same order of speed and memory storage requirements for large N . In addition, such a
hybrid can apply smaller grids to regions of the bicharacteristic strip that deserve more at-
tention, whether due to a desire for better resolution, accuracy, or to alleviate the symptoms
of possible instability in the level set representation. We expand on the latter as it may
represent a final hurdle for level set approaches in geometrical optics.

Stability refers to the change in the zero level set under perturbation of the level set
function. If any of the components develops small derivatives at the bicharacteristic strip,
a small perturbation may move its zero level set significantly. Furthermore, if the zero level
set of one component is almost parallel to that of another, a small perturbation may move
their intersection significantly. Both cases make it difficult to obtain accurate and reliable
information from the level set function needed, for example, to extract and plot the zero
level set. Better resolution at unstable locations fixes certain types of instabilities, possibly

9



the ones that appear with frequency, though this is under investigation. Our current idea for
removing all types of instabilities involves running the algorithms in intervals in time where,
at the end of each interval, Φ is reinitialized to a more stable form (see [2, 14] for more on
reinitialization). The added operations, however, will decrease the speed of our algorithms.
Complexities when reinitialization is performed at each step of the ordinary differential
equation solver of the semi-lagrangian method will be O(MN2) for the multi-resolution
algorithm, O(MN3) for the growing algorithm with linear searching, and O(MN2 log N)
for the growing algorithm with tree-based searching. In-depth studies of instability and
approaches for its removal must be left to future research.

4 Numerical Results

4.1 Speed and Memory

We begin by testing the speed and memory usage of our algorithms. Consider the initial
wavefront a point source at y in a medium of local wave speed c ≡ 1, given in phase space
by the representation

(φ1, φ2, φ3) = y

φ4 = |p| − 1.

Wavefronts of other traveltimes form spheres growing out of the initial point source. The
constant local wave speed implies the identity

Φ(x, p, t) = Φ(x − pt, p, 0),

since the integral curves of the velocity field for the Liouville equation are straight lines. Use
of this identity to obtain values of Φ allows us to determine the contributions of phase space
independent of the traveltime. Note, also, this can be thought of as using Euler’s method to
jump to the solution in one giant step, and this is made possible because there is no stability
constraint to satisfy between gridsize and time step.

We study the properties of three approaches: the growing algorithm with linear search-
ing, the growing algorithm with tree-based searching, and a hybrid that follows the growing
algorithm with multi-resolution refinement. All three use pairwise intersections of compo-
nents of the level set function to check for intersections of gridcells with bicharacteristic
strips, our second approach listed in section 2.2.

Our first two algorithms employ the growing algorithm but with different strategies in
storing their lists of recently identified elements of B, with ramifications in the redundancy
searches conducted through these lists prior to the adding of new elements. Linear searching
proceeds one by one through the list to see if redundancy occurs while tree-based searching
stores the list also as a tree to perform optimal searches. Table 1 counts several quantities
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time grid cells order searches order list order

0 506 11, 864 9, 524, 917 543
0 1006 47, 168 1.9912 73, 254, 143 2.9431 1, 032 0.9264
0 2006 188, 600 1.9994 581, 551, 384 2.9889 2, 043 0.9852

0.5 506 26, 750 31, 793, 290 801
0.5 1006 107, 843 2.0113 256, 756, 224 3.0136 1, 593 0.9919
0.5 2006 437, 505 2.0204 2, 117, 975, 866 3.0442 3, 204 1.0081
1 506 48, 128 76, 236, 759 1, 077
1 1006 195, 249 2.0204 633, 884, 315 3.0557 2, 199 1.0298
1 2006 798, 201 2.0314 5, 311, 800, 799 3.0669 4, 356 0.9862

Table 1: This table counts quantities of importance to speed and memory in the growing
algorithms.

of importance to speed and memory in growing the spherical wavefront when the computa-
tional domain in phase space is [−1, 1]6 and y = (0.001, 0.001, 0.001), chosen not to lie on a
gridpoint.

In this table, the first column presents the traveltime of the wavefront constructed and the
second the underlying fine grid. The third column counts the number of gridcells touched by
the algorithms. This number contributes to speed since each gridcell requires several solves
of the Liouville equation for values of the level set function. We make two comments on the
numbers in this column. The first is that though we have not adopted the most accurate
checking routine for determining intersections of gridcells with bicharacteristic strips, use of
the third option of section 2.2 will only change the counts by 4% at most for this problem.
Other problems, however, may need to settle for the slower but more accurate routine. The
second comment is that because N is not large enough, the numbers in the column do not
share a close relationship with the change in surface area of the bicharacteristic strip at
different traveltimes, which can be calculated to be 4π(ρ2 + 1) for a spherical wavefront of
radius ρ. This relationship is satisfied, however, when N and traveltime are much larger
than what is given in this table.

Continuing with the table, the fourth column determines the orders associated with
these numbers from the use of finer grids and verifies the O(N2) complexity corresponding
to touched gridcells. The fifth column counts the number of elements in the algorithms’ lists
of recently identified elements. This number also contributes to speed, counting compar-
isons performed in the redundancy searches through the lists. The sixth column determines
the order associated with these numbers and verifies the O(N3) corresponding to searches
required in linear searching. The seventh column counts the maximum number of elements
attained in the lists. This number contributes to the memory usage of the algorithms in stor-
ing these quantities. The eighth column determines the order associated with these numbers
and verifies the O(N) complexity corresponding to the maximium number of list elements.

Tables 2 and 3 give further verification of speed and memory estimates based on actual
recorded times and memory usages for the growing algorithms on a computer. These num-
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time grid runtime order memory

0 506 2.304 900
0 1006 8.944 1.9568 924
0 2006 37.109 2.0528 964

0.5 506 5.291 912
0.5 1006 22.061 2.0599 944
0.5 2006 95.512 2.1142 1, 004
1 506 9.466 924
1 1006 41.286 2.1248 964
1 2006 178.848 2.1150 1, 056

Table 2: This table collects runtimes and memory storages of the growing algorithm with
linear searching.

time grid runtime order memory

0 506 2.222 992
0 1006 8.872 1.9974 1, 112
0 2006 35.919 2.0174 1, 364

0.5 506 5.372 1, 164
0.5 1006 21.749 2.0174 1, 496
0.5 2006 92.414 2.0872 2, 228
1 506 9.383 1, 348
1 1006 40.110 2.0958 1, 936
1 2006 169.852 2.0822 3, 180

Table 3: This table collects runtimes and memory storages of the growing algorithm with
tree-based searching.

bers, however, are subject to randomness and programming style and so table 1 may be a
better source of information on the speeds and memory usages of the algorithms.

In both these tables, the first column presents the traveltime of the wavefront constructed
and the second the underlying fine grid. The third column gives the measured times in
seconds, averaged over ten samples, for completion of the algorithms. The fourth column
determines the order associated with these numbers. The orders of table 3 agree with the
O(N2 log N) complexity of the growing algorithm with tree-based searching; however, those
of table 2 are better than the O(N3) complexity predicted for the growing algorithm with
linear searching. This hints at the fact that only much larger N will produce that theoretical
behavior in complexity. The fifth column reveals the amounts of memory used, in kilobytes,
by the algorithms. This includes 796 kilobytes allocated by the programs in all cases before
execution of the first steps of the algorithms. From these tables, we note tree-based searching
gives slight benefits in speed for the grids used but larger memory usage due to overhead for
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time grid cells order final order

0 506 188, 890 11, 840
0 1006 946, 650 2.3253 47, 144 1.9934
0 2006 3, 963, 866 2.0660 188, 576 2.0000

0.5 506 432, 770 26, 726
0.5 1006 2, 143, 234 2.3081 107, 819 2.0123
0.5 2006 9, 043, 650 2.0771 437, 469 2.0206
1 506 764, 400 48, 002
1 1006 3, 836, 528 2.3274 194, 961 2.0220
1 2006 16, 314, 032 2.0882 797, 268 2.0319

Table 4: This table counts quantities of importance to speed and memory in the hybrid
algorithm.

storing tree-structures.
Turning to tests of a hybrid algorithm, we consider a growing algorithm with linear

searching strategy performed over a coarse grid with 25 points in each dimension followed
by multi-resolution refinement on the resulting identified gridcells. Refinement in this case
consists of subdividing hypercube gridcells in half in each dimension. Table 4 counts several
quantities of importance to speed and memory in the same spherical wavefront setting.

In this table, the first column presents the traveltime of the wavefront constructed and the
second the underlying fine grid. The third column counts the number of gridcells touched by
the algorithm, with the growing algorithm contributing 2, 906 of these from the initial coarse
grid. Note these numbers are much larger than those of our growing algorithms studied in
table 1 but also much smaller from the 64, 000, 000 needed just at the coarsest grid level if
the multi-resolution algorithm were applied alone. The fourth column determines the order
associated with the information of the third column from the use of finer grids and verifies the
O(N2) complexity corresponding to touched gridcells. The fifth column counts the number
at the finest grid level identified to be in B. These numbers approximately coincide with
those identified by the growing algorithms in table 1 but are not equal because the large
size of gridcells in the coarse grid causes the growing algorithm to slightly undercount B.
This explanation is verfied through the use of finer grids at the coarse level which results in
matching numbers between the tables. The seventh column determines the order associated
with the information of the fifth column and verifies O(N2) complexity of identified elements
of B.

Table 5 gives further verification of speed and memory estimates based on actual recorded
times and memory usages for the hybrid algorithm on a computer. These numbers, again,
are subject to randomness and programming style and so table 4 may be a better source of
information on the speed and memory usage of the algorithm.

In this table, the first column presents the traveltime of the wavefront constructed and
the second the underlying fine grid. The third column reveals the measured times in seconds,
averaged over ten samples, for completion of the algorithm. We see that this algorithm is
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time grid runtime order memory

0 506 7.849 900
0 1006 33.018 2.0727 904
0 2006 132.597 2.0057 904

0.5 506 18.046 908
0.5 1006 80.631 2.1597 908
0.5 2006 332.910 2.0457 908
1 506 29.726 912
1 1006 140.280 2.2385 916
1 2006 591.672 2.0765 916

Table 5: This table collects runtimes and memory storages of the hybrid algorithm.

slower than the growing algorithms studied earlier. The fourth column determines the orders
associated with the numbers in the third column and verifies the O(N2) complexity of our
hybrid algorithm. The fifth column reveals the amounts of memory used, in kilobytes. This
includes 800 kilobytes allocated in all cases before execution of the first step of the algorithm.
Note the low amounts of memory used here throughout the experiments.

In total, we get a sense from these experiments of the speeds and memory usages of our
algorithms and the sizes of the grids allowed. Compared with the results of [8], we have been
able to run simulations on grids with 4006 cells while that of [8] shows results on grids with
only up to 645 cells. Furthermore, since it may not be fair to compare actual speeds and
memory usages due to the randomness of the numbers and the different computers used, we
merely say that we believe our algorithms are better in both respects. Thus we conclude that
we have produced one of the first efficient level set algorithms for large-scale computations
in wavefront construction.

4.2 Wavefronts

We now present plots of some of the wavefronts constructed by our algorithms in three di-
mensions. Starting with constant local wave speed, c ≡ 1, figure 1 shows a shrinking ellipse
where two of the principal radii are the same, constructed by the growing algorithm with
linear searching and a 1006 point grid. The results correspond to surfaces of rotation of
shrinking ellipses in two-dimensional space, such as those shown in [9]. From the figure, we
see that not only are surface details resolved but multi-valued characteristics are correctly
displayed. Figure 2 shows a shrinking ellipse where the principal radii are all different,
constructed using the same algorithm. Again, resolution and multi-valued forms are satis-
factorily handled by our approach. These two figures are in fact plotted by triangulating
the bicharacteristic strip. When working with gridcells from the algorithm’s list of recently
identified elements, we may take a gridcell’s center, that of a neighbor further down the
list, and that of the neighbor’s neighbor even further down the list and project them to the
bicharacteristic strip to form a triangle lying on the surface. The number of triangles, though
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Figure 1: Ellipsoid with two equal principal radii shrinking into multi-valued forms.

smaller than that returned by application of [7], is large but for these two cases within a
range that can be handled by the standard surface plotters.

To project the center of the gridcell onto the bicharacteristic strip, we may apply central
differencing there to approximate derivatives of each component from values of Φ at grid-
points. These can then be used to form linear approximations of each component. Assigning
our point to be the one at the intersection of the hyperplane zero level sets of minimum dis-
tance from the center, computable using lagrange multipliers on this constrained quadratic
minimization to form a linear system of equations, gives us our point on the bicharacteris-
tic strip. Note drawing spheres around such points for each gridcell in B leads to another
plotting scheme for the bicharacteristic strip. This is, in fact, the approach we use for our
remaining figures.

Our next series of results keep a constant local wave speed, c ≡ 1, but introduce complex-
ity through the presence of reflecting solids in the environment. The algorithm incorporates
two modifications to treat this problem. The first involves changing the semi-lagrangian
scheme at the boundaries of solids so that a point flowing along the velocity field of the Li-
ouville equation, when it finds itself entering a solid, will be lifted to a direction exiting the
solid according to reflection conditions. The discontinuity of this flow at these boundaries,
however, will generate disconnected bicharacteristic strips forming the wavefront. Thus the
second modification involves the use of multiple initial seed points in the growing algorithm,
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Figure 2: Ellipsoid with different principal radii shrinking into multi-valued forms.
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Figure 3: Growing sphere trapped between and reflecting off two walls.

one each for disconnected piece of reflected bicharacteristic strip. In this work, we assume
that these seed points are given, while in future work, we will try to view the bicharacteristic
strips as connected through the reflection conditions at the boundaries of the solids and use
only one seed point. Other advances for reflection and refraction are also left to future work.

In figure 3, the reflecting boundaries are two walls and the wavefront grows from a point
source located in the middle. The wavefront reflects off one wall, travels to the other,
and again reflects off that one. In figure 4, the reflecting solid is an ellipsoid and the
initial wavefront is a shrinking sphere surrounding it. The wavefront first reflects off the
elongated ends of the ellipsoid. At later time, when all points have reflected off the ellipsoid,
wavefront grows out of the encounter. In both examples, the multi-valued characteristics of
the wavefronts are captured and the growing surfaces are properly resolved.

Our last series of results introduce complexity with a variable local wave speed,

c(x) = 0.5 sin (2πx1) sin (2πx2) sin (2πx3) + 1.

Starting with a spherical wavefront of radius 0.4, figure 5 shows the behavior of an initially
shrinking sphere under our growing algorithm with linear searching. Runge-Kutta of third
order is used to solve the ordinary differential equations of the semi-lagrangian scheme and
second-order extraction techniques, our third approach in section 2.2, are employed for a
more accurate test of the intersection of gridcells with bicharacteristic strips. Throughout
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Figure 4: Shrinking sphere reflecting off an ellipsoid in the interior.
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the evolution shown in the figure, the wavefronts remain well-resolved and their multi-valued
characteristics are properly captured by the algorithm, as verified when compared to ray
tracing results. Because the surfaces in the figures come from the plotting of spheres around
points on the wavefront, corners on the multi-valued surface may not appear as sharp as
they in reality are.

5 Conclusion

We introduced in this work a multi-resolution algorithm and a growing algorithm for effi-
cient construction of wavefronts in three spatial dimensions. Both of these algorithms take
advantage of the flexibility afforded by the long-time semi-lagrangian method for solving
the Liouville equation to reduce the number of gridcells that require calculation. The multi-
resolution algorithm has good speed and memory characteristics while the growing algorithm
is faster in practice. Hybrids of the two improve on certain aspects of both approaches and
can alleviate the effects of unstable level set representations. With three spatial dimensions
now very much a reality, investigating better methods for removing instabilities is the last
hurdle for the level set method in wavefront construction.
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Figure 5: Shrinking sphere in medium with variable local wave velocity.

20



References

[1] J.-D. Benamou. An Introduction to Eulerian Geometrical Optics (1992–2002). J. Sci.

Comp., 19:63–93, 2003.

[2] P. Burchard, L.-T. Cheng, B. Merriman, and S. Osher. Motion of Curves in Three
Spatial Dimensions Using a Level Set Approach. J. Comput. Phys., 170(2):720–741,
2001.

[3] B. Engquist and O. Runborg. Computational High Frequency Wave Propagation. In
Acta Numerica, pages 1–86. Cambridge University Press, Cambridge, United Kingdom,
2003.

[4] B. Engquist, O. Runborg, and A.-K. Tornberg. High Frequency Wave Propagation by
the Segment Projection Method. J. Comput. Phys., 178(2):373–390, 2002.

[5] M. Falcone and R. Ferretti. A Non-Oscillatory Eulerian Approach to Interfaces in
Multimaterial Flows (The Ghost Fluid Method). J. Comput. Phys., 152:457–492, 1999.

[6] S. Leung, J. Qian, and S. Osher. A Level Set Method for Three-Dimensional Paraxial
Geometrical Optics with Multiple Point Sources. Comm. Math. Sci., 2(4):657–686,
2004.

[7] C. Min. Simplicial Isosurfacing in Arbitrary Dimension and Codimension. J. Comput.

Phys., 190(1):295–310, 2003.

[8] C. Min. Local Level Set Method in High Dimension and Codimension. J. Comput.

Phys., 200(1):368–382, 2004.

[9] S. Osher, L.-T. Cheng, M. Kang, H. Shim, and Y.-H. Tsai. Geometric Optics in a
Phase Space Based Level Set and Eulerian Framework. J. Comput. Phys., 179(2):622–
648, 2002.

[10] S. Osher and R. Fedkiw. Level Set Methods: An Overview and Some Recent Results.
J. Comput. Phys., 169:463–502, 2001.

[11] S. Osher and J.A. Sethian. Fronts Propagating with Curvature Dependent Speed: Al-
gorithms Based on Hamilton-Jacobi Formulations. J. Comput. Phys., 169(1):12–49,
1988.

[12] D. Peng, B. Merriman, S. Osher, H.K. Zhao, and M. Kang. A PDE-Based Fast Local
Level Set Method. J. Comput. Phys., 155(2):410–438, 1999.

[13] J. Strain. Semi-Lagrangian Methods for Level Set Equations. J. Comput. Phys.,
151:498–533, 1999.

[14] M. Sussman, P. Smereka, and S. Osher. A Level Set Method for Computing Solutions
to Incompressible Two-Phase Flow. J. Comput. Phys., 114:146–159, 1994.

21



[15] V. Vinje, E. Iversen, K. Astebol, and H. Gjøystdal. Estimation of Multivalued Arrivals
in 3D Models using Wavefront Construction–Part I. Geophysical Prospecting, 44:819–
842, 1996.

[16] V. Vinje, E. Iversen, K. Astebol, and H. Gjøystdal. Part II: Tracing and Interpolation.
Geophysical Prospecting, 44:843–858, 1996.

22


