1. For \(p \) a prime number, a number field \(K \) is monogenic at \(p \) if there exists some \(\theta \in \mathcal{O}_K \) such that the ring homomorphism \(\mathbb{Z}[x] \to \mathcal{O}_K/p\mathcal{O}_K \) taking \(x \) to the class of \(\theta \) is surjective. Prove that if there exists a single prime of \(\mathcal{O}_K \) above \(p \) (ramified or not), then \(K \) is monogenic at \(p \).

2. Produce (e.g., by looking in LMFDB) an example of a number field \(K \) for which

\[
\mathcal{O}_K/2\mathcal{O}_K \cong \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2,
\]

then use this to show that \(K \) is not monogenic at 2.

3. Let \(K \) be a number field and let \(R \) be a subring of \(\mathcal{O}_K \) which spans \(K \) as a \(\mathbb{Q} \)-vector space (i.e., an order of \(K \)). Let \(p \) be a prime number such that for every prime \(\mathfrak{p} \) of \(\mathcal{O}_K \) above \(p \),

(i) the inertia degree is 1, and

(ii) there exist some \(\lambda \in R \) such that \(v_{\mathfrak{p}}(\lambda) = 1 \) and \(v_q(\lambda) = 0 \) for all primes \(q \neq \mathfrak{p} \) of \(\mathcal{O}_K \) above \(p \).

Prove that the index \([\mathcal{O}_K : R] \) is not divisible by \(p \). (This generalizes the argument used for cyclotomic fields.)

4. Neukirch, exercise I.9.1: Let \(L/K \) be a Galois extension of number fields such that \(\text{Gal}(L/K) \) is not cyclic. Prove that there are only finitely many primes of \(K \) that remain inert in \(L \).

5. Neukirch, exercise I.9.3: Let \(L/K \) be a (not necessarily Galois) extension of prime degree \(p \) with solvable Galois group. Suppose that \(\mathfrak{p} \) is a prime ideal of \(K \) which does not ramify in \(L \). Prove that if there are at least two primes of \(L \) above \(\mathfrak{p} \) of inertia degree 1, then \(\mathfrak{p} \) splits completely in \(L \).

6. For each of the following statements, find an example of a prime \(p \) and two quadratic extensions \(K \) and \(L \) of \(\mathbb{Q} \) exhibiting this particular behavior. Your four examples should be distinct. (You may use SageMath to verify the asserted properties.)

(a) The prime \(p \) can be totally ramified in \(K \) and \(L \) without being totally ramified in \(KL \).

(b) The fields \(K \) and \(L \) can both contain unique primes over \(p \), while \(KL \) does not.

(c) The prime \(p \) can be (unramified and) inert in both \(K \) and \(L \) without being inert in \(KL \).
(d) There can be (unramified) primes over p of inertia degree 1 in both K and L, but not in KL.

7. Let L/K be a finite separable extension of fields with Galois closure M and Galois group G. Put $H := \text{Gal}(M/L)$. Prove that $\bigcap_{x \in G} x^{-1} H x = \{e\}$.

8. Let L/K be an extension of number fields with Galois closure M and Galois group G. Put $H := \text{Gal}(M/L)$.

(a) Let \mathfrak{p} be a prime ideal of K. Let \mathfrak{q} be a prime ideal of M above \mathfrak{p}. Show that the action of G on the prime ideals of M above \mathfrak{p} induces a bijection between the double coset space $H \backslash G / G_\mathfrak{q}$ and the set of primes of L above \mathfrak{p}.

(b) Suppose that \mathfrak{p} does not ramify in M. Show that the inertia degree of the prime of L above \mathfrak{p} corresponding to the double coset $H x G_\mathfrak{q}$ equals the index $[G_\mathfrak{q} : G_\mathfrak{q} \cap x^{-1} H x]$.

(c) Optional: extend (b) to the case where \mathfrak{p} may ramify in M.