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Abstract. We present two algorithms that, given a prime ` and an elliptic

curve E/Fq , directly compute the polynomial Φ`(j(E), Y ) ∈ Fq [Y ] whose roots

are the j-invariants of the elliptic curves that are `-isogenous to E. We do not
assume that the modular polynomial Φ`(X,Y ) is given. The algorithms may

be adapted to handle other types of modular polynomials, and we consider

applications to point counting and the computation of endomorphism rings.
We demonstrate the practical efficiency of the algorithms by setting a new

point-counting record, modulo a prime q with more than 5,000 decimal digits,

and by evaluating a modular polynomial of level ` = 100,019.

1. Introduction

Isogenies play a crucial role in the theory and application of elliptic curves.
A standard method for identifying (and computing) isogenies uses the classical
modular polynomial Φ` ∈ Z[X,Y ], which parameterizes pairs of `-isogenous elliptic
curves in terms of their j-invariants. More precisely, over a field F of characteristic
not equal to `, the modular equation

Φ`
(
j1, j2

)
= 0

holds if and only if j1 and j2 are the j-invariants of elliptic curves defined over F
that are related by a cyclic isogeny of degree `. In practical applications, F is
typically a finite field Fq, and ` is a prime, as we shall assume throughout. For the
sake of simplicity we assume that q is prime, but this is not essential.

A typical scenario is the following: we are given an elliptic curve E/Fq and
wish to determine whether E admits an `-isogeny defined over Fq, and if so, to
identify one or all of the curves that are `-isogenous to E. This can be achieved by
computing the instantiated modular polynomial

φ`(Y ) = Φ`(j(E), Y ) ∈ Fq[Y ],

and finding its roots in Fq (if any). Each root is the j-invariant of an elliptic curve
that is `-isogenous to E over Fq, and every such j-invariant is a root of φ`(Y ).

For large ` the main obstacle to obtaining φ` is the size of Φ`, which is O(`3 log `)
bits; several gigabytes for ` ≈ 103, and many terabytes for ` ≈ 104, see [8, Table 1].
In practice, alternative modular polynomials that are smaller than Φ` by a large
constant factor are often used, but their size grows at the same rate and this quickly
becomes the limiting factor, as noted in [11, §5.2] and elsewhere. The following
quote is taken from the 2009 INRIA Project-Team TANC report [31, p. 9]:

“. . . computing modular polynomials remains the stumbling block for new point
counting records. Clearly, to circumvent the memory problems, one would need an
algorithm that directly obtains the polynomial specialized in one variable.”
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Here we present just such an algorithm (two in fact), based on the isogeny
volcano approach of [8]. Our basic strategy is to compute the instantiated modular
polynomial φ(Y ) = Φ`(j(E), Y ) modulo many “suitable” primes p and apply the
explicit Chinese remainder theorem modulo q (see §2.4 and §2.5 for a discussion of
the explicit CRT and suitable primes). However, two key issues arise.

First, if we simply lift the j-invariant j(E) from Fq ' Z/qZ to Z and reduce the
result modulo p, when we instantiate Φ`(j(E), Y ) the powers of j(E) we compute
may correspond to integers that are much larger than the coefficients of Φ`, forcing
us to use many more CRT primes than we would otherwise need. We address this
issue by instead powering in Fq, lifting the powers to Z, and then reducing them
modulo p. This yields our first algorithm, which is well-suited to situations where q
is much larger than `, say log q ≈ `, as in point-counting applications.

Second, to achieve the optimal space complexity, we must avoid computing
Φ` mod p. Indeed, if log q ≈ log `, then Φ` mod p will not be much smaller than
Φ` mod q. Our second algorithm uses an online approach to avoid storing all the
coefficients of Φ` mod p simultaneously. This algorithm is well-suited situations
where log q is not dramatically larger than log `, say O(log `) or O(log2`). This oc-
curs, for example, in algorithms that compute the endomorphism ring of an elliptic
curve [3], or algorithms to evaluate isogenies of large degree [19].

Under the generalized Riemann hypothesis (GRH), our first algorithm has an
expected running time of O(`3 log3` llog `) and uses O(`2 log ` + ` log q) space, as-
suming log q = O(` log `).1 This time complexity is the same as (and in practice
faster than) the time to compute Φ`, and the space complexity is reduced by up to
a factor of `. When log q ≈ ` the space complexity is nearly optimal, quasi-linear
in the size of φ`. The second algorithm uses O(`3(log q + log `)log1+o(1)`) time
and O(` log q + ` log `) space, under the GRH. Its space complexity is optimal for
q = Ω(`), and when log q = O(log2−ε`) its time complexity is better than the best
known algorithms for computing Φ`. However, for larger values of log q its running
time becomes less attractive and the first algorithm may be preferred.

In conjunction with the SEA algorithm, the first algorithm allows one to compute
the cardinality of an elliptic curve modulo a prime q with a heuristic2 running time
of O(n4 log2n llog n), using O(n2 log n) space, where n = log q. To our knowledge,
all alternative approaches applicable to prime fields increase at least one of these
bounds by a factor of n or more. The running time is competitive with SEA
implementations that rely on precomputed modular polynomials (as can be found
in Magma [4] and PARI [32]), and can easily handle much larger values of q.

As an important practical optimization, we also evaluate modular polynomials

φf` (Y ) = Φf` (f(E), Y ) defined by modular functions f(z) other than the j-function.
This includes the Weber f-function, whose modular polynomials are smaller than
the classical modular polynomial by a factor of 1728 and can be computed much

more quickly (by roughly the same factor). This speedup also applies to φf` .
To demonstrate the capability of the new algorithms, we use a modified version

of the SEA algorithm to count points on an elliptic curve modulo a prime of more
than 5,000 decimal digits, and evaluate a modular polynomial of level ` = 100,019
modulo a prime of more than 25,000 decimal digits.

1See Theorem 4 for a more precise bound. We write llogn for log logn throughout.
2The heuristic relates to the distribution of Elkies primes and is a standard assumption made

when using the SEA algorithm (without it there is no advantage over Schoof’s algorithm).
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2. Background

This section contains a brief summary of background material that can be found
in standard references such as [21, 26, 27], or in the papers [8, 29], both of which
exploit isogeny volcanoes using a CRT-based approach, as we do here. For the sake
of brevity, we recall only the results we need, and only in the generality necessary.

For the sake of presentation, we assume throughout that Fp and Fq denote prime
fields with ` 6= p, q, and, where relevant, that q is sufficiently large (typically q > 2`).
But this assumption is not needed for our main result; Algorithms 1 and 2 work
correctly for any prime q (even q = `), and can be extended to handle non-prime q.

2.1. Isogenies. Let E be an elliptic curve defined over a field F. Recall that an
isogeny ψ : E → Ẽ is a morphism of elliptic curves that is also a group homomor-
phism from E(F) to Ẽ(F). The kernel of a nonzero isogeny is a finite subgroup
of E(F), and when ψ is separable, the size of its kernel is equal to its degree. Con-
versely, every finite subgroup G of E(F) is the kernel of a separable isogeny (defined
over the fixed field of the stabilizer of G in Gal(F/F)). We say that ψ is cyclic if
its kernel is cyclic, and call ψ an N -isogeny when it has degree N . Note that an
isogeny of prime degree ` 6= char(F) is necessarily cyclic and separable.

The classical modular polynomial ΦN is the minimal polynomial of the function
j(Nz) over the field C(j), where j(z) is the modular j-function. As a polynomial
in two variables, ΦN ∈ Z[X,Y ] is symmetric in X and Y and has the defining
property that the roots of Φ`(j(E), Y ) are precisely the j-invariants of the elliptic

curves Ẽ that are related to E by a cyclic N -isogeny. In this paper N = ` is prime,
in which case Φ`(X,Y ) has degree `+ 1 in each variable.

If E is given by a short Weierstrass equation Y 2 = X3 + a4X + a6, then ψ can

be expressed in the form ψ(x, y) = (ψ1(x), cy d
dxψ1(x)) for some c ∈ F∗. When

c = 1 we say that ψ and its image are normalized. Given a finite subgroup G of
E(F), a normalized isogeny with G as its kernel can be constructed using Vélu’s

formulae [33], along with an explicit equation for its image Ẽ. Conversely, suppose

we are given a root ̃ = j(Ẽ) of φ`(Y ) = Φ`(j(E), Y ), and also the values of ΦX(j, ̃),
ΦY (j, ̃), ΦXX(j, ̃), ΦXY (j, ̃), and ΦY Y (j, ̃), where j = j(E) and

ΦX = ∂
∂XΦ`, ΦY = ∂

∂Y Φ`, ΦXX = ∂2

∂X2 Φ`, ΦXY = ∂2

∂X∂Y Φ`, ΦY Y = ∂2

∂Y 2 Φ`.

To this data we may apply an algorithm of Elkies [10] that computes an equation

for Ẽ that is the image of a normalized `-isogeny ψ : E → Ẽ, along with an explicit
description of its kernel: the monic polynomial h`(X) whose roots are the abcissae
of the non-trivial points in kerψ; see [15, Alg. 27]. The quantities ΦXX(j, ̃),

ΦXY (j, ̃), and ΦY Y (j, ̃) are not strictly necessary; the equation for Ẽ depends
only on j, ̃, ΦX(j, ̃) and ΦY (j, ̃), and we may then apply algorithms of Bostan et

al. [5] to compute h`(X) (and an equation for ψ) directly from E and Ẽ.

2.2. Explicit CM theory. Recall that the endomorphism ring of an ordinary
elliptic curve E over a finite field Fp is isomorphic to an order O in an imaginary
quadratic field K. In this situation E is said to have complex multiplication (CM)

by O. The elliptic curve E/Fp is the reduction of an elliptic curve Ê/C that also
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has CM by O. The j-invariant of Ê generates the ring class field KO of O, and
its minimal polynomial over K is the Hilbert class polynomial HO ∈ Z[X], whose
degree is the class number h(O).3 The prime p splits completely in KO, and HO
splits completely in Fp[X]. For p > 3, the prime p splits completely in KO if and
only if it satisfies the norm equation 4p = t2 − v2D, where D = disc(O), and for
D < −4 the integers t = t(p) and v = v(p) are uniquely determined up to sign.

We define the set

EllO(Fp) = {j(E) : E/Fp with End(E) ' O},

which consists of the roots of HO in Fp. Let ι : O ↪→ End(E) denote the normalized
embedding (so ι(α)∗ω = αω for all α ∈ O and invariant differentials ω on E; c.f.
[27, Prop. II.1.1]). The ideals of O act on EllO(Fp) via isogenies as follows. Let
a be an O-ideal of norm N , and define E[a] = ∩α∈a ker ι(α). There is a separable

N -isogeny from E to Ẽ = E/E[a], and the action of a sends j(E) to j(Ẽ). Principal
ideals act trivially, and this induces a regular action of the class group cl(O) on
EllO(Fp). Thus EllO(Fp) is a principal homogeneous space, a torsor, for cl(O).

Writing the cl(O)-action on the left, we note that if a has prime norm `, then
Φ`(j, [a]j) = 0 for all j ∈ EllO(Fp). Provided that ` does not divide v(p), then
φ`(Y ) = Φ`(j, Y ) has either one or two roots in Fp, depending on whether ` ramifies
or splits in K. In the latter case, the two roots [a]j and [a−1]j can be distinguished
using the Elkies kernel polynomial h`(X), as described in [6, §5] and [16, §3].

2.3. Polycyclic presentations. In order to efficiently realize the action of cl(O)
on EllO(Fp), it is essential to represent elements of cl(O) in terms of a set of
generators with small norm. We will choose O so that cl(O) is generated by ideals
of norm bounded by O(1), via [8, Thm. 3.3], but these generators will typically not
be independent. Thus as explained in [29, §5.3], we use polycyclic presentations.

Any sequence of generators α = (α1, . . . , αk) for a finite abelian group G defines
a polycyclic series

1 = G0 CG1 C . . .CGk−1 CGk = G,

with Gi = 〈α1, . . . , αi〉, in which every quotient Gi/Gi−1 ' 〈αi〉 is necessarily cyclic.
We associate to α the sequence of relative orders r(α) = (r1, . . . , rk) defined by
ri = |Gi : Gi−1|. Every element β ∈ G has a unique α-representation of the form

β = αe = αe11 · · ·α
ek
k (0 ≤ ei < ri).

We also associate to α the matrix of power relations s(α) = [sij ] defined by

αrii = α
si,1
1 α

si,2
2 · · ·αsi,i−1

i−1 (0 ≤ sij < rj),

with sij = 0 for i ≤ j.
We call α, together with r(α) and s(α), a (polycyclic) presentation for G, and

if all the ri are greater than 1, we say that the presentation is minimal. A generic
algorithm to compute a minimal polycyclic presentation is given in [29, Alg. 2.2].
Having constructed such an α, we may efficiently enumerate G = cl(O) (or the
torsor EllO(Fq), given a starting point), by enumerating α-representations.

3As in [1], we call HO a Hilbert class polynomial even when O is not the maximal order.
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2.4. Explicit CRT. Let p1, . . . , pn be primes with product M , let Mi = M/pi, and
let aiMi ≡ 1 mod pi. If c ∈ Z satisfies c ≡ ci mod pi, then c ≡

∑
i ciaiMi mod M .

If M > 2|c|, this congruence uniquely determines c. This is the usual CRT method.
Now suppose M > 4|c| and let q be a prime (or any integer). Then we may

apply the explicit CRT mod q [2, Thm. 3.1] to compute

(1) c ≡
(∑

i

ciaiMi − rM
)

mod q,

where r is the closest integer to
∑
i ciai/pi; when computing r, it suffices to ap-

proximate each ciai/pi to within 1/(4n), by [2, Thm. 2.2].
As described in [29, §6], we may use the explicit CRT to simultaneously compute

c mod q for many integers c (the coefficients of φ`, for example), using an online
algorithm. We first precompute the ai and aiMi mod q. Then, for each prime pi,
we determine the values ci for all the coefficients c (by computing φ` mod pi),
update two partial sums for each coefficient, one for

∑
ciaiMi mod q and one for∑

ciai/pi, and discard the ci’s. When the computations for all the pi have been
completed (these may be performed in parallel), we compute r and apply (1) for
each coefficient. The space required by the partial sums is just O(log q) bits per
coefficient. See [29, §6] for further details, including algorithms for each step.

2.5. Modular polynomials via isogeny volcanoes. For distinct primes ` and p,
we define the graph of `-isogenies Γ`(Fp), with vertex set Fp and edges (j1, j2)
present if and only if Φ`(j1, j2) = 0. Ignoring the connected components of 0 and
1728, the ordinary components of Γ`(Fp) are `-volcanoes [14, 20], a term we take
to include cycles as a special case [29]. In this paper we focus on `-volcanoes of a
particular form, for which we can compute Φ` mod p very quickly, via [8, Alg. 2.1].

Let O be an order in an imaginary quadratic field K with maximal order OK ,
let ` be an odd prime not dividing [OK : O], and assume D = disc(O) < −4. Let p
be a prime of the form 4p = t2 − `2v2D with ` 6 | v and p ≡ 1 mod `. Then p splits
completely in the ring class field of O, but not in the ring class field of the order
with index `2 in O. The requirement p ≡ 1 mod ` ensures that for j(E) ∈ EllO(Fp)
we can choose E so that E[`] ⊂ E(Fp), which is critical to the efficiency of both
the algorithm in [8] and our algorithms here.

The components of Γ`(Fp) that intersect EllO(Fp) are isomorphic `-volcanoes
with two levels: the surface, whose vertices lie in EllO(Fp), and the floor, whose
vertices lie in EllO′(Fp), where O′ is the order of index ` in O. Each vertex on

the surface is connected to 1 +
(
D
`

)
= 0, 1 or 2 siblings on the surface, and `−

(
D
`

)
children on the floor. An example with ` = 7 is shown below:

Provided h(O) ≥ ` + 2, this set of `-volcanoes contains enough information to
completely determine Φ` mod p. This is the basis of the algorithm in [8, Alg. 2.1],
which we adapt here. Selecting a sufficiently large set of such primes p allows one
to compute Φ` over Z (via the CRT), or modulo an arbitrary prime q (via the
explicit CRT). In order to achieve the best complexity bounds, it is important to
choose both the order O and the primes p carefully. We thus introduce the following
definitions, in which c1 and c2 are fixed constants that do not depend on ` or O (in
our implementation we used c1 = 1.5 and c2 = 256).
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Definition 1. Let O be an imaginary quadratic order with discriminant D = u2D0,
where D0 is fundamental. We say that O is suitable for ` if

(i) `+ 2 ≤ h(O) ≤ c1`
(ii) 4 < |D0| ≤ c22 and `2 ≤ |D| ≤ c22`2,
(iii) gcd(u, 2`D) = 1 and q ≤ min(c2, `) for all primes q|u.

This definition combines the criteria in [8, Def. 4.2] and [8, Thm. 5.1]. Provided
that c1 and c2 are not too small, suitable orders exist for every odd prime `; with
c1 = 4 and c2 = 16, for example, one may use orders with discriminants of the
form D = −7 · 32n for all ` > 3. In practice, one would like c1 to be as close to
1 as possible, but this makes it harder to find suitable orders; for the asymptotic
analysis, all that matters is that c1 and c2 are fixed as ` grows.

Definition 2. A prime p is suitable for ` and O if p ≡ 1 mod ` and p satisfies
4p = t2 − `2v2D for some t, v ∈ Z with ` 6 | v and ω(v) ≤ 2 log(log v + 3).

The function ω(v) counts the distinct prime divisors of v. The bound on ω(v)
ensures that if O is suitable for ` then many small primes split in O and do not
divide u or v. Such primes allow us to more efficiently enumerate cl(O) and cl(O′).

2.6. Selecting primes with the GRH. In order to apply the isogeny volcano
method to compute Φ` mod q (or φ` mod q, as we shall do), we need a sufficiently
large set S of suitable primes p. We deem S to be sufficiently large whenever∑
p∈S log p ≥ B + log 4, where B is an upper bound on the logarithmic height of

the integers whose reductions mod q we wish to compute with the explicit CRT.
For Φ`(X,Y ) =

∑
i,j aijX

iY j , we may bound h(Φ`) = log maxi,j |aij | using

(2) h(Φ`) ≤ 6` log `+ 18`, and h(Φ`) ≤ 6` log `+ 16`+ 14
√
` log `,

as proved in [9] (we prefer the latter bound when ` > 3187).4

Heuristically (and in practice), it is easy to construct the set S. Given an order O
of discriminant D suitable for `, we fix v = 2 if D ≡ 1 mod 8 and v = 1 otherwise,
and for increasing t ≡ 2 mod ` of correct parity we test whether p = (t2−v2`2D)/4
is prime. We add each prime value of p to S, and stop when S is sufficiently large.

Unfortunately, we cannot prove that this method will find any primes, even under
the GRH. Instead, we use Algorithm 6.2 in [8], which picks an upper bound x
and generates random integers t and v in suitable intervals to obtain candidate
primes p = (t2 − v2`2D)/4 ≤ x that are then tested for primality. The algorithm
periodically increases x, so its expected running time is O(B1+ε), even without the
GRH. To ensure that the bound on ω(v) in Definition 2 is satisfied, unsuitable v’s
are discarded; this occurs with negligible probability.

Under the GRH, there are effective constants c1, c2 > 0 such that x ≥ c1`6 log4`
guarantees at least c2`

3 log3` suitable primes less than x, by [8, Thm. 4.4]. Asymp-
totically, this is far more than the O(`) primes we need to compute Φ` mod q. Here
we may consider larger values of B, and in general, x = O(B2 + `6 log4`) suffices.
We note that S contains O(B/ logB) primes (unconditionally), and under the GRH
we have log p = O(logB + log `) for all p ∈ S.

4The bound 6` log `+ 17` in [8, p. 1214] is a misprint (but conjecturally true).
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3. Algorithms

Let q be a prime and let E be an elliptic curve over Fq. A simple algorithm to
compute φ`(Y ) = Φ`(j(E), Y ) ∈ Fq[Y ] with the explicit CRT works as follows. Let ̂
be the integer in [0, q − 1] corresponding to j(E) ∈ Fq ' Z/qZ. For a sufficiently
large set S of suitable primes p, compute Φ`(X,Y ) mod p using the isogeny volcano
algorithm and evaluate Φ`(̂, Y ) mod p to obtain φ̄` ∈ Fp[Y ], and use the explicit
CRT mod q to eventually obtain φ` ∈ Fq[Y ].

This näıve algorithm suffers from two significant defects. The most serious is
that we may now require a much larger set S than is needed to compute Φ` mod q.
Compared to the coefficients of Φ`, which have height h(Φ`) = O(` log `) bounded
by (2), we now need to use the O(` log `+ ` log q) bound

(3) h(Φ`(̂, Y )) ≤ h(Φ`) + (`+ 1) log q + log(`+ 2),

since Φ`(̂, Y ) involves powers of ̂ up to ̂`+1.
If log q is comparable to log `, then the difference between the bounds in (2)

and (3) may be negligible. But when log q is comparable to `, using the bound in (3)
increases the running time dramatically. This issue is addressed by Algorithm 1.

The second defect of the näıve algorithm is that although its space complexity
may be significantly better than theO(`2 log q) space required to compute Φ` mod q,
it is still quasi-quadratic in `. But the size of φ` is linear in `, so we might hope to
do better, and indeed we can. This is achieved by Algorithm 2.

In general, we cannot address both issues simultaneously, but when log q ≈ ` (as
in point-counting), Algorithm 1 is nearly optimal, and when log q = O(log2 `) (the
case when computing endomorphism rings), Algorithm 2 is nearly optimal.

3.1. Algorithm 1. The increase in the height bound from (2) to (3) is caused by
the fact that we are exponentiating in the wrong ring. Rather than lifting j(E) ∈ Fq
to the integer ̂ and computing powers of its reduction in Fp (which simulates
powering in Z), we should instead compute powers j(E), j(E)2, . . . , j(E)`+1 in Fq,
lift these values to integers x̂1, x̂2, . . . , x̂`+1, and work with their reductions in Fp.
Of course the reductions of x̂1, x̂2, . . . , x̂`+1 need not correspond to powers of any
particular element in Fp; nevertheless, if we simply replace each occurrence of Xi in
the modular polynomial Φ`(X,Y ) mod p with x̂i mod p, we achieve the same end
result using a much smaller height bound.

We now present Algorithm 1 to compute φ(Y ) = φ`(Y ) = Φ`(j(E), y). If desired,
the algorithm can also compute the polynomials φX(Y ) = (∂Φ`/∂X)(j(E), Y ) and
φXX(Y ) = (∂2Φ`/∂X

2)(j(E), Y ), which may be used to compute normalized iso-
genies, as described in §3.7 below. These optional steps are shown in parentheses.

Algorithm 1
Input: An odd prime `, a prime q, and j(E) ∈ Fq.
Output: The polynomial φ(Y ) = Φ`(j(E), Y ) ∈ Fq[Y ] (and φX(Y ) and φXX(Y )).

1. Select an order O suitable for ` and a set of suitable primes S (see §2.6),
using the height bound B = 6` log `+ 18`+ log q + 3 log(`+ 2).

2. Compute the Hilbert class polynomial HO(X) via [29, Alg. 2].
3. Perform CRT precomputation mod q using S (see §2.4).
4. Compute integers x̂i ∈ [0, q − 1] such that x̂i ≡ j(E)i mod q, for 0 ≤ i ≤ `+ 1.
5. For each prime p ∈ S:
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a. Compute Φ`(X,Y ) mod p using HO, via [8, Alg. 2.1].
b. Compute φ̄(Y ) =

∑
i,j aij x̂iY

j mod p, where Φ`(X,Y ) =
∑
i,j aijX

iY j .

c. (Compute φ̄X(Y ) =
∑
i,j iaij x̂iY

j mod p

and also φ̄XX(Y ) =
∑
i,j i(i− 1)aij x̂iY

j mod p).

d. Update CRT sums for each coefficient ci of φ̄ (and of φ̄X and φ̄XX).
6. Perform CRT postcomputation to obtain φ (and φX and φXX) mod q.
7. Output φ (and φX and φXX).

Proposition 3. The output φ(Y ) of Algorithm 1 is equal to Φ`(j(E), Y ).
(and φX(Y ) = (∂Φ`/∂X)(j(E), Y ) and φXX(Y ) = (∂2Φ`/∂X

2)(j(E), Y )).

Proof. Let φ∗ = Φ`(̂, Y ) ∈ Fq[Y ]. Let x̂i ∈ Z be as in step 4. Write Φ` as∑
i,j aijX

iY j , with aij ∈ Z and let φ̂ =
∑
i,j aij x̂iY

j ∈ Z[Y ]. Then φ∗ ≡ φ̂ mod q,

and φ̄ ≡ φ̂ mod p. To prove φ = φ∗, we only need to show h(φ̂) ≤ B. We have∣∣∑
iaij x̂i

∣∣ ≤ (`+ 2)q exph(Φ`),

for 0 ≤ j ≤ `+ 1, hence h(φ̂) ≤ B. The proofs for φX and φXX are analogous. We
note that the last term in B can be reduced to log(` + 2) if φX and φXX are not
being computed. �

Theorem 4. Assume the GRH. The expected running time of Algorithm 1 is
O(`2B log2B llogB), where B = O(` log ` + log q) is as specified in step 1. It uses
O(` log q + `2 logB) space.

Proof. We use M(n) = O(n log n llog n) to denote the cost of multiplication [23].
For step 1, we assume the time spent selecting O is negligible (as noted in §2.5,
one may simply choose orders with discriminants of the form D = −7 · 32n), and
under the GRH the expected time to construct S is O(B1+ε), using O(B) space,
as explained in §2.6. Step 2 uses O(`2+ε) expected time and O(`(log ` + log q))
space, by [29, Thm. 1], since h(D) = O(`). An analysis as in [29, §6.3] shows that
the total cost of all CRT operations is O(`M(B) logB) time and O(` log q) space.
Step 4 uses O(`M(log q)) time and O(` log q) space.

The set S contains O(B/ logB) primes p, and under the GRH, log p = O(logB);
see §2.6. The cost per p is dominated by step 5a, which takes O(`2 log3B llogB)
expected time and O(`2 logB) space, by [8]. This yields an O(`2B log2B llogB)
bound for step 5, which dominates, and the total space is O(` log q + `2 logB). �

When log q = Θ(`), the time bound in Theorem 4 reduces to O(`3 log3` log log `),
the same as the time to compute Φ` mod q, and the space bound is O(` log ` log q),
which is within an O(log `) factor of the best possible.

3.2. Algorithm 2. We now present Algorithm 2, which for q > ` has optimal space
complexity O(` log q). When q is reasonably small, say log q = o(log2`), Algorithm 2
is also faster than Algorithm 1, but when log q is large it may be much slower, since
it uses the same height bound (3) as the näıve approach. The computation of
φ̄ ∈ Fp[Y ] is more intricate, so we present it separately as Algorithm 2.1. Unlike
Algorithm 1, it is not so easy to also compute φX and φXX , but an alternative
method to compute normalized isogenies using Algorithm 2 is given in §3.7.

Algorithm 2
Input: An odd prime `, a prime q, and j(E) ∈ Fq.
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Output: The polynomial φ(Y ) = Φ`(j(E), Y ) ∈ Fq[Y ].

1. Select an order O suitable for ` and a suitable set of primes S (see §2.6),
using the height bound B = 6` log `+ 18`+ (`+ 1) log q + log(`+ 2).

2. Compute the Hilbert class polynomial HO via [29, Alg. 2].
3. Perform precomputation for the explicit CRT mod q using S.
4. Let ̂ be the integer in [0, q − 1] congruent to j(E) mod q.
5. For each prime p ∈ S:

a. Compute φ̄(Y ) = Φ`(̂, Y ) mod p using O and HO via Algorithm 2.1.
b. Update CRT sums for each coefficient ci of φ̄.

6. Perform postcomputation for the explicit CRT to obtain φ ∈ Fq[X].
7. Output φ.

Proposition 5. The output φ(Y ) of Algorithm 1 is equal to Φ`(j(E), Y ).

Proof. This follows immediately from Proposition 8 below and the bound

h(Φ`(̂, Y )) = log maxj
∣∣∑

i aij ̂
i
∣∣ ≤ log(`+ 2) + (`+ 1) log q + h(Φ`) ≤ B.

on the height of Φ`(̂, Y ) ∈ Z[Y ]. �

Theorem 6. Assume the GRH and that log q = O(`k) for some constant k. The
expected running time of Algorithm 2 is O(`3(log q+ log `) log `llog2`lllog2`) and it
uses O(` log q + ` log `) space.

Proof. As in the proof of Theorem 4, the expected running time is dominated by
the time to compute φ̄(Y ), which by Proposition 9 is O(`2 log2 p llog p). There are
O(B/ logB) primes p ∈ S, and under the GRH we have log p = O(logB) = O(log `).
The space complexity is dominated by the O(B) = O(` log `+ ` log q) size of S. �

3.3. Algorithm 2.1. The algorithm in [8, Alg. 2.1] computes Φ` mod p by enu-
merating the sets EllO(Fp) and EllO′(Fp), where O′ = Z + `O, the latter of which
contains approximately `2 elements. To achieve a space complexity that is quasi-
linear in `, we cannot afford to store the entire set EllO′(Fp). We must compute
Φ`(̂, Y ) mod p using an online algorithm, processing each jk ∈ EllO′(Fp) as we
enumerate it, and then discarding it. Let us consider how this may be done.

Let y1, . . . , yh(O) be the elements of EllO(Fp), as enumerated using a polycyclic
presentation α for cl(O). Each yi is `-isogenous to a set Ni of siblings in EllO(Fp),
and to a set Ci of children in EllO′(Fp); see §2.5. Thus we have

Φ`(X, yi) =
(∏
̃∈Ni

(X − ̃)
)(∏

̃∈Ci

(X − ̃)
)
.

The siblings can be readily identified in our enumeration of EllO(Fp) using the CM
action (see §2.2). To identify the children, we need to be able to determine, for any
given j ∈ O′, the set Ci in which it lies. Each Ci is a subset of the torsor EllO′(Fp)
corresponding to a coset of the subgroup C ⊂ cl(O′) generated by the ideals of
norm `2; indeed, two children have the same parent if and only if they are related
by an isogeny of degree `2 (the composition of two `-isogenies).

The group cl(O′) acts on the cosets of C, and we need to compute this ac-
tion explicitly in terms of the polycyclic presentation β used to enumerate cl(O′).
This problem is addressed by a generic group algorithm in the next section that
computes a polycyclic presentation γ for the quotient cl(O′)/C, along with the
γ-representation of the image of each generator in β.
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As we enumerate the elements jk of EllO′(Fp), starting from a child j1 of y1

obtained via Vélu’s algorithm, we keep track of the element δk ∈ cl(O′) whose
action sends j1 to jk. The image of δk in cl(O′)/C is the coset of C corresponding
to the set Ci containing jk, and we simply identify Ci with the ith element of
cl(O′)/C as enumerated by γ (in the lexicographic ordering of γ-representations).

Thus we can compute the polynomials φi(X) = Φ`(X, yi) as we enumerate
EllO′(Fp) by accumulating a partial product of linear factors for each φi. But
since our goal is to evaluate zi = φi(̂) mod p, we simply substitute x = ̂ mod p
into each linear factor, as we compute it, and accumulate the partial product in zi.

Having computed the values zi for 1 ≤ i ≤ ` + 2, we interpolate the unique
polynomial φ(Y ) of degree at most ` + 1 for which φ(yi) = zi, using Lagrange
interpolation. This polynomial must be Φ`(̂, Y ). We now give the algorithm.

Algorithm 2.1
Input: An odd prime `, a suitable order O, a suitable prime p, and x ∈ Fp.
Output: The polynomial φ(Y ) = Φ`(x, Y ) ∈ Fp[Y ].

1. Compute presentations α of cl(O) and β of cl(O′) suitable for p (see below).
2. Represent generators of the subgroup C ⊂ cl(O′) defined above in terms of β.
3. Compute the presentation γ of cl(O′)/C derived from β, via Algorithm 3.
4. Find a root x1 of HO mod p (compute HO mod p if needed).
5. Enumerate EllO(Fq) as w1, w2, . . . , wh(O) using α.
6. Obtain j1 ∈ EllO′(Fq) from w1 using Vélu’s algorithm.
7. Set zi ← 1 and yi ← null for 1 ≤ i ≤ `+ 2.
8. For each jk = δk(j1) in EllO′(Fq) enumerated using β:

a. Compute the index i of [δk] in the γ-enumeration of cl(O′)/C.
If i > `+ 2 then proceed to the next jk, skipping steps b and c below.

b. If yi = null then set yi to the `-parent of jk (via Vélu’s algorithm) and for
each `-sibling ̃ of yi in EllO(Fp) set zi ← zi(x− ̃).

c. Set zi ← zi(x− jk).
9. Interpolate φ ∈ Fp[Y ] such that deg φ ≤ `+ 1 and φ(yi) = zi for 1 ≤ i ≤ `+ 2.

10. Output φ.

The value null assigned to yi in step 7 is used to indicate that the value of yi is
not yet known. Each yi is eventually set to a distinct wj ∈ EllO(Fp).

Remark 7. In practical implementations, Algorithm 2 selects the primes p ∈ S so
that the presentations α, β, and γ are the same for every p and and precomputes
them (the only reason they might not be the same is the presence of prime ideals
whose norm divides v = v(p), but in practice we fix v ≤ 2, as discussed in §2.6).

Proposition 8. Algorithm 2.1 outputs φ(Y ) = Φ`(x, Y ) mod p.

Proof. The values yi ∈ EllO(Fp) are necessarily distinct. It follows from the dis-
cussion above that Algorithm 2.1 computes zi = Φ`(x, yi) for 1 ≤ i ≤ ` + 2. Thus
φ∗(Y ) = Φ`(x, Y ) satisfies φ∗(yi) = zi for 1 ≤ i ≤ ` + 2, as does φ(Y ), and both
polynomials have degree at most `+ 1. Therefore φ = φ∗. �

Theorem 9. Assume the GRH. Algorithm 2.1 runs in O(`2n2 log2nllog2n) expected
time using O(`n) space, where n = log p.

Proof. The time complexity is dominated by step 8, which enumerates the O(`2)
elements of EllO′(Fp) using β. By [8, Thm. 5.1] and the suitability of O and p, we
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may assume each βi = [bi], where bi has prime norm bi = O(log n llog n). Using
Kronecker substitution and probabilistic root-finding [34], the expected time to find
the (at most 2) roots of Φbi(jk, Y ) is O(nM(n log n llog n)), which dominates the
cost for each jk. Applying M(n) = O(n log n llog n) and multiplying by `2 yields the
desired time bound. Taking into account h(O) = O(`) and p > `, the computation
of HO mod p uses O(`n) space, by [29, Thm. 1], and this bounds the total space. �

3.4. Computing a polycyclic presentation for a quotient group. We now
give a generic algorithm to derive a polycyclic presentation γ for a quotient of finite
abelian groups G/H. This presentation can be used to efficiently compute in G/H,
and to compute the image of elements of G, as required by Algorithm 2.1.

Algorithm 3
Input: A minimal polycyclic presentation β = (β1, . . . , βk) for a finite abelian
group G and a subgroup H = 〈α1, . . . , αt〉, with each αi specified in terms of β.
Output: A polycyclic presentation γ for G/H, with γi = [βi] for each βi ∈ β.

1. Derive a polycyclic presentation α for H from α1, . . . , αt via [29, Alg. 2.2].
2. Enumerate H using α and create a lookup table TH to test membership in H.
3. Derive a polycyclic presentation γ for G/H from [β1], . . . , [βk] via [29, Alg. 2.2],

using TH as described below.
4. Output γ, with relative orders r(γ) and relations s(γ).

The polycyclic presentation γ output by Algorithm 3 is not necessarily minimal.
It can be converted to a minimal presentation by simply removing those γi with
r(γi) = 1, however, for the purpose of computing the image in G/H of elements
of G represented in terms of β, it is better not to do so.

The algorithm in [29, Alg. 2.2] requires a TableLookup function that searches
for a given group element in a table of distinct group elements. In Algorithm 3
above, the elements of G are uniquely represented by their β-representations, but
elements of G/H are represented as equivalence classes [δ], with δ ∈ G, which is not
a unique representation. To implement the TableLookup function for G/H, we do
the following: given [δ0] ∈ G/H and a table TG/H of distinct elements [δi] in G/H,

we test whether δ0δ
−1
i ∈ H, for each [δi] ∈ T . With a suitable implementation

of TH (such as a hash table or balanced tree), membership in H can be tested in
O(log |G|) time, which is dominated by the O(log2|G|) time to compute δ0δ

−1
i .

The problem of uniquely representing elements of G/H is solved once Algo-
rithm 3 completes: every element of G/H has a unique γ-representation.

Theorem 10. Algorithm 3 runs in O(nlog2n) time using O((m+n/m) log n) space,
where n = |G| and m = |H|.

Proof. The time complexity is dominated by the n/m calls to the TableLookup
function performed by [29, Alg. 2.2] in step 3, each of which performs m opera-
tions in G (using β-representations) and m lookups in TH , yielding a total cots of
O(nlog2n). The space bound is the size of TH plus the size of TG/H . �

3.5. Other modular functions. For a modular function g of level N and a prime
` 6 | N , the modular polynomial Φg` is the minimal polynomial of the function g(`z)
over the field C(g). For suitable functions g, the isogeny volcano algorithm for
computing Φ`(X,Y ) can be adapted to compute Φg` (X,Y ), as described in [8, §7].
There are some restrictions: Φg` must have degree `+ 1 in both X and Y , and we
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require some additional constraints on the suitable orders O that we use. Specifi-
cally, we require that there is a generator τ of O for which g(τ) lies in the ring class
field KO. In this case we say that g(τ) is a class invariant, and let Hg

O(X) denote
its minimal polynomial over K; see [7, 12, 13] for algorithms to compute Hg

O(X).
We also require the polynomial Hg

O to be defined over Z.
With this setup, there is then a one-to-one correspondence between the roots

j(τ) of HO and the roots g(τ) of Hg
O in which Ψg(g(τ), j(τ)) = 0, where Ψg is

the minimal polynomial of g over C(j); note that Ψg does not depend on ` and
is assumed to be given. The class group cl(O) ' Gal(KO/K) acts compatibly on
both sets of roots, and this allows us to compute Φg` modulo suitable primes p using
essentially the same algorithm that is used to compute Φ` mod p. In particular,
we can enumerate the set EllgO(Fp) = {x ∈ Fp : Hg

O(x) = 0} using a polycyclic
presentation α for cl(O), provided that we exclude from α generators whose norm
divides the level of g, and similarly for EllgO′(Fp), where O′ = Z + `O.

Thus Algorithms 1 and 2 can both be adapted to compute instantiated modular
polynomials φg(Y ) = Φg` (x, Y ) mod q. Some effort may be required to determine
the correspondence between EllO(Fp) and EllgO(Fp) in cases where Ψg(X, j(E)) or
Ψg(g(E), Y ) has multiple roots in Fp; this issue arises when we need to compute a
child or parent using Vélu’s algorithm. There are several techniques for resolving
such ambiguities, see [8, §7.3] and especially [13], which explores this issue in detail.

We emphasize that the point x at which we are evaluating Φg` (x, Y ) may be any
element of Fq, it need not correspond to the “g-invariant” of an elliptic curve.5 This
permits a very useful optimization that speeds up our original version of Algorithm 1
for computing φ`(Y ) = φj`(Y ) by a factor of at least 9, as we now explain.

3.6. Accelerating the computation of φ`(Y ) using γ2. Let γ2(z) be the unique
cube-root of j(z) with integral Fourier expansion, a modular function of level 3 that
yields class invariants for O whenever 3 6 | disc(O). As noted in [8, §7.2], for ` > 3
the modular polynomial Φγ2` can be written as

(4) Φγ2` (X,Y ) = R(X3, Y 3)Y e + S(X3, Y 3)XY + T (X3, Y 3)X2Y 2−e,

with e = `+ 1 mod 3 and R,S, T ∈ Z[X,Y ]. We then have the identity

(5) Φ` = R3Y e + (S3 − 3RST )XY + TX2Y 2−e.

When computing Φγ2` mod p with the isogeny volcano algorithm, one can exploit (4)
to speed up the computation by at least a factor of 3. In addition, the integer
coefficients of Φγ2` are also smaller than those of Φ` by roughly a factor of 3; we
may use the height bound h(Φγ2` ) ≤ 2` log `+ 8` from [8, Eq. 18].

Let us consider how we may modify Algorithm 1 to exploit (5), thereby accel-
erating the computation of φ`(Y ) = Φ`(x, Y ) mod q, where x = j(E) ∈ Fq. Let
r(Y ) = R(x, Y ) mod q, and similarly define s and t in terms of S and T . Rather
than computing Φ` mod p in step 5a, we compute Φγ2` mod p and derive R, S, and T
from (4). We then compute polynomials r̄, s̄, and t̄ mod p instead of φ̄ in step 5b.
Finally, we recover r, s, and t mod q in step 6 via the explicit CRT and output

(6) φ = r3Y e + x(s3 − 3rst)Y + x2t3Y 2−e

5Every x ∈ Fq is j(E) for some E/Fq , and when E is ordinary, j(E) is the reduction of some

j(τ) = j(Ê) with Z[τ ] = O ' End(E). But g(τ) might not be a class invariant for this O.
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in step 7. Adjusting the height bound B appropriately, this yields a speedup of
nearly a factor of 9. Note that we are not assuming x = j(E) has a cube-root in Fq,
or that End(E) ' O satisfies 3 6 | disc(O); the identity (6) holds for all x.

We can similarly compute φX and φXX . To simplify the formulas, let us de-
fine U = (S3 − 3RST ) and u = U(x, Y ) mod q. Define r′(Y ) = ( ∂

∂XR)(x, Y ) and

r′′(Y ) = ( ∂2

∂X2R)(x, Y ), and similarly for s, t, and u. Note that u, u′, and u′′ can all
be easily expressed in terms of r, r′, r′′, s, s′, s′′, t, t′, and t′′. We replace the com-
putation of φ̄X and φ̄XX in step 5c with analogous computations of r̄′, r̄′′, s̄′, s̄′′, t̄′,
and t̄′′ mod p. We then obtain r, r′, r′′, s, s′, s′′, t, t′, and t′′ via the explicit CRT
mod q and apply

φX = 3r2r′Y e + (u+ xu′)Y + (2xt3 + 3x2t2t′)Y 2−e;

φXX = (6rr′r′ + 3r2r′′)Y e + (2u′ + u′′)Y

+ (2t3 + 12xt2t′ + 6x2tt′t′ + 3x2t2t′′)Y 2−e.

3.7. Normalized isogenies. We now explain how Algorithms 1 and 2 may be
used to compute normalized isogenies ψ, first using j-invariants, and then using
g-invariants. Throughout this section j = j(E) ∈ Fq denotes the j-invariant of a
given elliptic curve E/Fq, defined by y2 = x3 +Ax+B, and φ(Y ) = Φ`(j, Y ). We

use ̃ = j(Ẽ) to denote a root of φ(Y ) in Fq. Our goal is to compute an equation

for the image of ψ : E → Ẽ, and the kernel polynomial h`(X) for ψ.

3.7.1. Algorithm 1. When computing φ, we also compute the optional outputs φX
and φXX , and then φY (Y ) = d

dY φ(Y ), φY Y (Y ) = d
dY φY (Y ), and φXY = d

dY φX(Y ).
We then compute the quantities Φ∗(j, ̃) = φ∗(̃), for ∗ = X,Y,XX,XY, Y Y , as

defined in §2.1, and apply Elkies’ algorithm [15, Alg. 27] to compute Ẽ and h`(X).

3.7.2. Algorithm 2. Having computed φ and obtained ̃, we run Algorithm 2 again,
this time with the input ̃, obtaining φ̃(Y ) = Φ`(̃, Y ), which we now regard as

φ̃(X) = Φ`(X, ̃), by the symmetry of Φ`. We then compute ΦX(j, ̃) = ( d
dX φ̃)(j)

and ΦY (j, ̃) = ( d
dY φ)(̃), and the quantities

(7) j′ =
18B

A
j, ̃′ =

−ΦX(j, ̃)

`ΦY (j, ̃)
j′, m̃ =

̃′

̃
, k̃ =

̃′

1728− ̃
,

as in [15, Alg. 27]. The normalized equation for Ẽ is then y2 = x3 + `4m̃k̃
48 x+ `6m̃2k̃

864 ,
and the fastElkies′ algorithm in [5] may be used to compute h`(X).

3.7.3. Handling g-invariants. We assume that g(E) is known to be a class invari-

ant (see §3.8 below). Let g = g(E), φg(Y ) = Φg` (g, Y ), and let g̃ = g(Ẽ) de-
note a root of φg(Y ) in Fq. In the case of Algorithm 1 we compute ΦgX(g, g̃) =

φgX(g̃) and ΦgY (g, g̃) = ( d
dY φ

g)(g̃), and in the case of Algorithm 2 we make a sec-

ond call with input g̃ to obtain φ̃g(X) = Φg` (X, g̃) as above. We then compute

ΦgX(g, g̃) = ( d
dX φ̃

g)(g) and ΦgY (g, g̃) = ( d
dY φ

g)(g̃). We assume the modular equa-
tion Ψg

` (G, J) = 0 relating g(z) to j(z) can be solved for j(z) (for the g(z) considered

in [8], degJ Ψg(G, J) ≤ 2), and let F (G) satisfy Ψg
` (F (J), J) = 0 and F ′ = d

dGF .

To compute the normalized equation for Ẽ, we proceed as in (7), except now

(8) ̃′ = −(ΦgX(g, g̃)F ′(g̃))/(`ΦY (g, g̃)/F ′(g))j′.
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The fastElkies’ algorithm in [5] may then be used to compute h`, or, in the case of
Algorithm 1, one may derive the trace of h` using ΦgXX(g, g̃),ΦgXY (g, g̃),ΦgY Y (g, g̃)
as in §3.7.1, and compute h` as usual. We omit the details.

3.8. Verifying that g(E) is a class invariant. Let E/Fq be an elliptic curve that
is not supersingular (see [30] for fast tests), with End(E) ' O. As in §3.5, we call
an element g(E) of Fq a class invariant if (i) Hg

O(X) splits into linear factors in the
ring class field of O, and (ii) g(E) is a common root of Hg

O(X) and Ψg(X, j(E)).
For practical applications, we would like to determine whether g(E) is a class

invariant without computing O (indeed, the application may be computing O).
This is often easy to do, at least as far as condition (i) is concerned. As noted
in §3.5, (i) can typically be guaranteed by constraints involving D = disc(O) and
the level N of g. Verifying condition (ii) is more difficult, in general, but it can
be easily addressed in particular cases if we know Ψg(X, j(E)) either has a unique
root in Fq (which then must also be a root of Hg(O) once (i) is satisfied), or that

all its roots in Fq are roots of Hg(O), or of H ḡ(O) for some ḡ with Φḡ` = Φg` . In the
latter case we may not determine g(E) uniquely, but for the purposes of computing
a normalized `-isogeny this does not matter, any choice will work.

Taking γ2 = 3
√
j as an example, condition (i) holds when

(
D
3

)
6= 0, which means

j(E) is on the surface of its 3-volcano and has either 0 or 2 siblings. This can be
easily determined using [14] or [29, 4.1]. If we have q ≡ 2 mod 3, the polynomial
Ψg(X, j(E)) = X3 − j(E) has a unique root g(E) in Fq and (ii) also holds.6

As a second example, consider the Weber f-function, which is related to the j-
function by Ψf(X, J) = (X24−16)3−X24J . Now we require

(
D
3

)
6= 0 and

(
D
2

)
= 1.

The latter is equivalent to j(E) being on the surface of its 2-volcano with 2 siblings.
If we also have q ≡ 11 mod 12, then Ψf(X, j(E)) has exactly two roots f(E) and

−f(E), by [8, Lemma 7.3], and either may be used since Φf
` = Φ−f` .

For a more general solution, having verified condition (i), we may simply compute
instantiated polynomials φ(Y ) = Φ`(x, Y ) for every root x of Ψg(X, j(E)) in Fq.
This can be done at essentially no additional cost, and we may then attempt to
compute a normalized isogeny corresponding to each root x, which we validate by
computing the dual isogeny (using the normalization factor c = ` rather than 1) and
checking whether the composition corresponds to scalar multiplication by ` using
randomly generated points in E(Fq). The cost of these validations is negligible
compared to the cost of computing φ(Y ) for even one x.

As a final remark, we note that in applications such as point counting where
one is only concerned with the isogeny class of E, in cases where condition (i) is

not satisfied, one may be able to obtain an isogenous Ẽ for which (i) holds by
simply climbing to the surface of the relevant `0-volcanoes for the primes `0|N (we
regard N as fixed so `0 is small; `0 = 2, 3 in the examples above).

4. Applications

In this section we analyze the use of Algorithms 1 and 2 in two particular appli-
cations: point counting and computing endomorphism rings.

Recall that for an elliptic curve E/Fq, an odd prime ` is called an Elkies prime
whenever φ(Y ) = Φ`(j(E), Y ) has a root in Fq. This holds if and only if t2 − 4q is
a square mod `, where t = q+ 1−#E(Fq). It follows from the Chebotarev density

6There are techniques to handle q ≡ 1 mod 3, see [7] for example, but they assume O is known.
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theorem that the set of Elkies primes for E has density 1/2. The complexity of the
Schoof-Elkies-Atkin algorithm [24] for computing #E(Fq) depends critically on the
number of small Elkies primes, specifically, the least L = L(E) for which

(9)
∑

Elkies primes `≤L(E)

log ` > log(4
√
q).

On average, one expects L ≈ log q, but even under the GRH the best proven bound
is L = O(log2+εq), see Appendix A of [22] by Satoh and Galbraith. This yields a
complexity bound that is actually slightly worse than Schoof’s original algorithm.

In practice, the following heuristic assumption is commonly made.

Heuristic 1. There exists a constant c such that for all sufficiently large q we have
L(E) ≤ c log q for every elliptic curve E/Fq.

Theorem 11. Assume the GRH and Heuristic 1. Let E/Fq be an elliptic curve
over a prime field Fq and let n = log q. There is a Las Vegas algorithm to compute
#E(Fq) that runs in O(n4 log2n llog n) expected time using O(n2 log n) space.

Proof. Apply the SEA algorithm, using Algorithm 1 to compute φ(Y ) = Φ`(j(E), Y )
(and also φX and φXX), and ignore the Atkin primes, as in [25, Alg. 1], for ex-
ample. There are O(n/ log n) primes in the sum (9), and under Heuristic 1, they
are bounded by L = O(n). It follows from [25, Table 1] that the expected time to
process each Elkies prime given φ is O(n3 log2n llog n), which is dominated by the
time to compute φ, as is the space. The theorem then follows from Theorem 4. �

A common application of the SEA algorithm is to search for random curves of
prime (or near prime) order, e.g., for use in cryptographic applications. As shown
in [25], we no longer need Heuristic 1 to do this. Additionally, since we expect to
count points on many curves (≈ log q), we can take advantage of batching, whereby
we extend Algorithm 1 to take multiple inputs j(E1) ∈ Fq1 , . . . , j(Ek) ∈ Fqk and
produce corresponding outputs for each (the Fqi may coincide, but they need not).
Provided k = O(log `), this does not change the time complexity (relative to the
largest Fqi), since the most time-consuming steps depend only on `, not j(E), and
the space complexity is increased by at most a factor of k.7

Let Ea,b denote the elliptic curve defined by y2 = x3 + ax+ b, and for any real
number x > 3, let T (x) denote the set of all triples (q, a, b) with q ∈ [x, 2x] prime,
a, b ∈ Fq, and #Ea,b prime. The following result strengthens [25, Thm. 3]

Theorem 12. There is a Las Vegas algorithm that, given x, outputs a random
triple (q, a, b) ∈ T (x) and the prime #Ea,b(Fq), with q uniformly distributed over the
primes in [x, 2x] and (a, b) uniformly distributed over the pairs (c, d) ∈ F2

q for which

#Ec,d(Fq) is prime. Under the GRH, its expected running time is O(n5 log2n llog n)
using O(n2 log2n) space, where n = log x.

Proof. We modify the algorithm in [25] to use Algorithm 1, operating on batches
of O(log n) inputs at a time. One then obtains an O(n4 log n llog n) bound on the
average time to compute #Ea,b(Fq) for primes q ∈ [x, 2x], and a space complexity
of O(n2 log2n). The theorem then follows from the proof of [25, Thm. 3]. �

7These remarks also apply to Algorithm 2.
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Task CPU time (3.0 GHz AMD)

Compute φf`(Y ) with Algorithm 1 32 days
Compute Xq mod φ` (using [18]) 995 days
Compute h` using [15, Alg. 27] 3 days
Compute Y q and Xq mod h`, E using [17] 326 days
Compute the eigenvalue λ` using BSGS 22 days

1378 days

Table 1. Breakdown of time spent computing #E(Fq)

A second application of Algorithms 1 and 2 is in the computation of the endomor-
phism ring of an ordinary elliptic curve. The algorithm in [3] achieves a heuristically

subexponential running time of L[1/2,
√

3/2] using L[1/2, 1/
√

3] space. Both Al-

gorithms 1 and 2 improve the space complexity bound to L[1/2, 1/
√

12], which is
significant, since space is the limiting factor in these computations. Algorithm 2
also provides a slight improvement to the time complexity that is not visible in the
L[α, c] notation but may be practically useful. These remarks also apply to the
algorithm in [19] for evaluating isogenies of large degree.

5. Computations

Using a modified version of the SEA algorithm incorporating Algorithm 1, we
counted the number of points on the elliptic curve

y2 = x3 + 2718281828x+ 3141592653,

modulo the 5011-digit prime q = 16219299585 · 216612 − 1. The algorithm ignored
the Atkin primes and computed the trace of Frobenius t modulo 700 Elkies primes,
the largest of which was ` = 11681; see [28] for details, including the exact value
of t, which is too large to print here. The computation was distributed over 32
cores (3.0 GHz AMD Phenom II), and took about 6 weeks.

For ` = 11681, the size of φf`(Y ) = Φf
`(f(E), Y ) was under 20MB and took

about two hours to compute (on a single core). As can be seen in Table 1, the

computation of φf` accounted for less than 3% of the total running time, despite
being the asymptotically dominant step. This is primarily due to the use of the
Weber f-invariant; with a less advantageous invariant (in the worst case, the j-
invariant with the optimization of §3.6), the time spent computing φ` would have
been comparable to or greater than the time spent on the remaining steps. But in
any case the computation would still have been quite feasible.

To demonstrate the scalability of the algorithm, we computed φf`(Y ) for an el-
liptic curve E/Fq, with ` = 100019 and q = 286243 − 1. Running on 32 cores
(Algorithms 1 and 2 are both easily parallelized), this computation took less than

a week. We note that the size of the instantiated modular polynomial φf` (and φ`)

is almost exactly one gigabyte, whereas the size of Φf
` is many terabytes, and we

estimate the size of Φ` to be 20 or 30 petabytes.
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Séances de l’Académie des Sciences, Séries A et B 273 (1971), 238–241.
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