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Modular forms

e A modular form is a holomorphic function on the Poincaré
upper halt-plane §) with a lot of symmetries w.r.t. a finite-
index subgroup I' of S Ly(Z).

e [t is called a congruence modular form if I'" is a congruence
subgroup, otherwise it is called a noncongruence modular form.

e Congruence forms well-studied; noncongruence forms much less
understood.



Modular curves

e The orbit space ['\$H* is a Riemann surface, called the modular
curve X for I'. It has a model defined over a number field.

e The modular curves for congruence subgroups are defined over

Q or cyclotomic fields Q(().

e Belyi: Every smooth projective irreducible curve defined over a
number field is isomorphic to a modular curve X (for infinitely
many finite-index subgroups I' of SLy(7Z)).

e S19(Z) has far more noncongruence subgroups than congru-
ence subgroups.



Modular forms for congruence subgroups

Let g = > ,>1an(g)q", where ¢ = ™% be a normalized
(a1(g) = 1) newform of weight & > 2 level N and character

X.
I. Hecke theory

e [t is an eigenfunction of the Hecke operators 1), with eigenvalue
ap(g) for all primes pt N, ie., for allm > 1,

k—la

anp(9) — ap(g)an(g) + x(P)P" ™ ay, /,(9) = 0.

e The space of weight k£ cusp forms for a congruence subgroup
contains a basis of forms with algebraically integral Fourier co-
efficients. An algebraic cusp form has bounded denominators.



II. GGalois representations

e (Eichler-Shimura, Deligne) There exists a compatible family
of [-adic deg. 2 rep'ns p,; of Gal(Q/Q) such that at primes
p 1IN, the char. poly.

Hy(T) = T? — AT + By = T? — ay(g)T + x(p)p"~"
of pg 1(Frobp) is indep. of I, and
anp(9) — Ap anl(g) + Bp ayp(g) =0
for n > 1 and primes p { [N

e Ramanujan-Petersson conjecture holds for newforms. That is,
lap(g)| < 2pE=1)/2 for all primes p 1 N.



Modular forms for noncongruence subgroups

[' . a noncongruence subgroup of SLo(Z) with finite index
Si.(I") : space of cusp forms of weight k > 2 for I" of dim d
A cusp form has an expansion in powers of ql/ "

Assume the modular curve Xrp is defined over (Q and the cusp
at infinity is Q-rational.

Atkin and Swinnerton-Dyer: there exists a positive integer M
such that Si.(I") has a basis consisting of forms with coeffs. integral

outside M (called M-integral) :

fz) = an(f)g"/".

n>1



No efficient Hecke operators on noncongruence forms

e Let ['° be the smallest congruence subgroup containing I'.
Naturally, Si.(I'“) C Si(T).

o Trl 1 Sp(I) — Sp(I%) such that Sy(T') = Sy(T¢)Dker(Trk).

o ker(T TFC) consists of genuinely noncongruence forms in Sp.(I).

Conjecture (Atkin). The Hecke operators on S.(I") for p 4 M
defined using double cosets as for congruence forms is zero on
genuinely noncongruence forms in Si(I).

This was proved by Serre, Berger.



Atkin and Swinnerton-Dyer congruences

Let E be an elliptic curve defined over ) with conductor M.
By Belyi, F ~ Xt for a finite index subgroup I' of SLo(Z). Eg.
E: 23 +y° = 23, T is an index-9 noncongruence subgp of I'(2).

Atkin and Swinnerton-Dyer: The normalized holomorphic differ-
ential 1-form f% =D n>1 anq”% on I satisfies the congruence

relation
anp — [p+1—#E(Fp)lan +pa, , =0 mod p
for all primes p{4 M and all n > 1.
Note that f € So(I).
Taniyama-Shimura modularity theorem: There is a normalized

congruence newform g = » 1 bpg" with by = p+1 — #E(F)).
This gives congruence relations between f and g.

1—|—OI’dpn
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Back to general case where Xp has a model over Q, and the
d-dim’l space S.(I') has a basis of M-integral forms.

ASD congruences (1971): for each prime p t M, S.(I', Zy)
has a p-adic basis {h;}1<j<¢ such that the Fourier coefficients of
h; satisty a three-term congruence relation

anp(hs) = Ap(§)an(hj) + By(j)ay p(hj) =0 mod plk—=1)(1+ordyn)
for all n > 1. Here

o A,(7) is an algebraic integer with |Ap(j)| < 2ptk=1)/2 and

e B,(j) is equal to p"~1 times a root of unity.

This is proved to hold for £ = 2 and d = 1 by ASD.

The basis varies with p in general.
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Galois representations attached to Si.(I') and congru-
ences

Theorem|Scholl] Suppose that the modular curve Xp has a
model over Q. Attached to Si.(I') is a compatible family of
2d-dim’l I-adic rep’ns p; of Gal(Q/Q) unramified outside I M
such that for primes p > k + 1 not dividing MI, the following
hold.

(i) The char. polynomial

Hy(T) = T* + Oy (p) T -+ + Coq_1(9)T + Coalp)

of pi(Froby) lies in Z|T, is indep. of I, and its roots are alge-
braic integers with complex absolute value p<k—1)/2;
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(i) For any form f in Si.(I') integral outside M, its Fourier
coeffs satisfy the (2d + 1)-term congruence relation

appilf) + Crp)ay a1 (f) + -+

+Cog—1(p)ay, jya-1(f) + Coa(p)ay, 1,a(f)

— O mOd p(k—l)(l—l—ordpn)

forn > 1.

The Scholl rep’ns p; are generalizations of Deligne’s construction
to the noncongruence case. The congruence in (ii) follows from
comparing [-adic theory to an analogous p-adic de Rham /crystalline
theory; the action of F'roby, on both sides have the same charac-
teristic polynomials.

Scholl’s theorem establishes the ASD congruences if d = 1.
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In general, to go from Scholl congruences to ASD congruences,
ideally one hopes to factor

Hy(T) = H (T% — Ap(§)T + By(j))
1<y<d

and find a p-adic basis {11 }1< <4, depending on p, for Si.(I', Zy)
such that each h; satisfies the three-term ASD congruence rela-
tions given by A,(j) and Bp(j).

For a congruence subgroup I', this is achieved by using Hecke
operators to further break the [-adic and p-adic spaces into pieces.
For a noncongruence I', no such tools are available.

Scholl representations, being motivic, should correspond to au-
tomorphic forms for reductive groups according to Langlands phi-
losophy. They are the link between the noncongruence and con-
oruence worlds.
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Modularity of Scholl representations when d =1

Scholl: the rep'n attached to S4(I'7 1 1) is modular, coming from
a newform of wt 4 for I'g(14); ditto for S4(I'y 3) and Sy(I'5 2).

Li-Long-Yang: True for wt 3 noncongruence forms assoc. with
K3 surfaces defined over Q.

In 2006 Kahre-Wintenberger established Serre’s conjecture on
modular representations. This leads to

Theorem If S.(I') is 1-dimensional, then the degree two I-
adic Scholl representations of Gal(Q/Q) are modular.

Therefore for Sp.(I') with dimension one, we have both ASD
congruences and modularity. Consequently, every f € Si.(I') with
algebraic Fourier coefficients satisfies three-term congruence rela-
tions with a wt k congruence form.
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Application: Characterizing noncongruence modular
forms

The following conjecture, supported by all known examples,
oives a simple characterization for noncongruence forms. If true,
it has wide applications.

Conjecture. A modular form in Sp.(I") with algebraic Fourier
coefficients has bounded denominators if and only if it is a con-
gruence modular form, i.e., lies in Si.(I'°).

Kurth-Long: quantitative confirmation for certain families of
noncongruence groups.

Theorem|L-Long 2012] The conjecture holds when Xt is de-

fined over Q, Si.(I') is 1-dim’l, and forms with Fourier coeffi-
cients 1n Q.
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Explicit examples of noncongruence groups and forms
Consider
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—2 -5
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I'N(5) is generated by v, 6§, AyA~, A6 A~! with one relation

Here A = < ) e TV(5), A2=—T.

(ASA N (AyA Yoy = 1.

Let ¢y, be the character of T''(5) given by

e On(7) = (n, a primitive n-th root of unity,

o pn(AyA™h) = ¢t and

® on(0) = Pn(ASAT) = 1.

I';, = the kernel of ¢y, is a normal subgroup of I''(5) of index n,

noncongruence if n # 5.
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The modular curve XF1(5) has a model over Q, of genus zero

and contains no elliptic points. Same for Xp . It is a degree n
cover over X (5) unramified everywhere except totally ramified

above the cusps oo and —2.
Take two weight 3 Eisenstein series for I'(5)
Ey(z) = 1-2¢"% = 6¢*° + 7¢%° + 26¢*° + - - |
Fo(z) = q1/5 — 7q2/5+ 194]3/5 —28q4/5+q+--- :

which vanish at all cusps except at the cusps oo and —2, resp.
Then | |
S3(I'n) =< (E1(2) Ex(2)" )" > 1<

is (n — 1)-dimensional.

Let pp, | be the attached [-adic Scholl representation.
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ASD congruences and modularity for d = 2

Theorem|L-Long-Yang, 2005, for I's]
(1) The space S3(1'3) has a basis consisting of 3-integral forms

filz) = q1/15j:2'q2/15 _ _q4/15$2_ 5/15
3 3

A s 1 ss 932 10715
97 9q BT

(2) (Modularity) There are two cuspidal newforms of weight 3
level 27 and character x_s5 given by
g+(2) = ¢ F3i¢> — 5¢* £ 3ig° + 5¢" £ 3ig° +
+9¢™ 4+ 15i¢" — 10¢" F 15i¢'* —
—11¢'° F18i¢! " — 16¢" F 15i¢*0 + - -

such that p3 1= pgy, 1 ® p, 1 over Qi(v—1).

18



(3) f+ satisfy the 3-term ASD congruences with Ay = ap(g+)
and By, = X_3(p)p? for all primes p > 5.

Here x_3 is the quadratic character attached to Q(v/—3).

Basis functions f+ indep. of p, best one can hope for.

Hoffman, Verrill and students: an index 3 subgp of I'o(8)N1I"1(4),
wt 3 forms, p = 7 @ 7 and 7 modular, one family of Ay, and B).
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ASD congruences and modularity for d = 3

e S3(I"4) has an explicit basis hy, ho, hg of 2-integral forms.
o[, Cl9oC F1(5) and S3(I'9y) =< hy >.

Theorem|L-Long-Yang, 2005, for '9]

The 2-dim’l Scholl representation py; attached to S3(I's) is
modular, isomorphic to pg, | attached to the cuspidal newform

go = 77(42)6. Consequently, ho satisfies the ASD congruences
with Ap = ap(gs) and By = p°.
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It remains to describe the ASD congruence on the space
< h1, hg >. Let

e 12
h(z) = ng(;()ﬂizp =1 +q—107+-) =Y ar(n)g"®,
n>1
f3(2) = n(2)’n(4z) = 31— 5 +5¢° + ) =) ag(n)g"/®,
n>1
fo() = 12 o1 sg s ) = N as(n)g"/®

2)°n(4z) =

(
fr(z) = (2 = ¢ B =g =+ ) = az(n)g"/®
n>1
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Theorem|Atkin-I.-Long, 2008] [ASD congruence for the space
< hy, h3 >]

1.

If p=1 mod 8, then both hy and hs satisfy the three-term
ASD congruence at p with Ay, = sgn(p)ai(p) and By = p?,

where sgn(p) = £1 = 2P~U/% mod p ;

Ifp=>5 mod 8, then hy (resp. h3) satisfies the three-term

ASD-congruence at p with A, = —4ias(p) (resp. Ap =
Yiaz(p)) and By = —p;

If p = 3 mod 8, then hy £ hs satisfy the three-term ASD
congruence at p with A, = F2v/—2a3(p) and By = —p?;

Afp =7 mod 8, then hy £ ih3 satisfy the three-term ASD

congruence at p given by Ap = £8v/—2a7(p) and By = —p2.

Here ay(p), as(p), as(p), a7(p) are given above.
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To describe the modularity of py j, let
[(2) = fi(2) + 4f5(2) + 2V=2f3() = 4f7(2)) = D_ a(m)g"’®.
n>1
f(8z) is a newform of level dividing 256, weight 3, and quadratic
character y_4 associated to Q(7).

Let K = Q(i,21/%) and x a character of Gal(K/Q(i)) of order
4. Denote by h(x) the associated (weight 1) cusp form.

Theorem|Atkin-L-Long, 2008][Modularity of ,0471}

The 0-dim’l Scholl rep’'n py decomposes over Qp into the
sum of pay (2-dim’l) and p_ ; (4-dim’l). Further, L(s,pa ;) =
L(s,g2) and L(s,p_ 1) = L(s, f x h(x)) (same local L-factors).

Prootf uses Faltings-Serre method.
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Representations with quaternion multiplication

Joint work with A.O.L. Atkin, T. Liu and L. Long

p; © a 4-dim’l Scholl representation of Gg = Gal(Q/Q) assoc.
to a 2-dim’l subspace S C Si(I).

Suppose p; has quaternion multiplication (QM) over Q(+/s, /1),

i.e., there are two operators Jg and Jy on p; RQ, Qy, parametrized
by two non-square integers s and ¢, satisfying

(a) J?2 = J? = —id, Jgt == JsJp = —JpJs;
(b) For u € {s,t} and g € Gg, we have Jyp)(g) = £pi(g)Ju,
with 4+ sign if and only if g € GalQ<\/@.

For I's, Scholl representations have QM over Q(1/s, v't) = Q(+/=3),
and for I'y, we have QM over Q(v/s, vt) = Q(v/—1,v2) = Q({).
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Theorem [Atkin-L-Liu-Long 2011] (Modularity)
(a) If Q(+/5, V1) is a quadratic extension, then over Q;(v/—1),

p; decomposes as a sum of two degree 2 representations assoc.
to two congruence forms of weight k.

(b) If Q(\/5,V/t) is biquadratic over Q, then for each u €
{s,t,st}, there is an automorphic form g, for G Ly over Q(y/u)
such that the L-functions attached to p; and g, agree locally
at all p. Consequently, L(s, p;) is automorphic.

L(s, p;) also agrees with the L-function of an automorphic form
of GL9 X GLoy over QQ, and hence also agrees with the L-function
of a form on GL,4 over Q by Ramakrishnan.

The proof uses descent and modern modularity criteria.
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Theorem |Atkin-I-Liu-Long 2011] (ASD congruences)

Assume Q(v/s, V) is biquadratic. Suppose that the QM op-
erators Jg and Jy arise from real algebraic linear combinations
of normalizers of I' so that they also act on the noncongru-
ence forms in S. For each u € {s,t,st}, let f,;, j = 1,2,
be linearly independent eigenfunctions of Jy. For almost all
primes p split in Q(\/u), Ju,j are p-adically integral basis of
S and the ASD congruences at p hold for f, ; with Ay, ; and
By, p.; coming from the two local factors

_ 96y —1 :
(1 o Au,p,]p ’ T Bu,p,]p S) ! J = 1’ 27
of L(s, gy) at the two places of Q(v/u) above p.

Note that the basis functions for ASD congruences depend on p
modulo the conductor of Q(y/5, V/1).
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A new example

Let T be an index-6 genus 0 subgroup of I''(6) whose modular

curve is totally ramified above the cusps oo and —2 of I'(6) and
unramified elsewhere. The subspace S = (F1, F5) C S3(I') has
an assoc. compatible family {py} of 4-dim’l Scholl subrep'ns. Here

_ p(6—j _ 1(22)°n(32)" _ n(2)*n(22)n(62)°
Fj=B6=PpF B = 737(,2’)37;7(62)9 and F = Z(%)Q .

Let Wo = (f :g) and ¢ = (é D

The rep'ns py and .S both admit QM by

1
J_o=CWy, J_g= %(26 —1I), Js=J_2J_3
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ASD congruences in general

Back to general Si.(I"), which has dimension d. Scholl represen-
tations p; are 2d-dimensional. For almost all p the characteristic
polynomial Hy,(T") of p;(Froby) has degree 2d. A representation
is called strongly ordinary at p if Hy,(T') has d roots which are
distinct p-adic units (and the remaining d roots are p]“ﬂ_1 times
units).

Scholl: ASD congruences at p hold if p; is strongly ordinary at p.

But if the representations are not ordinary at p, then the situ-
ation is quite different. Then the ASD congruences at p may or
may not hold. We exhibit an example computed by J. Kibelbek.
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Ex. X : y?=a+1, genus 2 curve defined over Q. By Belyi,
X =~ Xr for a finite index subgroup I' of SL9(Z). Put

dr dql/lo dr dql/lo

Then So(I') =< fi, fo >, where
fi =" an(f)g""

n>1
_ 1108 6710 108 1310, 768 16710 , 3374 o110
q =4 S A A A
fr="> an(fo)g""
n>1
_ q2/1o_Eq7/10+48 12/10 | 04 1710 | 724 2/10 ..

5 i TRl T
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The [-adic representations for wt 2 forms are the dual of the Tate
modules on the Jacobian of Xt.

For primes p = 2,3 mod 5, Hy(T) = T* + p? (not ordinary).

So(I") has no nonzero form satisfying the ASD congruences for
p=2,3 mod ).

However, if one adds weight 2 weakly holomorphic forms f3
and f4 from xQCQZ—g and xgg—z, then suitable linear combinations
of f1,..., f1 yield four linearly indep. forms satisfying two ASD

congruences of the desired form.
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Kazalicki and Scholl: Scholl congruences also hold for exact,
weakly holomorphic cusp forms for both congruence and noncon-
gruence subgroups.

Ex. S19(SLo(Z)) is 1-dim’l spanned by the normalized Ramanu-
jan T-function A(z) = n(2)%* = > n>17(n)q"

Ey(2)°/A(2) — 1464E,(2)° = +Zanq

= ¢! — 1422364 + 51123200q + 39826861650q3 TR

For every prime p > 11 and integers n > 1, its coefficients satisty
the congruence

anp — T(p)an + pnan/p =0 (mod ptlordn)y).
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