The Impact of Computing on Noncongruence Modular Forms

ANTS X, San Diego
July 10, 2012

Winnie Li
Pennsylvania State University, U.S.A. and
National Center for Theoretical Sciences, Taiwan

Modular forms

- A modular form is a holomorphic function on the Poincaré upper half-plane \mathfrak{H} with a lot of symmetries w.r.t. a finiteindex subgroup Γ of $S L_{2}(\mathbb{Z})$.
- It is called a congruence modular form if Γ is a congruence subgroup, otherwise it is called a noncongruence modular form.
- Congruence forms well-studied; noncongruence forms much less understood.

Modular curves

- The orbit space $\Gamma \backslash \mathfrak{H}^{*}$ is a Riemann surface, called the modular curve X_{Γ} for Γ. It has a model defined over a number field.
- The modular curves for congruence subgroups are defined over \mathbb{Q} or cyclotomic fields $\mathbb{Q}\left(\zeta_{N}\right)$.
- Belyi: Every smooth projective irreducible curve defined over a number field is isomorphic to a modular curve X_{Γ} (for infinitely many finite-index subgroups Γ of $S L_{2}(\mathbb{Z})$).
- $S L_{2}(\mathbb{Z})$ has far more noncongruence subgroups than congruence subgroups.

Modular forms for congruence subgroups

Let $g=\sum_{n \geq 1} a_{n}(g) q^{n}$, where $q=e^{2 \pi i z}$, be a normalized $\left(a_{1}(g)=1\right)$ newform of weight $k \geq 2$ level N and character χ.

I. Hecke theory

- It is an eigenfunction of the Hecke operators T_{p} with eigenvalue $a_{p}(g)$ for all primes $p \nmid N$, i.e., for all $n \geq 1$,

$$
a_{n p}(g)-a_{p}(g) a_{n}(g)+\chi(p) p^{k-1} a_{n / p}(g)=0 .
$$

- The space of weight k cusp forms for a congruence subgroup contains a basis of forms with algebraically integral Fourier coefficients. An algebraic cusp form has bounded denominators.

II. Galois representations

- (Eichler-Shimura, Deligne) There exists a compatible family of l-adic deg. 2 rep'ns $\rho_{g, l}$ of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ such that at primes $p \nmid l N$, the char. poly.

$$
H_{p}(T)=T^{2}-A_{p} T+B_{p}=T^{2}-a_{p}(g) T+\chi(p) p^{k-1}
$$

of $\rho_{g, l}\left(\operatorname{Frob}_{p}\right)$ is indep. of l, and

$$
a_{n p}(g)-A_{p} a_{n}(g)+B_{p} a_{n / p}(g)=0
$$

for $n \geq 1$ and primes $p \nmid l N$.

- Ramanujan-Petersson conjecture holds for newforms. That is, $\left|a_{p}(g)\right| \leq 2 p^{(k-1) / 2}$ for all primes $p \nmid N$.

Modular forms for noncongruence subgroups

Γ : a noncongruence subgroup of $S L_{2}(\mathbb{Z})$ with finite index $S_{k}(\Gamma)$: space of cusp forms of weight $k \geq 2$ for Γ of $\operatorname{dim} d$
A cusp form has an expansion in powers of $q^{1 / \mu}$.
Assume the modular curve X_{Γ} is defined over \mathbb{Q} and the cusp at infinity is \mathbb{Q}-rational.
Atkin and Swinnerton-Dyer: there exists a positive integer M such that $S_{k}(\Gamma)$ has a basis consisting of forms with coeffs. integral outside M (called M-integral) :

$$
f(z)=\sum_{n \geq 1} a_{n}(f) q^{n / \mu}
$$

No efficient Hecke operators on noncongruence forms

- Let Γ^{c} be the smallest congruence subgroup containing Γ. Naturally, $S_{k}\left(\Gamma^{c}\right) \subset S_{k}(\Gamma)$.
- $\operatorname{Tr}_{\Gamma}^{\Gamma^{c}}: S_{k}(\Gamma) \rightarrow S_{k}\left(\Gamma^{c}\right)$ such that $S_{k}(\Gamma)=S_{k}\left(\Gamma^{c}\right) \oplus \operatorname{ker}\left(\operatorname{Tr}_{\Gamma}^{\Gamma^{c}}\right)$.
- $\operatorname{ker}\left(\operatorname{Tr}_{\Gamma}^{\Gamma^{c}}\right)$ consists of genuinely noncongruence forms in $S_{k}(\Gamma)$.

Conjecture (Atkin). The Hecke operators on $S_{k}(\Gamma)$ for $p \nmid M$ defined using double cosets as for congruence forms is zero on genuinely noncongruence forms in $S_{k}(\Gamma)$.
This was proved by Serre, Berger.

Atkin and Swinnerton-Dyer congruences

Let E be an elliptic curve defined over \mathbb{Q} with conductor M. By Belyi, $E \simeq X_{\Gamma}$ for a finite index subgroup Γ of $S L_{2}(\mathbb{Z})$. Eg. $E: x^{3}+y^{3}=z^{3}, \Gamma$ is an index- 9 noncongruence subgp of $\Gamma(2)$.

Atkin and Swinnerton-Dyer: The normalized holomorphic differential 1-form $f \frac{d q}{q}=\sum_{n \geq 1} a_{n} q^{n} \frac{d q}{q}$ on E satisfies the congruence relation

$$
a_{n p}-\left[p+1-\# E\left(\mathbb{F}_{p}\right)\right] a_{n}+p a_{n / p} \equiv 0 \quad \bmod p^{1+\operatorname{ord}_{p} n}
$$

for all primes $p \nmid M$ and all $n \geq 1$.
Note that $f \in S_{2}(\Gamma)$.
Taniyama-Shimura modularity theorem: There is a normalized congruence newform $g=\sum_{n \geq 1} b_{n} q^{n}$ with $b_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)$. This gives congruence relations between f and g.

Back to general case where X_{Γ} has a model over \mathbb{Q}, and the d-dim'l space $S_{k}(\Gamma)$ has a basis of M-integral forms.
ASD congruences (1971): for each prime $p \nmid M, S_{k}\left(\Gamma, \mathbb{Z}_{p}\right)$ has a p-adic basis $\left\{h_{j}\right\}_{1 \leq j \leq d}$ such that the Fourier coefficients of h_{j} satisfy a three-term congruence relation
$a_{n p}\left(h_{j}\right)-A_{p}(j) a_{n}\left(h_{j}\right)+B_{p}(j) a_{n / p}\left(h_{j}\right) \equiv 0 \quad \bmod p^{(k-1)\left(1+\operatorname{ord}_{p} n\right)}$ for all $n \geq 1$. Here

- $A_{p}(j)$ is an algebraic integer with $\left|A_{p}(j)\right| \leq 2 p^{(k-1) / 2}$, and
- $B_{p}(j)$ is equal to p^{k-1} times a root of unity.

This is proved to hold for $k=2$ and $d=1$ by ASD.
The basis varies with p in general.

Galois representations attached to $S_{k}(\Gamma)$ and congruences

Theorem[Scholl] Suppose that the modular curve X_{Γ} has a model over \mathbb{Q}. Attached to $S_{k}(\Gamma)$ is a compatible family of $2 d$-dim'l l-adic rep'ns ρ_{l} of $\operatorname{Gal}(\mathbb{Q} / \mathbb{Q})$ unramified outside $l M$ such that for primes $p>k+1$ not dividing Ml, the following hold.
(i) The char. polynomial

$$
H_{p}(T)=T^{2 d}+C_{1}(p) T^{2 d-1}+\cdots+C_{2 d-1}(p) T+C_{2 d}(p)
$$

of $\rho_{l}\left(\mathrm{Frob}_{p}\right)$ lies in $\mathbb{Z}[T]$, is indep. of l, and its roots are algebraic integers with complex absolute value $p^{(k-1) / 2}$;
(ii) For any form f in $S_{k}(\Gamma)$ integral outside M, its Fourier coeffs satisfy the $(2 d+1)$-term congruence relation

$$
\begin{aligned}
& a_{n p^{d}}(f)+C_{1}(p) a_{n p^{d-1}}(f)+\cdots+ \\
& +C_{2 d-1}(p) a_{n / p^{d-1}}(f)+C_{2 d}(p) a_{n / p^{d}}(f) \\
& \equiv 0 \quad \bmod p^{(k-1)\left(1+\operatorname{ord}_{p} n\right)}
\end{aligned}
$$

for $n \geq 1$.
The Scholl rep'ns ρ_{l} are generalizations of Deligne's construction to the noncongruence case. The congruence in (ii) follows from comparing l-adic theory to an analogous p-adic de Rham/crystalline theory; the action of $F r o b_{p}$ on both sides have the same characteristic polynomials.
Scholl's theorem establishes the ASD congruences if $d=1$.

In general, to go from Scholl congruences to ASD congruences, ideally one hopes to factor

$$
H_{p}(T)=\prod_{1 \leq j \leq d}\left(T^{2}-A_{p}(j) T+B_{p}(j)\right)
$$

and find a p-adic basis $\left\{h_{j}\right\}_{1 \leq j \leq d}$, depending on p, for $S_{k}\left(\Gamma, \mathbb{Z}_{p}\right)$ such that each h_{j} satisfies the three-term ASD congruence relations given by $A_{p}(j)$ and $B_{p}(j)$.
For a congruence subgroup Γ, this is achieved by using Hecke operators to further break the l-adic and p-adic spaces into pieces. For a noncongruence Γ, no such tools are available.
Scholl representations, being motivic, should correspond to automorphic forms for reductive groups according to Langlands philosophy. They are the link between the noncongruence and congruence worlds.

Modularity of Scholl representations when $d=1$

Scholl: the rep'n attached to $S_{4}\left(\Gamma_{7,1,1}\right)$ is modular, coming from a newform of wt 4 for $\Gamma_{0}(14)$; ditto for $S_{4}\left(\Gamma_{4,3}\right)$ and $S_{4}\left(\Gamma_{5,2}\right)$.
Li-Long-Yang: True for wt 3 noncongruence forms assoc. with K3 surfaces defined over \mathbb{Q}.

In 2006 Kahre-Wintenberger established Serre's conjecture on modular representations. This leads to

Theorem If $S_{k}(\Gamma)$ is 1-dimensional, then the degree two l adic Scholl representations of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are modular.

Therefore for $S_{k}(\Gamma)$ with dimension one, we have both ASD congruences and modularity. Consequently, every $f \in S_{k}(\Gamma)$ with algebraic Fourier coefficients satisfies three-term congruence relations with a wt k congruence form.

Application: Characterizing noncongruence modular forms

The following conjecture, supported by all known examples, gives a simple characterization for noncongruence forms. If true, it has wide applications.

Conjecture. A modular form in $S_{k}(\Gamma)$ with algebraic Fourier coefficients has bounded denominators if and only if it is a congruence modular form, i.e., lies in $S_{k}\left(\Gamma^{c}\right)$.
Kurth-Long: quantitative confirmation for certain families of noncongruence groups.
Theorem[L-Long 2012] The conjecture holds when X_{Γ} is defined over $\mathbb{Q}, S_{k}(\Gamma)$ is 1-dim'l, and forms with Fourier coefficients in \mathbb{Q}.

Explicit examples of noncongruence groups and forms

Consider

$$
\begin{array}{rlr}
\Gamma^{1}(5)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
* & 1
\end{array}\right) \quad \bmod 5\right\} \triangleleft \Gamma^{0}(5) . \\
\begin{aligned}
\text { cusps of } \pm \Gamma^{1}(5) & \text { generators of stabilizers }
\end{aligned} \\
\hline \infty & \gamma & =\left(\begin{array}{ll}
1 & 5 \\
0 & 1
\end{array}\right)
\end{array} 土\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right), ~\left(\begin{array}{cc}
11 & 20 \\
-5 & -9
\end{array}\right) .
$$

Here $A=\left(\begin{array}{cc}-2 & -5 \\ 1 & 2\end{array}\right) \in \Gamma^{0}(5), A^{2}=-I$.
$\Gamma^{1}(5)$ is generated by $\gamma, \delta, A \gamma A^{-1}, A \delta A^{-1}$ with one relation

$$
\left(A \delta A^{-1}\right)\left(A \gamma A^{-1}\right) \delta \gamma=I
$$

Let ϕ_{n} be the character of $\Gamma^{1}(5)$ given by

- $\phi_{n}(\gamma)=\zeta_{n}$, a primitive n-th root of unity,
- $\phi_{n}\left(A \gamma A^{-1}\right)=\zeta_{n}^{-1}$, and
- $\phi_{n}(\delta)=\phi_{n}\left(A \delta A^{-1}\right)=1$.
$\Gamma_{n}=$ the kernel of ϕ_{n} is a normal subgroup of $\Gamma^{1}(5)$ of index n, noncongruence if $n \neq 5$.

The modular curve $X_{\Gamma^{1}(5)}$ has a model over \mathbb{Q}, of genus zero and contains no elliptic points. Same for $X_{\Gamma_{n}}$. It is a degree n cover over $X_{\Gamma^{1}(5)}$ unramified everywhere except totally ramified above the cusps ∞ and -2 .

Take two weight 3 Eisenstein series for $\Gamma^{1}(5)$

$$
\begin{aligned}
& E_{1}(z)=1-2 q^{1 / 5}-6 q^{2 / 5}+7 q^{3 / 5}+26 q^{4 / 5}+\cdots \\
& E_{2}(z)=q^{1 / 5}-7 q^{2 / 5}+19 q^{3 / 5}-23 q^{4 / 5}+q+\cdots
\end{aligned}
$$

which vanish at all cusps except at the cusps ∞ and -2 , resp. Then

$$
S_{3}\left(\Gamma_{n}\right)=<\left(E_{1}(z)^{j} E_{2}(z)^{n-j}\right)^{1 / n}>_{1 \leq j \leq n-1}
$$

is $(n-1)$-dimensional.
Let $\rho_{n, l}$ be the attached l-adic Scholl representation.

ASD congruences and modularity for $d=2$
Theorem[L-Long-Yang, 2005, for Γ_{3}]
(1) The space $S_{3}\left(\Gamma_{3}\right)$ has a basis consisting of 3-integral forms

$$
\begin{aligned}
f_{ \pm}(z)= & q^{1 / 15} \pm i q^{2 / 15}-\frac{11}{3} q^{4 / 15} \mp i \frac{16}{3} q^{5 / 15}- \\
& -\frac{4}{9} q^{7 / 15} \pm i \frac{71}{9} q^{8 / 15}+\frac{932}{81} q^{10 / 15}+\cdots
\end{aligned}
$$

(2) (Modularity) There are two cuspidal newforms of weight 3 level 27 and character χ_{-3} given by

$$
\begin{aligned}
g_{ \pm}(z)= & q \mp 3 i q^{2}-5 q^{4} \pm 3 i q^{5}+5 q^{7} \pm 3 i q^{8}+ \\
& +9 q^{10} \pm 15 i q^{11}-10 q^{13} \mp 15 i q^{14}- \\
& -11 q^{16} \mp 18 i q^{17}-16 q^{19} \mp 15 i q^{20}+\cdots
\end{aligned}
$$

such that $\rho_{3, l}=\rho_{g_{+}, l} \oplus \rho_{g_{-}, l}$ over $\mathbb{Q}_{l}(\sqrt{-1})$.
(3) $f_{ \pm}$satisfy the 3-term ASD congruences with $A_{p}=a_{p}\left(g_{ \pm}\right)$ and $B_{p}=\chi_{-3}(p) p^{2}$ for all primes $p \geq 5$.

Here χ_{-3} is the quadratic character attached to $\mathbb{Q}(\sqrt{-3})$.
Basis functions $f_{ \pm}$indep. of p, best one can hope for.
Hoffman, Verrill and students: an index 3 subgp of $\Gamma_{0}(8) \cap \Gamma_{1}(4)$, wt 3 forms, $\rho=\tau \oplus \tau$ and τ modular, one family of A_{p} and B_{p}.

ASD congruences and modularity for $d=3$

- $S_{3}\left(\Gamma_{4}\right)$ has an explicit basis h_{1}, h_{2}, h_{3} of 2-integral forms.
- $\Gamma_{4} \subset \Gamma_{2} \subset \Gamma^{1}(5)$ and $S_{3}\left(\Gamma_{2}\right)=<h_{2}>$.

Theorem[L-Long-Yang, 2005, for Γ_{2}]
The 2-dim'l Scholl representation $\rho_{2, l}$ attached to $S_{3}\left(\Gamma_{2}\right)$ is modular, isomorphic to $\rho_{g_{2}, l}$ attached to the cuspidal newform $g_{2}=\eta(4 z)^{6}$. Consequently, h_{2} satisfies the $A S D$ congruences with $A_{p}=a_{p}\left(g_{2}\right)$ and $B_{p}=p^{2}$.

It remains to describe the ASD congruence on the space $<h_{1}, h_{3}>$. Let

$$
\begin{aligned}
& f_{1}(z)=\frac{\eta(2 z)^{12}}{\eta(z) \eta(4 z)^{5}}=q^{1 / 8}\left(1+q-10 q^{2}+\cdots\right)=\sum_{n \geq 1} a_{1}(n) q^{n / 8} \\
& f_{3}(z)=\eta(z)^{5} \eta(4 z)=q^{3 / 8}\left(1-5 q+5 q^{2}+\cdots\right)=\sum_{n \geq 1} a_{3}(n) q^{n / 8} \\
& f_{5}(z)=\frac{\eta(2 z)^{12}}{\eta(z)^{5} \eta(4 z)}=q^{5 / 8}\left(1+5 q+8 q^{2}+\cdots\right)=\sum_{n \geq 1} a_{5}(n) q^{n / 8} \\
& f_{7}(z)=\eta(z) \eta(4 z)^{5}=q^{7 / 8}\left(1-q-q^{2}+\cdots\right)=\sum_{n \geq 1} a_{7}(n) q^{n / 8}
\end{aligned}
$$

Theorem[Atkin-L-Long, 2008] [ASD congruence for the space
$<h_{1}, h_{3}>$]

1. If $p \equiv 1 \bmod 8$, then both h_{1} and h_{3} satisfy the three-term ASD congruence at p with $A_{p}=\operatorname{sgn}(p) a_{1}(p)$ and $B_{p}=p^{2}$, where $\operatorname{sgn}(p)= \pm 1 \equiv 2^{(p-1) / 4} \bmod p$;
2. If $p \equiv 5 \bmod 8$, then h_{1} (resp. h_{3}) satisfies the three-term ASD-congruence at p with $A_{p}=-4 i a_{5}(p)$ (resp. $A_{p}=$ $\left.4 i a_{5}(p)\right)$ and $B_{p}=-p^{2}$;
3. If $p \equiv 3 \bmod 8$, then $h_{1} \pm h_{3}$ satisfy the three-term $A S D$ congruence at p with $A_{p}=\mp 2 \sqrt{-2} a_{3}(p)$ and $B_{p}=-p^{2}$;
4. If $p \equiv 7 \bmod 8$, then $h_{1} \pm i h_{3}$ satisfy the three-term $A S D$ congruence at p given by $A_{p}= \pm 8 \sqrt{-2} a_{7}(p)$ and $B_{p}=-p^{2}$. Here $a_{1}(p), a_{3}(p), a_{5}(p), a_{7}(p)$ are given above.

To describe the modularity of $\rho_{4, l}$, let

$$
f(z)=f_{1}(z)+4 f_{5}(z)+2 \sqrt{-2}\left(f_{3}(z)-4 f_{7}(z)\right)=\sum_{n \geq 1} a(n) q^{n / 8}
$$

$f(8 z)$ is a newform of level dividing 256 , weight 3 , and quadratic character χ_{-4} associated to $\mathbb{Q}(i)$.
Let $K=\mathbb{Q}\left(i, 2^{1 / 4}\right)$ and χ a character of $\operatorname{Gal}(K / \mathbb{Q}(i))$ of order 4. Denote by $h(\chi)$ the associated (weight 1) cusp form.

Theorem[Atkin-L-Long, 2008][Modularity of $\rho_{4, l}$]
The 6-dim'l Scholl rep'n $\rho_{4, l}$ decomposes over \mathbb{Q}_{l} into the sum of $\rho_{2, l}$ (2-dim'l) and $\rho_{-, l}$ (4-dim'l). Further, $L\left(s, \rho_{2, l}\right)=$ $L\left(s, g_{2}\right)$ and $L\left(s, \rho_{-, l}\right)=L(s, f \times h(\chi))$ (same local L-factors).

Proof uses Faltings-Serre method.

Representations with quaternion multiplication

Joint work with A.O.L. Atkin, T. Liu and L. Long
$\rho_{l}:$ a 4-dim'l Scholl representation of $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ assoc. to a 2-dim'l subspace $S \subset S_{k}(\Gamma)$.
Suppose ρ_{l} has quaternion multiplication (QM) over $\mathbb{Q}(\sqrt{s}, \sqrt{t})$, i.e., there are two operators J_{s} and J_{t} on $\rho_{l} \otimes_{\mathbb{Q}_{l}} \overline{\mathbb{Q}}_{l}$, parametrized by two non-square integers s and t, satisfying
(a) $J_{s}^{2}=J_{t}^{2}=-i d, J_{s t}:=J_{s} J_{t}=-J_{t} J_{s}$;
(b) For $u \in\{s, t\}$ and $g \in G_{\mathbb{Q}}$, we have $J_{u} \rho_{l}(g)= \pm \rho_{l}(g) J_{u}$, with $+\operatorname{sign}$ if and only if $g \in \operatorname{Gal}_{\mathbb{Q}(\sqrt{u})}$.
For Γ_{3}, Scholl representations have QM over $\mathbb{Q}(\sqrt{s}, \sqrt{t})=\mathbb{Q}(\sqrt{-3})$, and for Γ_{4}, we have QM over $\mathbb{Q}(\sqrt{s}, \sqrt{t})=\mathbb{Q}(\sqrt{-1}, \sqrt{2})=\mathbb{Q}\left(\zeta_{8}\right)$.

Theorem [Atkin-L-Liu-Long 2011] (Modularity)
(a) If $\mathbb{Q}(\sqrt{s}, \sqrt{t})$ is a quadratic extension, then over $\mathbb{Q}_{l}(\sqrt{-1})$, ρ_{l} decomposes as a sum of two degree 2 representations assoc. to two congruence forms of weight k.
(b) If $\mathbb{Q}(\sqrt{s}, \sqrt{t})$ is biquadratic over \mathbb{Q}, then for each $u \in$ $\{s, t, s t\}$, there is an automorphic form g_{u} for $G L_{2} \operatorname{over} \mathbb{Q}(\sqrt{u})$ such that the L-functions attached to ρ_{l} and g_{u} agree locally at all p. Consequently, $L\left(s, \rho_{l}\right)$ is automorphic.
$L\left(s, \rho_{l}\right)$ also agrees with the L-function of an automorphic form of $G L_{2} \times G L_{2}$ over \mathbb{Q}, and hence also agrees with the L-function of a form on $G L_{4}$ over \mathbb{Q} by Ramakrishnan.

The proof uses descent and modern modularity criteria.

Theorem [Atkin-L-Liu-Long 2011] (ASD congruences)
Assume $\mathbb{Q}(\sqrt{s}, \sqrt{t})$ is biquadratic. Suppose that the $Q M$ operators J_{s} and J_{t} arise from real algebraic linear combinations of normalizers of Γ so that they also act on the noncongruence forms in S. For each $u \in\{s, t, s t\}$, let $f_{u, j}, j=1,2$, be linearly independent eigenfunctions of J_{u}. For almost all primes p split in $\mathbb{Q}(\sqrt{u}), f_{u, j}$ are p-adically integral basis of S and the $A S D$ congruences at p hold for $f_{u, j}$ with $A_{u, p, j}$ and $B_{u, p, j}$ coming from the two local factors

$$
\left(1-A_{u, p, j} p^{-s}+B_{u, p, j} p^{-2 s}\right)^{-1}, \quad j=1,2
$$

of $L\left(s, g_{u}\right)$ at the two places of $\mathbb{Q}(\sqrt{u})$ above p.
Note that the basis functions for ASD congruences depend on p modulo the conductor of $\mathbb{Q}(\sqrt{s}, \sqrt{t})$.

A new example

Let Γ be an index- 6 genus 0 subgroup of $\Gamma^{1}(6)$ whose modular curve is totally ramified above the cusps ∞ and -2 of $\Gamma^{1}(6)$ and unramified elsewhere. The subspace $S=\left\langle F_{1}, F_{5}\right\rangle \subset S_{3}(\Gamma)$ has an assoc. compatible family $\left\{\rho_{\ell}\right\}$ of 4 -dim'l Scholl subrep'ns. Here

$$
\begin{aligned}
& F_{j}=B^{(6-j) / 5} F, B=\frac{\eta(2 z)^{3} \eta(3 z)^{9}}{\eta(z)^{3} \eta(6 z)^{9}} \text { and } F=\frac{\eta(z)^{4} \eta(2 z) \eta(6 z)^{5}}{\eta(3 z)^{4}} . \\
& \text { Let } W_{2}=\left(\begin{array}{ll}
2 & -6 \\
1 & -2
\end{array}\right) \text { and } \zeta=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

The rep'ns ρ_{ℓ} and S both admit QM by

$$
J_{-2}=\zeta W_{2}, \quad J_{-3}=\frac{1}{\sqrt{3}}(2 \zeta-I), \quad J_{6}=J_{-2} J_{-3}
$$

ASD congruences in general

Back to general $S_{k}(\Gamma)$, which has dimension d. Scholl representations ρ_{l} are $2 d$-dimensional. For almost all p the characteristic polynomial $H_{p}(T)$ of $\rho_{l}\left(\right.$ Frob $\left._{p}\right)$ has degree $2 d$. A representation is called strongly ordinary at p if $H_{p}(T)$ has d roots which are distinct p-adic units (and the remaining d roots are p^{k-1} times units).

Scholl: ASD congruences at p hold if ρ_{l} is strongly ordinary at p.
But if the representations are not ordinary at p, then the situation is quite different. Then the ASD congruences at p may or may not hold. We exhibit an example computed by J. Kibelbek.

Ex. $X: y^{2}=x^{5}+1$, genus 2 curve defined over \mathbb{Q}. By Belyi, $X \simeq X_{\Gamma}$ for a finite index subgroup Γ of $S L_{2}(\mathbb{Z})$. Put

$$
\begin{aligned}
& \qquad \omega_{1}=x \frac{d x}{2 y}=f_{1} \frac{d q^{1 / 10}}{q^{1 / 10}}, \quad \omega_{2}=\frac{d x}{2 y}=f_{2} \frac{d q^{1 / 10}}{q^{1 / 10}} \\
& \text { Then } S_{2}(\Gamma)=<f_{1}, f_{2}>\text {, where } \\
& f_{1}=\sum_{n \geq 1} a_{n}\left(f_{1}\right) q^{n / 10} \\
& =q^{1 / 10}-\frac{8}{5} q^{6 / 10}-\frac{108}{5^{2}} q^{11 / 10}+\frac{768}{5^{3}} q^{16 / 10}+\frac{3374}{5^{4}} q^{21 / 10}+\cdots, \\
& f_{2}=\sum_{n \geq 1} a_{n}\left(f_{2}\right) q^{n / 10} \\
& =q^{2 / 10}-\frac{16}{5} q^{7 / 10}+\frac{48}{5^{2}} q^{12 / 10}+\frac{64}{5^{3}} q^{17 / 10}+\frac{724}{5^{4}} q^{22 / 10}+\cdots
\end{aligned}
$$

The l-adic representations for wt 2 forms are the dual of the Tate modules on the Jacobian of X_{Γ}.
For primes $p \equiv 2,3 \bmod 5, H_{p}(T)=T^{4}+p^{2}($ not ordinary $)$.
$S_{2}(\Gamma)$ has no nonzero form satisfying the ASD congruences for $p \equiv 2,3 \bmod 5$.

However, if one adds weight 2 weakly holomorphic forms f_{3} and f_{4} from $x^{2} \frac{d x}{2 y}$ and $x^{3} \frac{d x}{2 y}$, then suitable linear combinations of f_{1}, \ldots, f_{4} yield four linearly indep. forms satisfying two ASD congruences of the desired form.

Kazalicki and Scholl: Scholl congruences also hold for exact, weakly holomorphic cusp forms for both congruence and noncongruence subgroups.

Ex. $S_{12}\left(S L_{2}(\mathbb{Z})\right)$ is 1-dim'l spanned by the normalized Ramanujan τ-function $\Delta(z)=\eta(z)^{24}=\sum_{n \geq 1} \tau(n) q^{n}$.

$$
\begin{aligned}
& E_{4}(z)^{6} / \Delta(z)-1464 E_{4}(z)^{3}=q^{-1}+\sum_{n=1}^{\infty} a_{n} q^{n} \\
&=q^{-1}-142236 q+51123200 q^{2}+39826861650 q^{3}+\cdots
\end{aligned}
$$

For every prime $p \geq 11$ and integers $n \geq 1$, its coefficients satisfy the congruence

$$
a_{n p}-\tau(p) a_{n}+p^{11} a_{n / p} \equiv 0 \quad\left(\bmod p^{11\left(\operatorname{ord}_{p} n\right)}\right)
$$

References

1. A. O. L. Atkin, W.-C. W. Li, and L. Long, On Atkin and Swinnerton-Dyer congruence relations (2), Math. Ann. 340 (2008), no. 2, 335-358.
2. A. O. L. Atkin, W.-C. W. Li, T. Liu, and L. Long, Galois representations with quaternion multiplications associated to noncongruence modular forms, submitted.
3. A. O. L. Atkin and H. P. F. Swinnerton-Dyer, Modular forms on noncongruence subgroups, Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1971, pp. 1-25.
4. J. Kibelbek, On Atkin and Swinnerton-Dyer congruence relations for noncongruence subgroups, Proc. Amer. Math. Soc., to appear.
5. W.-C. W. Li, The arithmetic of noncongruence modular forms. Fifth International Congress of Chinese Mathematicians (ICCM 2010), Part I, AMS/IP Studies in Advanced Mathematics, vol. 51 (2012), 253-268.
6. W.-C. W. Li and L. Long, Fourier coefficients of noncongruence cuspforms, Bull. London Math. Soc. 44 (2012), 591-598.
7. W.-C. W. Li, L. Long, and Z. Yang, On Atkin and SwinnertonDyer congruence relations, J. of Number Theory 113 (2005), no. 1, 117-148.
8. A. J. Scholl, Modular forms and de Rham cohomology; Atkin-Swinnerton-Dyer congruences. Invent. Math. 79 (1985), no. 1, 49-77.
