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Modular forms

• A modular form is a holomorphic function on the Poincaré
upper half-plane H with a lot of symmetries w.r.t. a finite-
index subgroup Γ of SL2(Z).

• It is called a congruence modular form if Γ is a congruence
subgroup, otherwise it is called a noncongruence modular form.

• Congruence forms well-studied; noncongruence forms much less
understood.
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Modular curves

• The orbit space Γ\H∗ is a Riemann surface, called the modular
curve XΓ for Γ. It has a model defined over a number field.

• The modular curves for congruence subgroups are defined over
Q or cyclotomic fields Q(ζN ).

• Belyi: Every smooth projective irreducible curve defined over a
number field is isomorphic to a modular curve XΓ (for infinitely
many finite-index subgroups Γ of SL2(Z)).

• SL2(Z) has far more noncongruence subgroups than congru-
ence subgroups.
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Modular forms for congruence subgroups

Let g =
∑
n≥1 an(g)qn, where q = e2πiz, be a normalized

(a1(g) = 1) newform of weight k ≥ 2 level N and character
χ.

I. Hecke theory

• It is an eigenfunction of the Hecke operators Tp with eigenvalue
ap(g) for all primes p - N , i.e., for all n ≥ 1,

anp(g)− ap(g)an(g) + χ(p)pk−1an/p(g) = 0.

• The space of weight k cusp forms for a congruence subgroup
contains a basis of forms with algebraically integral Fourier co-
efficients. An algebraic cusp form has bounded denominators.
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II. Galois representations

• (Eichler-Shimura, Deligne) There exists a compatible family
of l-adic deg. 2 rep’ns ρg,l of Gal(Q̄/Q) such that at primes
p - lN , the char. poly.

Hp(T ) = T 2 − ApT + Bp = T 2 − ap(g)T + χ(p)pk−1

of ρg,l(Frobp) is indep. of l, and

anp(g)− Ap an(g) + Bp an/p(g) = 0

for n ≥ 1 and primes p - lN .

• Ramanujan-Petersson conjecture holds for newforms. That is,
|ap(g)| ≤ 2p(k−1)/2 for all primes p - N .
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Modular forms for noncongruence subgroups

Γ : a noncongruence subgroup of SL2(Z) with finite index

Sk(Γ) : space of cusp forms of weight k ≥ 2 for Γ of dim d

A cusp form has an expansion in powers of q1/µ.

Assume the modular curve XΓ is defined over Q and the cusp
at infinity is Q-rational.

Atkin and Swinnerton-Dyer: there exists a positive integer M
such that Sk(Γ) has a basis consisting of forms with coeffs. integral
outside M (called M -integral) :

f (z) =
∑
n≥1

an(f )qn/µ.
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No efficient Hecke operators on noncongruence forms

• Let Γc be the smallest congruence subgroup containing Γ.

Naturally, Sk(Γc) ⊂ Sk(Γ).

• TrΓc
Γ : Sk(Γ)→ Sk(Γc) such that Sk(Γ) = Sk(Γc)⊕ker(TrΓc

Γ ).

• ker(TrΓc
Γ ) consists of genuinely noncongruence forms in Sk(Γ).

Conjecture (Atkin). The Hecke operators on Sk(Γ) for p - M
defined using double cosets as for congruence forms is zero on
genuinely noncongruence forms in Sk(Γ).

This was proved by Serre, Berger.
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Atkin and Swinnerton-Dyer congruences

Let E be an elliptic curve defined over Q with conductor M .
By Belyi, E ' XΓ for a finite index subgroup Γ of SL2(Z). Eg.
E : x3 + y3 = z3, Γ is an index-9 noncongruence subgp of Γ(2).

Atkin and Swinnerton-Dyer: The normalized holomorphic differ-

ential 1-form f dqq =
∑
n≥1 anq

ndq
q on E satisfies the congruence

relation

anp − [p + 1−#E(Fp)]an + pan/p ≡ 0 mod p1+ordpn

for all primes p - M and all n ≥ 1.

Note that f ∈ S2(Γ).
Taniyama-Shimura modularity theorem: There is a normalized

congruence newform g =
∑
n≥1 bnq

n with bp = p+ 1−#E(Fp).
This gives congruence relations between f and g.
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Back to general case where XΓ has a model over Q, and the
d-dim’l space Sk(Γ) has a basis of M -integral forms.

ASD congruences (1971): for each prime p - M , Sk(Γ,Zp)
has a p-adic basis {hj}1≤j≤d such that the Fourier coefficients of
hj satisfy a three-term congruence relation

anp(hj)− Ap(j)an(hj) + Bp(j)an/p(hj) ≡ 0 mod p(k−1)(1+ordpn)

for all n ≥ 1. Here

• Ap(j) is an algebraic integer with |Ap(j)| ≤ 2p(k−1)/2, and

• Bp(j) is equal to pk−1 times a root of unity.

This is proved to hold for k = 2 and d = 1 by ASD.

The basis varies with p in general.
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Galois representations attached to Sk(Γ) and congru-
ences

Theorem[Scholl] Suppose that the modular curve XΓ has a
model over Q. Attached to Sk(Γ) is a compatible family of
2d-dim’l l-adic rep’ns ρl of Gal(Q̄/Q) unramified outside lM
such that for primes p > k + 1 not dividing Ml, the following
hold.

(i) The char. polynomial

Hp(T ) = T 2d + C1(p)T 2d−1 + · · · + C2d−1(p)T + C2d(p)

of ρl(Frobp) lies in Z[T ], is indep. of l, and its roots are alge-

braic integers with complex absolute value p(k−1)/2;
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(ii) For any form f in Sk(Γ) integral outside M , its Fourier
coeffs satisfy the (2d + 1)-term congruence relation

anpd(f ) + C1(p)anpd−1(f ) + · · ·+
+ C2d−1(p)an/pd−1(f ) + C2d(p)an/pd(f )

≡ 0 mod p(k−1)(1+ordpn)

for n ≥ 1.

The Scholl rep’ns ρl are generalizations of Deligne’s construction
to the noncongruence case. The congruence in (ii) follows from
comparing l-adic theory to an analogous p-adic de Rham/crystalline
theory; the action of Frobp on both sides have the same charac-
teristic polynomials.

Scholl’s theorem establishes the ASD congruences if d = 1.
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In general, to go from Scholl congruences to ASD congruences,
ideally one hopes to factor

Hp(T ) =
∏

1≤j≤d
(T 2 − Ap(j)T + Bp(j))

and find a p-adic basis {hj}1≤j≤d, depending on p, for Sk(Γ,Zp)
such that each hj satisfies the three-term ASD congruence rela-
tions given by Ap(j) and Bp(j).

For a congruence subgroup Γ, this is achieved by using Hecke
operators to further break the l-adic and p-adic spaces into pieces.
For a noncongruence Γ, no such tools are available.

Scholl representations, being motivic, should correspond to au-
tomorphic forms for reductive groups according to Langlands phi-
losophy. They are the link between the noncongruence and con-
gruence worlds.
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Modularity of Scholl representations when d = 1

Scholl: the rep’n attached to S4(Γ7,1,1) is modular, coming from
a newform of wt 4 for Γ0(14); ditto for S4(Γ4,3) and S4(Γ5,2).

Li-Long-Yang: True for wt 3 noncongruence forms assoc. with
K3 surfaces defined over Q.

In 2006 Kahre-Wintenberger established Serre’s conjecture on
modular representations. This leads to

Theorem If Sk(Γ) is 1-dimensional, then the degree two l-
adic Scholl representations of Gal(Q̄/Q) are modular.

Therefore for Sk(Γ) with dimension one, we have both ASD
congruences and modularity. Consequently, every f ∈ Sk(Γ) with
algebraic Fourier coefficients satisfies three-term congruence rela-
tions with a wt k congruence form.
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Application: Characterizing noncongruence modular
forms

The following conjecture, supported by all known examples,
gives a simple characterization for noncongruence forms. If true,
it has wide applications.

Conjecture. A modular form in Sk(Γ) with algebraic Fourier
coefficients has bounded denominators if and only if it is a con-
gruence modular form, i.e., lies in Sk(Γc).

Kurth-Long: quantitative confirmation for certain families of
noncongruence groups.

Theorem[L-Long 2012] The conjecture holds when XΓ is de-
fined over Q, Sk(Γ) is 1-dim’l, and forms with Fourier coeffi-
cients in Q.
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Explicit examples of noncongruence groups and forms

Consider

Γ1(5) =

{(
a b
c d

)
≡
(

1 0
∗ 1

)
mod 5

}
C Γ0(5).

cusps of ±Γ1(5) generators of stabilizers

∞ γ =

(
1 5
0 1

)
0 δ =

(
1 0
−1 1

)
−2 AγA−1 =

(
11 20
−5 −9

)
−5

2 AδA−1 =

(
11 25
−4 −9

)
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Here A =

(
−2 −5
1 2

)
∈ Γ0(5), A2 = −I .

Γ1(5) is generated by γ, δ, AγA−1, AδA−1 with one relation

(AδA−1)(AγA−1)δγ = I.

Let φn be the character of Γ1(5) given by

• φn(γ) = ζn, a primitive n-th root of unity,

• φn(AγA−1) = ζ−1
n , and

• φn(δ) = φn(AδA−1) = 1.

Γn = the kernel of φn is a normal subgroup of Γ1(5) of index n,
noncongruence if n 6= 5.
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The modular curve XΓ1(5) has a model over Q, of genus zero

and contains no elliptic points. Same for XΓn. It is a degree n
cover over XΓ1(5) unramified everywhere except totally ramified

above the cusps ∞ and −2.

Take two weight 3 Eisenstein series for Γ1(5)

E1(z) = 1− 2q1/5 − 6q2/5 + 7q3/5 + 26q4/5 + · · · ,
E2(z) = q1/5 − 7q2/5 + 19q3/5 − 23q4/5 + q + · · · ,

which vanish at all cusps except at the cusps ∞ and −2, resp.
Then

S3(Γn) =< (E1(z)jE2(z)n−j)1/n >1≤j≤n−1

is (n− 1)-dimensional.

Let ρn,l be the attached l-adic Scholl representation.
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ASD congruences and modularity for d = 2

Theorem[L-Long-Yang, 2005, for Γ3]

(1) The space S3(Γ3) has a basis consisting of 3-integral forms

f±(z) = q1/15 ± iq2/15 − 11

3
q4/15 ∓ i16

3
q5/15 −

−4

9
q7/15 ± i71

9
q8/15 +

932

81
q10/15 + · · · .

(2) (Modularity) There are two cuspidal newforms of weight 3
level 27 and character χ−3 given by

g±(z) = q ∓ 3iq2 − 5q4 ± 3iq5 + 5q7 ± 3iq8 +

+9q10 ± 15iq11 − 10q13 ∓ 15iq14 −
−11q16 ∓ 18iq17 − 16q19 ∓ 15iq20 + · · ·

such that ρ3,l = ρg+,l ⊕ ρg−,l over Ql(
√
−1).
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(3) f± satisfy the 3-term ASD congruences with Ap = ap(g±)

and Bp = χ−3(p)p2 for all primes p ≥ 5.

Here χ−3 is the quadratic character attached to Q(
√
−3).

Basis functions f± indep. of p, best one can hope for.
Hoffman, Verrill and students: an index 3 subgp of Γ0(8)∩Γ1(4),

wt 3 forms, ρ = τ ⊕ τ and τ modular, one family of Ap and Bp.
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ASD congruences and modularity for d = 3

• S3(Γ4) has an explicit basis h1, h2, h3 of 2-integral forms.

• Γ4 ⊂ Γ2 ⊂ Γ1(5) and S3(Γ2) =< h2 >.

Theorem[L-Long-Yang, 2005, for Γ2]

The 2-dim’l Scholl representation ρ2,l attached to S3(Γ2) is
modular, isomorphic to ρg2,l attached to the cuspidal newform

g2 = η(4z)6. Consequently, h2 satisfies the ASD congruences
with Ap = ap(g2) and Bp = p2.
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It remains to describe the ASD congruence on the space
< h1, h3 >. Let

f1(z) =
η(2z)12

η(z)η(4z)5
= q1/8(1 + q − 10q2 + · · · ) =

∑
n≥1

a1(n)qn/8,

f3(z) = η(z)5η(4z) = q3/8(1− 5q + 5q2 + · · · ) =
∑
n≥1

a3(n)qn/8,

f5(z) =
η(2z)12

η(z)5η(4z)
= q5/8(1 + 5q + 8q2 + · · · ) =

∑
n≥1

a5(n)qn/8,

f7(z) = η(z)η(4z)5 = q7/8(1− q − q2 + · · · ) =
∑
n≥1

a7(n)qn/8.
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Theorem[Atkin-L-Long, 2008] [ASD congruence for the space
< h1, h3 >]

1. If p ≡ 1 mod 8, then both h1 and h3 satisfy the three-term
ASD congruence at p with Ap = sgn(p)a1(p) and Bp = p2,

where sgn(p) = ±1 ≡ 2(p−1)/4 mod p ;

2. If p ≡ 5 mod 8, then h1 (resp. h3) satisfies the three-term
ASD-congruence at p with Ap = −4ia5(p) (resp. Ap =

4ia5(p)) and Bp = −p2;

3. If p ≡ 3 mod 8, then h1 ± h3 satisfy the three-term ASD
congruence at p with Ap = ∓2

√
−2a3(p) and Bp = −p2;

4. If p ≡ 7 mod 8, then h1 ± ih3 satisfy the three-term ASD
congruence at p given by Ap = ±8

√
−2a7(p) and Bp = −p2.

Here a1(p), a3(p), a5(p), a7(p) are given above.
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To describe the modularity of ρ4,l, let

f (z) = f1(z) + 4f5(z) + 2
√
−2(f3(z)− 4f7(z)) =

∑
n≥1

a(n)qn/8.

f (8z) is a newform of level dividing 256, weight 3, and quadratic
character χ−4 associated to Q(i).

Let K = Q(i, 21/4) and χ a character of Gal(K/Q(i)) of order
4. Denote by h(χ) the associated (weight 1) cusp form.

Theorem[Atkin-L-Long, 2008][Modularity of ρ4,l]

The 6-dim’l Scholl rep’n ρ4,l decomposes over Ql into the
sum of ρ2,l (2-dim’l) and ρ−,l (4-dim’l). Further, L(s, ρ2,l) =
L(s, g2) and L(s, ρ−,l) = L(s, f×h(χ)) (same local L-factors).

Proof uses Faltings-Serre method.
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Representations with quaternion multiplication

Joint work with A.O.L. Atkin, T. Liu and L. Long

ρl : a 4-dim’l Scholl representation of GQ = Gal(Q̄/Q) assoc.
to a 2-dim’l subspace S ⊂ Sk(Γ).

Suppose ρl has quaternion multiplication (QM) over Q(
√
s,
√
t),

i.e., there are two operators Js and Jt on ρl⊗Ql
Q̄l, parametrized

by two non-square integers s and t, satisfying

(a) J2
s = J2

t = −id, Jst := JsJt = −JtJs;
(b) For u ∈ {s, t} and g ∈ GQ, we have Juρl(g) = ±ρl(g)Ju,
with + sign if and only if g ∈ GalQ(

√
u).

For Γ3, Scholl representations have QM over Q(
√
s,
√
t) = Q(

√
−3),

and for Γ4, we have QM over Q(
√
s,
√
t) = Q(

√
−1,
√

2) = Q(ζ8).

24



Theorem [Atkin-L-Liu-Long 2011] (Modularity)

(a) If Q(
√
s,
√
t) is a quadratic extension, then over Ql(

√
−1),

ρl decomposes as a sum of two degree 2 representations assoc.
to two congruence forms of weight k.

(b) If Q(
√
s,
√
t) is biquadratic over Q, then for each u ∈

{s, t, st}, there is an automorphic form gu for GL2 over Q(
√
u)

such that the L-functions attached to ρl and gu agree locally
at all p. Consequently, L(s, ρl) is automorphic.

L(s, ρl) also agrees with the L-function of an automorphic form
of GL2×GL2 over Q, and hence also agrees with the L-function
of a form on GL4 over Q by Ramakrishnan.

The proof uses descent and modern modularity criteria.
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Theorem [Atkin-L-Liu-Long 2011] (ASD congruences)

Assume Q(
√
s,
√
t) is biquadratic. Suppose that the QM op-

erators Js and Jt arise from real algebraic linear combinations
of normalizers of Γ so that they also act on the noncongru-
ence forms in S. For each u ∈ {s, t, st}, let fu,j, j = 1, 2,
be linearly independent eigenfunctions of Ju. For almost all
primes p split in Q(

√
u), fu,j are p-adically integral basis of

S and the ASD congruences at p hold for fu,j with Au,p,j and
Bu,p,j coming from the two local factors

(1− Au,p,jp−s + Bu,p,jp
−2s)−1, j = 1, 2,

of L(s, gu) at the two places of Q(
√
u) above p.

Note that the basis functions for ASD congruences depend on p
modulo the conductor of Q(

√
s,
√
t).
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A new example

Let Γ be an index-6 genus 0 subgroup of Γ1(6) whose modular
curve is totally ramified above the cusps ∞ and −2 of Γ1(6) and
unramified elsewhere. The subspace S = 〈F1, F5〉 ⊂ S3(Γ) has
an assoc. compatible family {ρ`} of 4-dim’l Scholl subrep’ns. Here

Fj = B(6−j)/5F , B =
η(2z)3η(3z)9

η(z)3η(6z)9 and F =
η(z)4η(2z)η(6z)5

η(3z)4 .

Let W2 =

(
2 −6
1 −2

)
and ζ =

(
1 1
0 1

)
.

The rep’ns ρ` and S both admit QM by

J−2 = ζW2, J−3 =
1√
3

(2ζ − I), J6 = J−2J−3.
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ASD congruences in general

Back to general Sk(Γ), which has dimension d. Scholl represen-
tations ρl are 2d-dimensional. For almost all p the characteristic
polynomial Hp(T ) of ρl(Frobp) has degree 2d. A representation
is called strongly ordinary at p if Hp(T ) has d roots which are

distinct p-adic units (and the remaining d roots are pk−1 times
units).

Scholl: ASD congruences at p hold if ρl is strongly ordinary at p.

But if the representations are not ordinary at p, then the situ-
ation is quite different. Then the ASD congruences at p may or
may not hold. We exhibit an example computed by J. Kibelbek.
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Ex. X : y2 = x5 + 1, genus 2 curve defined over Q. By Belyi,
X ' XΓ for a finite index subgroup Γ of SL2(Z). Put

ω1 = x
dx

2y
= f1

dq1/10

q1/10
, ω2 =

dx

2y
= f2

dq1/10

q1/10
.

Then S2(Γ) =< f1, f2 >, where

f1 =
∑
n≥1

an(f1)qn/10

= q1/10 − 8

5
q6/10 − 108

52
q11/10 +

768

53
q16/10 +

3374

54
q21/10 + · · · ,

f2 =
∑
n≥1

an(f2)qn/10

= q2/10 − 16

5
q7/10 +

48

52
q12/10 +

64

53
q17/10 +

724

54
q22/10 + · · · .
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The l-adic representations for wt 2 forms are the dual of the Tate
modules on the Jacobian of XΓ.

For primes p ≡ 2, 3 mod 5, Hp(T ) = T 4 + p2 (not ordinary).

S2(Γ) has no nonzero form satisfying the ASD congruences for
p ≡ 2, 3 mod 5.

However, if one adds weight 2 weakly holomorphic forms f3
and f4 from x2dx

2y and x3dx
2y , then suitable linear combinations

of f1, ..., f4 yield four linearly indep. forms satisfying two ASD
congruences of the desired form.
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Kazalicki and Scholl: Scholl congruences also hold for exact,
weakly holomorphic cusp forms for both congruence and noncon-
gruence subgroups.

Ex. S12(SL2(Z)) is 1-dim’l spanned by the normalized Ramanu-
jan τ -function ∆(z) = η(z)24 =

∑
n≥1 τ (n)qn.

E4(z)6/∆(z)− 1464E4(z)3 = q−1 +

∞∑
n=1

anq
n

= q−1 − 142236q + 51123200q2 + 39826861650q3 + · · ·
For every prime p ≥ 11 and integers n ≥ 1, its coefficients satisfy
the congruence

anp − τ (p)an + p11an/p ≡ 0 (mod p11(ordpn)).
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