Success and challenges in determining the rational points on curves

Diophantine equations

Example problems: Find the solutions $x, y \in \mathbb{Q}$ to

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
x^{2}+y^{2}=-1 \\
x^{2}+y^{2}=5 \\
x^{2}+y^{2}=3 \\
3 x^{3}+4 y^{3}=5 \\
x^{6}+8 x^{5}+22 x^{4}+22 x^{3}+5 x^{2}+6 x+1=y^{2} \\
x^{6}+x^{2}+1=y^{2} \\
x^{6}+6 x^{5}-15 x^{4}+20 x^{3}+15 x^{2}+30 x-17=y^{2} \\
\left(x^{3}-x^{2}-2 x+1\right) y^{7}-\left(x^{3}-2 x^{2}-x+1\right)=0 \\
x^{4}+y^{4}+x^{2} y+2 x y-y^{2}+1=0 \\
x^{2} y^{2}-x y^{3}-x^{3}-2 x^{2}+y^{2}-x+y=0
\end{gathered}
$$

Note: All of these ask for the rational points on curves.

Central Questions

Definition: A curve C over \mathbb{Q} is nice if it is: smooth, projective, absolutely irreducible.

Typical example: Smooth plane projective curve:

$$
C: X^{4}+Y^{4}+X^{2} Y Z+2 X Y Z^{2}-Y^{2} Z^{2}+Z^{4}=0
$$

Decision problem: Given a nice curve C over \mathbb{Q},

$$
\text { decide if } C(\mathbb{Q})=\emptyset .
$$

Determination problem: Given a nice curve C over \mathbb{Q}, find a useful description of $C(\mathbb{Q})$.

For curves of genus >1 : List the finite set $C(\mathbb{Q})$.

Outline

1. Outline of a procedure to tackle the decision problem
2. Highlight challenges in executing the procedure
3. Finite Descent as a tool to face these challenges
4. Results for smooth plane quartics

Local obstructions

Adelic points:

$$
C(\mathbb{Q}) \hookrightarrow C(\mathbb{A}):=C(\mathbb{R}) \times \prod_{p} C\left(\mathbb{Q}_{p}\right)
$$

Global-Local principle:

$$
C(\mathbb{Q}) \neq \emptyset \quad \text { implies } \quad C(\mathbb{A}) \neq \emptyset
$$

Happy fact: Deciding if $C(\mathbb{A})=\emptyset$ is decidable.
Local-Global principle fails:

$$
C(\mathbb{A}) \neq \emptyset \quad \text { does not imply } \quad C(\mathbb{Q}) \neq \emptyset
$$

Examples:

$$
\begin{gathered}
3 X^{3}+4 Y^{3}+5 Z^{3}=0 \\
X^{4}+Y^{4}+X^{2} Y Z+2 X Y Z^{2}-Y^{2} Z^{2}+Z^{4}=0
\end{gathered}
$$

Better information

Alternative approach: Embed curve C in another variety with a sparser set of rational points, e.g., an Abelian variety J.
Theorem (Mordell-Weil): $J(\mathbb{Q})$ is a finitely generated abelian group:

$$
J(\mathbb{Q}) \simeq \underbrace{J(\mathbb{Q})_{\text {tors }}}_{\text {finite }} \times \mathbb{Z}^{r}
$$

Principal homogeneous space: $C \subset \underline{\operatorname{Pic}}_{C}^{1}$ under $J=\underline{\operatorname{Pic}}_{C}^{0}$.

$$
\underline{\operatorname{Pic}}_{C}^{1}(\mathbb{Q}) \neq \emptyset \quad \text { if and only if } \quad \operatorname{Pic}_{C}^{1} \simeq J
$$

Challenge: Decide if $\operatorname{Pic}_{C}^{1}(\mathbb{Q})=\emptyset$ or find $\mathfrak{d} \in \operatorname{Pic}_{C}^{1}(\mathbb{Q})$.
If $\underline{\operatorname{Pic}}_{C}^{1}(\mathbb{Q})=\emptyset$ then $C(\mathbb{Q})=\emptyset$. Otherwise $\iota_{0}: C \hookrightarrow J$.
Challenge: Compute $J(\mathbb{Q}) \simeq J(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}$, in particular r.

Assume:

- We have $\mathfrak{d} \in \underline{\operatorname{Pic}}_{C}^{1}(\mathbb{Q})$.
- We have generators for $J(\mathbb{Q})$.

Commutative diagram:

(Watch the Poonen • which modifies the $J(\mathbb{R})$ factor)
Conjecture: Writing $\overline{C(\mathbb{Q})} \subset C(\mathbb{A})$ for the topological closure,

$$
\overline{C(\mathbb{Q})} \stackrel{?}{=} \imath(C(\mathbb{A})) \cap \overline{\tilde{\rho}(J(\mathbb{Q}))}
$$

The Mordell-Weil sieve

(see [Scharaschkin, B-Elkies (ANTS V), Flynn, B.-Stoll])

- Let S be a finite set of primes; B a positive integer
- Let $\Lambda_{p}=\operatorname{ker}\left(\rho_{p}: J(\mathbb{Q}) \rightarrow J\left(\mathbb{F}_{p}\right)\right)$ and $\Lambda_{S}:=\bigcap_{p \in S} \Lambda_{p}$
- $C(\mathbb{Q}) \rightarrow V_{S, B}:=\operatorname{im}\left(\imath_{S}\right) \cap \operatorname{im}\left(\rho_{S}\right) \subset \frac{J(\mathbb{Q})}{\Lambda_{S}+B J(\mathbb{Q})}$

Heuristic (Poonen): For appropriate S, B, the set $V_{S, B}$ consists only of cosets containing a point from $C(\mathbb{Q})$.

Decision procedure

INPUT: A nice curve C of genus $g>0$.
OUTPUT: $P \in C(\mathbb{Q})$ or Unsolvable if $C(\mathbb{Q})=\emptyset$.
Execute in parallel:
0 . Try candidates for $P \in C(\mathbb{Q})$ and return P if one is found. Information from $V_{S, B}$ (step 5) helps.
and

1. If $C(\mathbb{A})=\emptyset$ return Unsolvable
2. Determine $\mathfrak{d} \in \underline{\operatorname{Pic}}_{C}^{1}(\mathbb{Q})$ or return Unsolvable if $\underline{\operatorname{Pic}}_{C}^{1}(\mathbb{Q})=\emptyset$.
3. Determine $J(\mathbb{Q})$.
4. Choose reasonable values for S, B.
5. Mordell-Weil sieving: If $V_{S, B}=\emptyset$ return Unsolvable.
6. Increase S, B; go to 5 .

How well does this work?

Test case (B.-Stoll): Consider genus 2 curves admitting a model

$$
C: y^{2}=f_{6} x^{6}+f_{5} x^{5}+\cdots+f_{0} \text { with } f_{i} \in\{-3, \ldots, 3\}
$$

Success: We were able to decide for all of them!

All curves	196171	100.00%
Curves with rational points	137490	70.09%
Curves without rational points	58681	29.91%
Curves with $C(\mathbb{A}) \neq \emptyset$	166768	85.01%
Curves with $C(\mathbb{A}) \neq \emptyset$ and $C(\mathbb{Q})=\emptyset$	29278	14.92%
Curves that need BSD conjecture	42	0.02%

Disclosure: We only really needed MW-sieving for 1445 of these curves (27786 of these curves have a non-trivial 2-cover obstruction to having rational points)

How to deal with rational points

(see [Chabauty, Coleman, Flynn])
Problem: If $P \in C(\mathbb{Q})$ then $V_{S, B}$ is never empty.
Idea (Chabauty): Construct a p-adic analytic function Φ_{p} on $C\left(\mathbb{Q}_{p}\right)$ that vanishes on $C(\mathbb{Q})$.
Restriction: Construction only works if $\mathrm{rk} J(\mathbb{Q})=r<g$.
Sketch of procedure:

1. Use MW-Sieving to find S, B and $P_{i} \in C(\mathbb{Q})$ such that

$$
V_{S, B}=\left\{P_{1}, \ldots, P_{n}\right\}+\Lambda_{S}+B J(\mathbb{Q})
$$

2. Find prime p with $B J(\mathbb{Q}) \subset \Lambda_{p}$ such that

$$
P_{i} \not \equiv P_{j} \quad(\bmod p) \text { for any } i \neq j
$$

3. For each P_{i}, use Φ_{p} to show that there are no other rational points Q with $Q \equiv P_{i}(\bmod p)$

Computational Challenges

No guarantee that either procedure will terminate, i.e.:

- We only have a heuristic that MW-sieving converges to a sharp result.
- We have no guarantee we can always find a p such that Φ_{p} does not have inconvenient extraneous p-adic zeros.
Bigger problem: we cannot guarantee we can get started:
For decision procedure:
- Decide if $\underline{\operatorname{Pic}}_{C}^{1}(\mathbb{Q})=\emptyset$ or find $\mathfrak{d} \in \operatorname{Pic}_{C}^{1}(\mathbb{Q})$.
- Determine the r in $J(\mathbb{Q}) \simeq J(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}$
- Find generators for $J(\mathbb{Q})$

For determination procedure:

- What to do if $r \geq g$?
(See [Wetherell, B.; future: Kim, Balakrishnan?])

n-descent

Multiplication-by- n :

$$
0 \rightarrow J[n] \rightarrow J \xrightarrow{n} J \rightarrow 0
$$

Taking galois cohomology:

$$
0 \rightarrow \frac{J(\mathbb{Q})}{n J(\mathbb{Q})} \stackrel{\gamma}{\rightarrow} H^{1}(\mathbb{Q}, J[n]) \rightarrow H^{1}(\mathbb{Q}, J)
$$

Approximate image locally:
$\operatorname{Sel}^{n}(J / \mathbb{Q}):=\left\{\delta \in H^{1}(\mathbb{Q}, J[n]): \rho_{p}(\delta) \in \operatorname{im} \gamma_{p}\right.$ for all $\left.p\right\}$

Computational considerations

Explicit descent computations: We need to work with

$$
\gamma: \frac{J(k)}{n J(k)} \rightarrow H^{1}(k, J[n]) \text { for } k=\mathbb{Q}, \mathbb{R}, \mathbb{Q}_{p}
$$

- How do we represent $J(k)$?
- How do we represent $H^{1}(k, J[n])$?
- How do we compute γ ?

Representing $J(k)$:
$\operatorname{Pic}^{0}(C / k) \subset J(k)$; equality if $C(\mathbb{A}) \neq \emptyset$. Use divisors on the curve.

Problem: We only know how to efficiently represent $H^{1}(k, M)$ for a very limited class of Galois modules.
Twisted power: Let M be a Galois module and
$\Delta=\operatorname{Spec} L=\left\{\theta_{1}, \ldots, \theta_{m}\right\}$ a Galois set. Define

$$
M^{\Delta}:=M \theta_{1} \oplus \cdots \oplus M \theta_{m}
$$

Hilbert 90: $H^{1}\left(k, \mu_{n}^{\Delta}\right)=L^{\times} / L^{\times n}$.
Let $J[n]=\operatorname{Spec}(L)$. Consider

$$
0 \rightarrow J[n] \rightarrow\left(\mu_{n}\right)^{J[n]} \rightarrow R^{\vee} \rightarrow 0
$$

Cohomology: $H^{1}(k, J[n]) \rightarrow L^{\times} / L^{\times n}$.

Computations using descent setups

(see [Cassels, Schaefer, Poonen-Shaefer, B.-Poonen-Stoll])
Writing $L_{p}=L \otimes \mathbb{Q}_{p}$

- Map $\tilde{\gamma}$ is induced by a function $f \in k(C) \otimes L$.
- Images of $\tilde{\gamma}_{p}$ are computable.
- For most p, this image lands in "unramified" part
- Image of $\tilde{\gamma}$ is generated by S-units.

$$
\operatorname{Sel}^{\tilde{\gamma}}(J)=\left\{\delta \in L^{\times} / L^{\times n}: \rho_{p}(\delta) \in \operatorname{im} \tilde{\gamma}_{p} \text { for all } p\right\}
$$

Application to two challenges

Bounding Ranks:

$$
\frac{J(\mathbb{Q})}{n J(\mathbb{Q})}=\frac{J(\mathbb{Q})_{\text {tors }}}{n J(\mathbb{Q})_{\text {tors }}} \times\left(\frac{\mathbb{Z}}{n \mathbb{Z}}\right)^{r}
$$

So bounding the size of im γ bounds r (hopefully sharply).
Embedding curve in J :

$$
\left[\underline{\operatorname{Pic}}_{C}^{1}\right] \in H^{1}(\mathbb{Q}, J[2 g-2])
$$

There exists $\mathfrak{d} \in \underline{\operatorname{Pic}}_{C}^{1}(\mathbb{Q})$ if and only if $\left[\underline{\operatorname{Pic}}_{C}^{1}\right] \in \operatorname{im} \gamma$.
Bonus: Map $\tilde{\gamma}$ can be evaluated immediately on C.

$$
\operatorname{Sel}^{\tilde{\gamma}}(C)=\left\{\delta \in L^{\times} / L^{\times n}: \rho_{p}(\delta) \in \tilde{\gamma}_{p}\left(C\left(\mathbb{Q}_{p}\right)\right) \text { for all } p\right\}
$$

Example: Smooth plane quartics (B.-Poonen-Stoll)

Let C be a smooth plane quartic.

- Set $\Delta=\operatorname{Spec}(L)$ of 28 bitangents
- Even weight vectors $E \subset(\mathbb{Z} / 2 \mathbb{Z})^{\Delta}$:

- Cohomology:

We need all of computational algebraic number theory ...

$$
\underset{\downarrow \rightarrow J[2](k) \rightarrow E^{\vee}(k) \rightarrow R^{\vee}(k) \rightarrow H^{1}(J[2]) \rightarrow H^{1}\left(E^{\vee}\right)}{\frac{J(k)}{2 J(k)} \xrightarrow{\tilde{\gamma}} \frac{L^{\times}}{L^{\times 2} k^{\times}}}
$$

- $\tilde{\gamma}$ consists of evaluation at the "generic" bitangent.
- We need the ring of integers of L and S-units in L.
- $J[2](k), R^{\vee}(k), E^{\vee}(k)$ follow from identifying

$$
\operatorname{Gal}(L / k) \subset \operatorname{Sp}_{6}\left(\mathbb{F}_{2}\right) .
$$

Example results

Theorem: Consider

$$
C: X^{3} Y-X^{2} Y^{2}-X^{2} Z^{2}-X Y^{2} Z+X Z^{3}+Y^{3} Z=0
$$

Then $J(\mathbb{Q}) \simeq \mathbb{Z} / 51 \mathbb{Z}$ and
$C(\mathbb{Q})=\{(1: 1: 1),(0: 1: 0),(0: 0: 1),(1: 0: 0),(1: 1: 0),(1: 0: 1)\}$.
Theorem: Consider

$$
C: X^{2} Y^{2}-X Y^{3}-X^{3} Z-2 X^{2} Z^{2}+Y^{2} Z^{2}-X Z^{3}+Y Z^{3}=0 .
$$

Assuming GRH, we have $J(\mathbb{Q}) \simeq \mathbb{Z}$ and

$$
\begin{aligned}
C(\mathbb{Q})=\{ & (1: 1: 0),(-1: 0: 1),(0:-1: 1),(0: 1: 0) \\
& (1: 1:-1),(0: 0: 1),(1: 0: 0),(1: 4:-3)\} .
\end{aligned}
$$

Descent on the curve

Observation: The map $\tilde{\gamma}$ can be evaluated on C directly.

$$
\tilde{\gamma}: C(\mathbb{Q}) \rightarrow \frac{L^{\times}}{L^{\times 2} \mathbb{Q}^{\times}}
$$

Comparing local images gives another computable obstruction to rational points.

Theorem: Consider

$$
C: X^{4}+Y^{4}+X^{2} Y Z+2 X Y Z^{2}-Y^{2} Z^{2}+Z^{4}=0
$$

Then $C(\mathbb{A}) \neq \emptyset$ but assuming GRH one can prove that C has no rational points.

Kiran, Everett, Joe, Organizing committee, Program committee THANK YOU!!

For a wonderful

