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Diophantine equations

Example problems: Find the solutions x,y ∈Q to

x2 + y2 = 1
x2 + y2 =−1
x2 + y2 = 5
x2 + y2 = 3

3x3 +4y3 = 5
x6 +8x5 +22x4 +22x3 +5x2 +6x+1 = y2

x6 + x2 +1 = y2

x6 +6x5−15x4 +20x3 +15x2 +30x−17 = y2

(x3− x2−2x+1)y7− (x3−2x2− x+1) = 0
x4 + y4 + x2y+2xy− y2 +1 = 0

x2y2− xy3− x3−2x2 + y2− x+ y = 0

Note: All of these ask for the rational points on curves.
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Central Questions

Definition: A curve C over Q is nice if it is:

smooth, projective, absolutely irreducible.

Typical example: Smooth plane projective curve:

C : X4 +Y4 +X2YZ +2XYZ2−Y2Z2 +Z4 = 0

Decision problem: Given a nice curve C over Q,

decide if C(Q) = /0.

Determination problem: Given a nice curve C over Q,

find a useful description of C(Q).

For curves of genus > 1: List the finite set C(Q).
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Outline

1. Outline of a procedure to tackle the decision problem
2. Highlight challenges in executing the procedure
3. Finite Descent as a tool to face these challenges
4. Results for smooth plane quartics
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Local obstructions

Adelic points:

C(Q) ↪→ C(A) := C(R)×∏
p

C(Qp)

Global-Local principle:

C(Q) 6= /0 implies C(A) 6= /0

Happy fact: Deciding if C(A) = /0 is decidable.

Local-Global principle fails:

C(A) 6= /0 does not imply C(Q) 6= /0,

Examples:
3X3 +4Y3 +5Z3 = 0

X4 +Y4 +X2YZ +2XYZ2−Y2Z2 +Z4 = 0
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Better information

Alternative approach: Embed curve C in another variety with
a sparser set of rational points, e.g., an Abelian variety J.

Theorem (Mordell-Weil): J(Q) is a finitely generated abelian
group:

J(Q)' J(Q)tors︸ ︷︷ ︸
finite

×Zr

Principal homogeneous space: C ⊂ Pic1
C under J = Pic0

C.

Pic1
C(Q) 6= /0 if and only if Pic1

C ' J

Challenge: Decide if Pic1
C(Q) = /0 or find d ∈ Pic1

C(Q).

If Pic1
C(Q) = /0 then C(Q) = /0. Otherwise ιd : C ↪→ J.

Challenge: Compute J(Q)' J(Q)tors×Zr, in particular r.

NILS BRUIN RATIONAL POINTS ON CURVES



Mordell-Weil group combined with adelic information

Assume:
I We have d ∈ Pic1

C(Q).
I We have generators for J(Q).

Commutative diagram:

C(Q) ι //

ρ̃

��

J(Q)

ρ̃

��
C(A) ι // J(A)•

(Watch the Poonen • which modifies the J(R) factor)

Conjecture: Writing C(Q)⊂ C(A) for the topological closure,

C(Q) ?= ι(C(A)) ∩ ρ̃(J(Q))
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The Mordell-Weil sieve

(see [Scharaschkin, B-Elkies (ANTS V), Flynn, B.-Stoll])

C(Q) ι //

ρS

��

J(Q)/BJ(Q)

ρS

��
∏p∈S C(Fp)

ιS // ∏p∈S J(Fp)/B · im(ρp)

I Let S be a finite set of primes ; B a positive integer
I Let Λp = ker(ρp : J(Q)→ J(Fp)) and ΛS :=

⋂
p∈S

Λp

I C(Q)→ VS,B := im(ιS)∩ im(ρS)⊂
J(Q)

ΛS +BJ(Q)

Heuristic (Poonen): For appropriate S, B, the set VS,B consists
only of cosets containing a point from C(Q).
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Decision procedure

INPUT: A nice curve C of genus g > 0.
OUTPUT: P ∈ C(Q) or Unsolvable if C(Q) = /0.
Execute in parallel:

0. Try candidates for P ∈ C(Q) and return P if one is found.
Information from VS,B (step 5) helps.

and
1. If C(A) = /0 return Unsolvable

2. Determine d ∈ Pic1
C(Q) or return Unsolvable if Pic1

C(Q) = /0.
3. Determine J(Q).
4. Choose reasonable values for S,B.

5. Mordell-Weil sieving: If VS,B = /0 return Unsolvable.
6. Increase S,B; go to 5.
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How well does this work?

Test case (B.-Stoll): Consider genus 2 curves admitting a
model

C : y2 = f6x6 + f5x5 + · · ·+ f0 with fi ∈ {−3, . . . ,3}

Success: We were able to decide for all of them!

All curves 196 171 100.00 %
Curves with rational points 137 490 70.09 %
Curves without rational points 58 681 29.91 %
Curves with C(A) 6= /0 166 768 85.01 %
Curves with C(A) 6= /0 and C(Q) = /0 29 278 14.92 %
Curves that need BSD conjecture 42 0.02 %

Disclosure: We only really needed MW-sieving for 1445 of
these curves (27786 of these curves have a non-trivial 2-cover
obstruction to having rational points)
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How to deal with rational points

(see [Chabauty, Coleman, Flynn])
Problem: If P ∈ C(Q) then VS,B is never empty.

Idea (Chabauty): Construct a p-adic analytic function Φp on
C(Qp) that vanishes on C(Q).

Restriction: Construction only works if rkJ(Q) = r < g.

Sketch of procedure:
1. Use MW-Sieving to find S,B and Pi ∈ C(Q) such that

VS,B = {P1, . . . ,Pn}+ΛS +BJ(Q)

2. Find prime p with BJ(Q)⊂ Λp such that

Pi 6≡ Pj (mod p) for any i 6= j

3. For each Pi, use Φp to show that there are no other rational
points Q with Q≡ Pi (mod p)
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Computational Challenges

No guarantee that either procedure will terminate, i.e.:
I We only have a heuristic that MW-sieving converges to a

sharp result.
I We have no guarantee we can always find a p such that Φp

does not have inconvenient extraneous p-adic zeros.
Bigger problem: we cannot guarantee we can get started:

For decision procedure:
I Decide if Pic1

C(Q) = /0 or find d ∈ Pic1
C(Q).

I Determine the r in J(Q)' J(Q)tors×Zr

I Find generators for J(Q)

For determination procedure:
I What to do if r ≥ g?

(See [Wetherell, B.; future: Kim, Balakrishnan?])
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n-descent

Multiplication-by-n:

0→ J[n]→ J n→ J→ 0

Taking galois cohomology:

0→ J(Q)
nJ(Q)

γ→ H1(Q,J[n])→ H1(Q,J)

Approximate image locally:

J(Q)
nJ(Q)

γ //

��

H1(Q,J[n])

∏ρp

��
∏p

J(Qp)
nJ(Qp)

∏γp // ∏p H1(Qp,J[n])

Seln(J/Q) := {δ ∈ H1(Q,J[n]) : ρp(δ ) ∈ imγp for all p}
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Computational considerations

Explicit descent computations: We need to work with

γ :
J(k)
nJ(k)

→ H1(k,J[n]) for k = Q,R,Qp

I How do we represent J(k)?
I How do we represent H1(k,J[n])?
I How do we compute γ?

Representing J(k):
Pic0(C/k)⊂ J(k); equality if C(A) 6= /0. Use divisors on the curve.
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Representing H1(k,J[n])

Problem: We only know how to efficiently represent H1(k,M)
for a very limited class of Galois modules.

Twisted power: Let M be a Galois module and
∆ = SpecL = {θ1, . . . ,θm} a Galois set. Define

M∆ := Mθ1⊕·· ·⊕Mθm

Hilbert 90: H1(k,µ∆
n ) = L×/L×n.

Let J[n] = Spec(L). Consider

0→ J[n]→ (µn)J[n]→ R∨→ 0

Cohomology: H1(k,J[n])→ L×/L×n.
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Computations using descent setups

(see [Cassels, Schaefer, Poonen-Shaefer, B.-Poonen-Stoll])

Writing Lp = L⊗Qp

J(Q)
nJ(Q)

γ̃ //

��

L×

L×n

��
J(Qp)
nJ(Qp)

γ̃p //
L×p
L×n

p

I Map γ̃ is induced by a function f ∈ k(C)⊗L.
I Images of γ̃p are computable.
I For most p, this image lands in “unramified” part
I Image of γ̃ is generated by S-units.

Selγ̃(J) = {δ ∈ L×/L×n : ρp(δ ) ∈ im γ̃p for all p}

NILS BRUIN RATIONAL POINTS ON CURVES



Application to two challenges

Bounding Ranks:

J(Q)
nJ(Q)

=
J(Q)tors

nJ(Q)tors
×
(

Z
nZ

)r

So bounding the size of imγ bounds r (hopefully sharply).

Embedding curve in J:

[Pic1
C] ∈ H1(Q,J[2g−2])

There exists d ∈ Pic1
C(Q) if and only if [Pic1

C] ∈ imγ.

Bonus: Map γ̃ can be evaluated immediately on C.

Selγ̃(C) = {δ ∈ L×/L×n : ρp(δ ) ∈ γ̃p(C(Qp)) for all p}
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Example: Smooth plane quartics (B.-Poonen-Stoll)

Let C be a smooth plane quartic.
I Set ∆ = Spec(L) of 28 bitangents
I Even weight vectors E ⊂ (Z/2Z)∆:

µ∆
2

��
0 // J[2] // E∨ // R∨ // 0

I Cohomology:

J(k)
2J(k)

γ̃ //

γ

��

L×

L×2k×� _

��
0 // J[2](k) // E∨(k) // R∨(k) // H1(J[2]) // H1(E∨)
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We need all of computational algebraic number theory ...

J(k)
2J(k)

γ̃ //

γ

��

L×

L×2k×� _

��
0 // J[2](k) // E∨(k) // R∨(k) // H1(J[2]) // H1(E∨)

I γ̃ consists of evaluation at the “generic” bitangent.
I We need the ring of integers of L and S-units in L.
I J[2](k), R∨(k) ,E∨(k) follow from identifying

Gal(L/k)⊂ Sp6(F2).
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Example results

Theorem: Consider

C : X3Y−X2Y2−X2Z2−XY2Z +XZ3 +Y3Z = 0.

Then J(Q)' Z/51Z and

C(Q) = {(1 : 1 : 1),(0 : 1 : 0),(0 : 0 : 1),(1 : 0 : 0),(1 : 1 : 0),(1 : 0 : 1)}.

Theorem: Consider

C : X2Y2−XY3−X3Z−2X2Z2 +Y2Z2−XZ3 +YZ3 = 0.

Assuming GRH, we have J(Q)' Z and

C(Q) = {(1 : 1 : 0),(−1 : 0 : 1),(0 :−1 : 1),(0 : 1 : 0),
(1 : 1 :−1),(0 : 0 : 1),(1 : 0 : 0),(1 : 4 :−3)}.
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Descent on the curve

Observation: The map γ̃ can be evaluated on C directly.

γ̃ : C(Q)→ L×

L×2Q×

Comparing local images gives another computable obstruction
to rational points.

Theorem: Consider

C : X4 +Y4 +X2YZ +2XYZ2−Y2Z2 +Z4 = 0

Then C(A) 6= /0 but assuming GRH one can prove that C has no
rational points.

NILS BRUIN RATIONAL POINTS ON CURVES



Kiran, Everett, Joe, Organizing committee, Program committee

THANK YOU!!
For a wonderful
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