# Fast computation of isomorphisms of hyperelliptic curves and explicit descent

Reynald Lercier, Christophe Ritzenthaler and Jeroen Sijsling

IRMAR (Rennes), IML (Marseille), IRMAR (Rennes)

ANTS, San Diego July 11, 2012

# Motivation in genus 1

Let K be an algebraically closed field of characteristic  $p \neq 2$ .

• Elliptic curves  $(p \neq 3)$  E/K :  $y^2 = x^3 + ax + b$  are classified up to isomorphism by

$$j(E) = 1728 \, \frac{4a^3}{4 \, a^3 + 27 \, b^2} \, .$$

• Conversely, for any  $j \in K \setminus \{0, 1728\}$ , we can reconstruct a curve E s.t. j(E) = j, for instance

$$E/K: y^2 = x^3 - \frac{27j}{j - 1728} \, x + \frac{54j}{j - 1728} \, .$$

# General genus

• Similarly, we would like to do the same for hyperelliptic curves of genus  $g \ge 2$ , i.e.  $C/K : y^2 = f(x)$  with  $\deg(f) = 2g + 2$  and simple roots.

 $\{\text{Hyperelliptic curves of genus }g\}_{/\simeq} \longleftrightarrow \{\text{a 'space' of parameters}\}$ 

 More precisely, given two such curves represented by the same parameters, we would like to find an explicit isomorphism between them.

## **Applications**

- Determining automorphism groups of curves;
- Galois descent for curves;
- Geometric and arithmetic information on the moduli space;
- Reconstructing curves from invariants;
- Applications to cryptography (CM method).

## Isomorphisms

Let  $C: y^2 = f(x)$  and  $C': y^2 = f'(x)$  be two hyperelliptic curves of genus g. Every isomorphism from C to C' is of the form

$$(x,y) \mapsto \left(\frac{ax+b}{cx+d}, \frac{ey}{(cx+d)^{g+1}}\right)$$

for some 
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(K)$$
 and  $e \in K^*$ .

## Isomorphisms

Let  $C: y^2 = f(x, z)$  and  $C': y^2 = f'(x, z)$  be two hyperelliptic curves of genus g in weighted projective (1, 1, g+1)-space. Every isomorphism from C to C' is of the form

$$(x, z, y) \mapsto (ax + bz, cx + dz, ey)$$

for some 
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(K)$$
 and  $e \in K^*$ .



#### **Invariants**

#### Definition

Let  $M^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(K)$  act on binary forms f(x, z) of even degree n by M.f = f(ax + bz, cx + dz).

A homogenous polynomial function I on the space of such forms f is an invariant if there exists  $\omega \in \mathbb{Z}$  such that for all  $M \in \mathrm{GL}_2(K)$ ,

$$I(M.f) = \det(M)^{\omega} \cdot I(f).$$

Let n, resp. d, be the degree of f, resp. I. If nd is odd then I is zero. Otherwise we have the equality  $\omega = nd/2$  for the weight  $\omega$  of C.

Ex: 
$$f = a_2X^2 + a_1XZ + a_0Z^2$$
,  $I = a_1^2 - 4a_2a_0$  is a degree-2 invariant.

←□▶→□▶→□▶→□▶ □ ● ○○○

# Invariants and isomorphisms

Fact: the algebra of invariants  $\mathcal{I}_n$  is finitely generated (Gordan 1868) and for  $n \leq 10$  generators are explicitly known.

#### Theorem (- Mumford 1977)

Let f, f' be binary forms of even degree  $n \ge 4$  with simple roots. Let  $\{I_i\}$  be a finite set of homogeneous generators of degree  $d_i$  for  $\mathcal{I}_n$ .

Then f and f' are in the same orbit under the action of  $\mathrm{GL}_2(K)$  if and only if there exists  $\lambda \in K$  such that for all i,  $I_i(f) = \lambda^{d_i} \cdot I_i(f')$ .

So we can test efficiently whether  $C: y^2 = f(x)$  and  $C': y^2 = f'(x)$  are isomorphic by computing a finite set of invariants. But how to obtain these?

#### Covariant and transvectant

To construct invariants, one needs to embed them in a broader framework.

#### Definition

A homogeneous polynomial function  $C: f \mapsto g$  sending binary forms f of degree n to binary forms g of degree r is a covariant if for all  $M \in \mathrm{GL}_2(K)$ ,

$$C(M.f) = \det(M)^{\omega} \cdot M.C(f).$$

The integer r is called the order of C. If nd-r is odd, C is zero. Otherwise we have the equality  $\omega=(nd-r)/2$  for the weight  $\omega$  of C.

Ex: The identity map is a covariant of order n, degree 1 and weight 0. We will identify C with C(f) for the tautological form  $f \in F(a_0, \ldots, a_n)[x, z]$ . Here F is the prime field of K.

On the algebra  $C_n$  of covariants, there are bilinear differential operators, called h-th transvectant

Fact (Gordan 1868): starting from the covariant f and applying a finite number of h-th transvectants, one can get a set of generators for  $\mathcal{I}_n$  (and for  $\mathcal{C}_n$ ).

#### Genus 1

Let

$$f = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0.$$

There is one covariant of degree 2 and order 4

$$(f,f)_2 = (1/3a_2a_4 - 1/8a_3^2)x^4 + (a_1a_4 - 1/6a_2a_3)x^3 + (2a_0a_4 + 1/4a_1a_3 - 1/6a_2^2)x^2 + (a_0a_3 - 1/6a_1a_2)x + 1/3a_0a_2 - 1/8a_1^2 + (a_0a_3 - 1/6a_1a_2)x + 1/3a_1^2 + (a_0a_3 - 1/6a_1a_2)x + (a_0a_3 - 1/6a_$$

The algebra of invariants  $\mathcal{I}_4$  is generated by

$$I = (f, f)_4 = 2a_0a_4 - 1/2a_1a_3 + 1/6a_2^2$$

and by

$$J = (f, (f, f)_2)_4 = a_0 a_2 a_4 - 3/8 a_0 a_3^2 - 3/8 a_1^2 a_4 + 1/8 a_1 a_2 a_3 - 1/36 a_2^3.$$

Rem: The *j*-invariant is equal to  $1728I^3/(I^3-6J^2)$ .



# Computing isomorphisms

#### Proposition

Let  $C_i: y^2 = f_i(x)$  be hyperelliptic curves of genus g. Let  $c_i$  be covariants of  $f_i$  with non-zero discriminant and  $X_i: y^2 = c_i(x)$  the associated hyperelliptic curves. Then, up to the hyperelliptic involution,  $Isom(C_1, C_2) \subset Isom(X_1, X_2)$ .

Hence, one can recursively reduce the computation to lower genera and/or use a new basic method to deal with this easier case.

Generically, one can use the quartic covariant  $(f, f)_{n-2}$ . This yields fast algorithms:

| Field  | Method              | Genus g |   |     |    |      |     |     |     |     |     |      |
|--------|---------------------|---------|---|-----|----|------|-----|-----|-----|-----|-----|------|
|        |                     | 1       | 2 | 4   | 8  | 16   | 32  | 64  | 128 | 256 | 512 | 1024 |
| F10007 | IsGL2Equivalent     | 0       | 0 | 0   | 0  | 0.1  | 0.2 | 0.9 | 6.5 | 39  | 242 | 1560 |
|        | IsGL2EquivFast      | 0       | 0 | 0   | 0  | 0    | 0   | 0.1 | 0.6 | 3.7 | 25  | 165  |
|        | IsGL2EquivCovariant | 0       | 0 | 0   | 0  | 0    | 0   | 0   | 0   | 0.1 | 0.5 | 2.5  |
| Q      | IsGL2Equivalent     | 0       | 0 | 0.4 | 15 | 1150 | -   | -   | -   | -   | -   | -    |
|        | IsGL2EquivFast      | 0       | 0 | 0   | 0  | 0.1  | 0.2 | 0.6 | 3   | 30  | 382 | 5850 |
|        | IsGL2EquivCovariant | 0       | 0 | 0   | 0  | 0    | 0   | 0   | 0.2 | 0.6 | 3.4 | 7    |

## Galois descent

So far, we worked over an algebraically closed field, but what happens if now  $k \subset \bar{k} = K$  is any field (of characteristic 0 or a finite field) ?

#### Definition

Let C/K be a curve of genus  $g \geq 2$ .

A field k is a field of definition for C if there exists a curve C/k (called a model of C) which is K-isomorphic to C.

The intersection  $M_C$  of all the fields of definition is called the field of moduli of C.

One has also  $\mathbf{M}_C = K^H$  where  $H = \{ \sigma \in \operatorname{Aut}(K), \ C \simeq {}^{\sigma}C \}$  and it is the residue field of the point [C] in the coarse moduli space  $M_g$ .

 $\mathbf{M}_{\mathcal{C}}$  is a field of definition when

- C has no automorphisms;
- *K* is the algebraic closure of a finite field.

## Galois descent and covariants

#### **Theorem**

Let  $C: y^2 = f(x)$ , let c be a covariant of f with non-zero discriminant and let  $X: y^2 = c(x)$  be the associated curve. Suppose that X is (hyperelliptically) defined over its field of moduli.

Then C is (hyperelliptically) defined over an extension of its field of moduli of degree at most  $[Aut_K(X) : \#Aut_K(C)]$ .

The proof yields the following explicit descent method:

- Calculate a non-degenerate covariant c of f;
- ullet Descend the covariant curve X (automatic in genus 1);
- Compute the descent morphism by our earlier algorithms;
- Apply the descent morphism to *C*.

# Example for g = 3 with $C_2^3$

$$(j_2:j_3:\ldots:j_{10})=\left(0:0:-\frac{25}{98}:-\frac{25}{98}:-\frac{225}{2744}:-\frac{25}{1372}:-\frac{225}{134456}:\frac{1125}{76832}:\frac{15125}{3764768}\right).$$

This gives rise to the curve  $C: y^2 = f(x)$  with  $\operatorname{Aut}_K(C) \simeq C_2^3$  and

$$f(x) = (-32\alpha^{2} + 420\alpha - 2275)/160x^{8} + (-12\alpha^{2} + 140\alpha - 700)/25x^{6} + \alpha x^{4} + x^{2} + (16\alpha^{2} + 280\alpha - 2275)/12250$$

over  $\mathbb{Q}(\alpha)$ , where  $\alpha^3 - 35/2 \alpha^2 + 1925/16 \alpha - 18375/64 = 0$ .

Take the covariant curve  $X: y^2 = c(x)$  with  $\operatorname{Aut}_K(X) \simeq C_2^3$  where

$$c = (f, f)_6 = (-16\alpha^2 + 180\alpha - 875)/280x^4 + (24\alpha^2 - 630\alpha + 3150)/1225x^2 + (4\alpha + 35)/490.$$

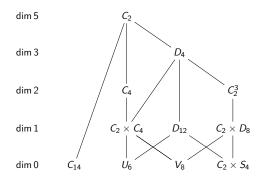
$$I = -75/49$$
,  $J = -2025/343$  so  $X \simeq_K \mathfrak{X} : y^2 = x^3 + 25/9 x + 25/9$ .

We compute  $\phi: X \to \mathfrak{X}$  and apply it to C:

$$\phi(C): y^2 = x^8 + 160 x^7 - 560 x^6 - 2800 x^5 + 64750 x^4 - 91000 x^3 + 3010000 x^2 - 2225000 x - 9696875.$$

# Reconstruction in genus 3

#### g = 3 (char $K \neq 2, 3, 5, 7$ )



- Reconstruction is possible for the  $C_2$  and  $C_4$  cases by Mestre's method;
- Gröbner basis methods give results for the strata of dimension  $\leq 1$ ;
- For  $C_2^3$ , these methods yield an extension, but we can descend as before;
- $\bullet$  For  $D_4$ , a descent to the field of moduli does not always exist.

# The $D_4$ case and beyond genus 3

The reduced automorphism group  $\overline{\operatorname{Aut}}(C)$  of C is  $\operatorname{Aut}(C)$  modulo the hyperelliptic involution.

## Theorem (Huggins 2007)

Let C/K be a hyperelliptic curve whose reduced automorphism group is not cyclic. Then its field of moduli is a field of definition.

For general g and  $|\overline{\operatorname{Aut}}(C)|$ , work in progress has made explicit the obstruction for C to be defined over its field of moduli. It is determined by the splitting of a certain quaternion algebra determined by the invariants of C.

## Conclusion

- For g=3, extend our results to small characteristics  $2 \le p \le 7$  (Lercier Basson).
- For hyperelliptic curves, prove that if p > 2g + 1, Gordan's method generates all invariants.
- For hyperelliptic curves, develop our functions in Sage (work in progress by Rovetta).
- For hyperelliptic curves, develop algorithms to compute twists over finite fields (work in progress by Rovetta).
- Generalize the computations of isomorphisms to ternary forms (work in progress for plane quartics; cf. earlier results by Van Rijnswou).