Improved CRT Algorithm for class polynomials in genus 2 ANTS X

Kristin Lauter ${ }^{1}$, Damien Robert ${ }^{2}$

${ }^{1}$ Microsoft Research ${ }^{2}$ LFANT Team, INRIA Bordeaux Sud-Ouest
09/07/2012 (San Diego)

Class polynomials

- If A / \mathbb{F}_{q} is an ordinary (simple) abelian variety of dimension g, $\operatorname{End}(A) \otimes \mathbb{Q}$ is a (primitive) CM field K (K is a totally imaginary quadratic extension of a totally real number field K_{0}).
- The class polynomials $H_{1}, \widehat{H}_{2} \ldots, \widehat{H}_{g(g+1) / 2}$ parametrizes the invariants of all abelian varieties A / \mathbb{C} with $\operatorname{End}(A) \simeq O_{K}$.
- If the class polynomials are totally split modulo \mathfrak{P}, their roots in $\mathbb{F}_{\mathfrak{F}}$ gives invariants of abelian varieties $A / \mathbb{F}_{\mathfrak{P}}$ with $\operatorname{End}(A) \simeq O_{K}$. It is easy to recover $\# A\left(\mathbb{F}_{\mathfrak{F}}\right)$ given O_{K} and \mathfrak{P}.

Some technical details

- The abelian varieties are principally polarized.
- A CM type Φ is a choice of an extension to K for each of the embedding $K_{0} \rightarrow \mathbb{R}$. We have

$$
\operatorname{Hom}(K, \mathbb{C})=\Phi \oplus \bar{\Phi}
$$

Example: If K is a (primitive) CM field of degree 4, then either K is cyclic and there is one class of CM type, or K is dihedral and there is two class of CM types.

- If A is an abelian variety with CM by K, the representation $K \rightarrow \operatorname{End} T_{0} A$ is given by a CM type Φ (which determines the isogeny class of A).
- The reflex field of (K, φ) is the CM field K^{r} generated by the traces $\sum_{\varphi \in \Phi} \varphi(x), x \in K$.
- The type norm $N_{\Phi}: K \rightarrow K^{r}$ is $x \mapsto \prod_{\varphi \in \Phi} \varphi(x)$.

Definition

The class polynomials $\left(H_{\Phi, i}\right)$ parametrizes the abelian varieties with CM by $\left(O_{K}, \Phi\right)$

Class polynomials and complex multiplication

Theorem (Main theorems of complex multiplication)

- The class polynomials $\left(H_{\Phi, i}\right)$ are defined over K_{0}^{r} and generate a subfield \mathfrak{H}_{Φ} of the Hilbert class field of K^{r}.
- If A/C has CM by $\left(O_{K}, \Phi\right)$ and \mathfrak{P} is a prime of good reduction in \mathfrak{H}_{Φ}, then the Frobenius of $A_{\mathfrak{F}}$ corresponds to $N_{\mathfrak{S}_{\phi}, \Phi^{\top}}(\mathfrak{P})$.

If $g \leqslant 2$, the CM types are in the same orbits under the absolute Galois action, and the class polynomials $H_{i}=\prod_{\Phi} H_{\Phi, i}$ are rationals (and even integrals when $g=1$).

- For efficiency, we compute the class polynomials H_{Φ} since they give a factor of the full class polynomials H. This mean we need less precision.
- In genus 2, this involves working over K_{0} rather than \mathbb{Q} in the Dihedral case.

Constructing class polynomials

- Analytic method: compute the invariants in \mathbb{C} with sufficient precision to recover the class polynomials.
- p-adic lifting: lift the invariants in \mathbb{Q}_{p} with sufficient precision to recover the class polynomials (require specific splitting behavior of p).
- CRT: compute the class polynomials modulo small primes, and use the CRT to reconstruct the class polynomials.

Remark

In genus 1 , all these methods are quasi-linear in the size of the output \Rightarrow computation bounded by memory. But we can construct directly the class polynomials modulo p with the explicit CRT.

Review of the CRT algorithm in genus 2

(1) Select a CRT prime p.
(2) For each abelian surface A in the $O\left(p^{3}\right)$ isomorphic classes:
(0) Check if A is in the right isogeny class by computing the characteristic polynomial of the Frobenius (do some trial tests to check for \#A before).
(2) Check if $\operatorname{End}(A)=O_{K}$.
(3) From the invariants of the maximal curves, reconstruct $H_{\Phi, i}$ $\bmod p$.
Repeat until we can recover $\left(H_{\Phi, i}\right.$ from the $\left(H_{\Phi, i} \bmod p\right.$ using the CRT.

Remark

Since K is primitive, we only need to look at Jacobians of hyperelliptic curves of genus 2 .

Selecting the prime p

Definition

A CRT prime $\mathfrak{p} \subset O_{K_{0}^{r}}$ is a prime such that all abelian varieties over \mathbb{C} with CM by $\left(O_{K}, \Phi\right)$ have good reduction modulo \mathfrak{p}.

- \mathfrak{p} is a CRT prime for the CM type Φ if and only if there exists an unramified prime \mathfrak{q} in $O_{K^{r}}$ of degree 1 above p of principal type norm (π)
- The isogeny class of the reduction of these abelian varieties $\bmod \mathfrak{p}$ is determined (up to a twist) by $\pm \pi$ where $N_{\Phi}(\mathfrak{p})=(\pi)$.
- For efficiency, we work with CRT primes \mathfrak{p} that are unramified of degree one over $p=\mathfrak{p} \cap \mathbb{Z}$.
\Rightarrow the reduction to \mathbb{F}_{p} of the abelian varieties with CM by $\left(O_{K}, \Phi\right)$ will then be ordinary.

Checking if a curve is maximal

- Let J be the Jacobian of a curve in the right isogeny class. Then $\mathbb{Z}[\pi, \bar{\pi}] \subset \operatorname{End}(J) \subset O_{K}$.
- Let $\gamma \in O_{K} \backslash \mathbb{Z}[\pi, \bar{\pi}]$. We want to check if $\gamma \in \operatorname{End}(J)$.
- If $p>3$ then $\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)$ is prime to p. We then have $\gamma \in \operatorname{End}(J) \Leftrightarrow p \gamma \in \operatorname{End}(J)$.
- Let n be the smallest integer thus that $n \gamma \in \mathbb{Z}[\pi, \bar{\pi}]$. Since $(\mathbb{Z}[\pi, \bar{\pi}]: \mathbb{Z}[\pi])=p$, we can write $n p \gamma=P(\pi)$.
- Then $\gamma \in \operatorname{End}(J) \Leftrightarrow P(\pi)=0$ on $J[n]$.
- In practice (Freeman-Lauter): compute $J\left[\ell^{d}\right]$ for $\ell^{d} \mid\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)$ and check the action of the generators of O_{K} on it.
- Our method: faster computation of $J\left[\ell^{d}\right]$ using parings.

Remark

If $1, \alpha, \beta, \gamma$ are generators of O_{K} as $a \mathbb{Z}$-module, it can happen that $\gamma=P(\alpha, \beta)$, so that we don't need to check that $\gamma \in \operatorname{End}(J)$.

Example 1: Checking if a curve is maximal

- Let $H: y^{2}=10 x^{6}+57 x^{5}+18 x^{4}+11 x^{3}+38 x^{2}+12 x+31$ over \mathbb{F}_{59} and J the Jacobian of H. We have $\operatorname{End}(J) \otimes \mathbb{Q}=\mathbb{Q}(i \sqrt{29+2 \sqrt{29}})$ and we want to check if $\operatorname{End}(J)=O_{K}$.
- O_{K} is generated as a \mathbb{Z}-module by $1, \alpha, \beta, \gamma . \alpha$ is of index 2 in $O_{K} / \mathbb{Z}[\pi, \bar{\pi}], \beta$ of index 4 and γ of index 40 .
- So the old algorithm will check $J\left[2^{3}\right]$ and $J[5]$.
- But $\left(O_{K}\right)_{2}=\mathbb{Z}_{2}[\pi, \bar{\pi}, \alpha]$, so we only need to check $J[2]$ and $J[5]$.

Example 2: checking if a curve is maximal

- Let $H: y^{2}=80 x^{6}+51 x^{5}+49 x^{4}+3 x^{3}+34 x^{2}+40 x+12$ over \mathbb{F}_{139} and J the Jacobian of H. We have $\operatorname{End}(J) \otimes \mathbb{Q}=\mathbb{Q}(i \sqrt{13+2 \sqrt{29}})$ and we want to check if $\operatorname{End}(J)=O_{K}$.
- For that we need to compute $J\left[3^{5}\right]$, that lives over an extension of degree 81 (for the twist it lives over an extension of degree 162).
- With the old randomized algorithm, this computation takes 470 seconds (with 12 Frobenius trials over $\mathbb{F}_{1399^{162}}$).
- With the new algorithm computing the ℓ^{∞}-torsion, it only takes 17.3 seconds (needing only 4 random points over $\mathbb{F}_{139^{11}}$, approx 4 seconds needed to get a new random point of ℓ^{∞}-torsion).

Obtaining all the maximal curves

- If J is a maximal curve, and ℓ does not divide ($O_{K}: \mathbb{Z}[\pi, \bar{\pi}]$), then any (ℓ, ℓ)-isogenous curve is maximal.
- The maximal Jacobians form a principal homogeneous space under the Shimura class group $\mathfrak{C}\left(O_{K}\right)=\left\{(I, \rho) \mid I \bar{I}=(\rho)\right.$ and $\left.\rho \in K_{0}^{+}\right\}$.
- (ℓ, ℓ)-isogenies between maximal Jacobians correspond to element of the form $(I, \ell) \in \mathfrak{C}\left(O_{K}\right)$. We can use the structure of $\mathfrak{C}\left(O_{K}\right)$ to determine the number of new curves we will obtain with (ℓ, ℓ)-isogenies.
\Rightarrow Don't compute unneeded isogenies.
- It can be faster to compute (ℓ, ℓ)-isogenies with $\ell \mid\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)$ to find new maximal Jacobians when ℓ and $\operatorname{val}_{\ell}\left(\left(O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right)\right)$ is small.

"Going up"

- There is p^{3} classes of isomorphic curves, but only a very small number $\left(\# \mathbb{C}\left(O_{K}\right)\right)$ with $\operatorname{End}(J)=O_{K}$.
- But there is at most $16 p^{3 / 2}$ isogeny class.
\Rightarrow On average, there is $\approx p^{3 / 2}$ curves in a given isogeny class.
\Rightarrow If we have a curve in the right isogeny class, try to find isogenies giving a maximal curve!

An algorithm for "going up"

(1) Let $\gamma \in O_{K} \backslash \operatorname{End}(J)$. We can assume that $\ell^{\infty} \gamma \in \mathbb{Z}[\pi, \bar{\pi}]$.
(2) Let d be the smallest integer such that $\gamma\left(J\left[\ell^{d}\right]\right) \neq\{0\}$, and let $K=\gamma\left(J\left[\ell^{d}\right]\right)$. By definition, $K \subset J[\ell]$.
(3) We compute all (ℓ, ℓ)-isogeneous Jacobians J^{\prime} where the kernel intersect K. Keep J^{\prime} if $\# \gamma\left(J^{\prime}\left[\ell^{d}\right]\right)<\# K$ (and be careful to prevent cycles).

- First go up for $\gamma=\left(\pi^{\alpha}-1\right) / \ell$: this minimize the extensions we have to work with.

Some pesky details

Non maximal cycles \Rightarrow We try to reduce globally the obstruction for all endomorphisms.

Some pesky details

Local minimums I

Some pesky details

Local minimums II

Some pesky details

Polarizations

Some pesky details

- It is not always possible to go up. We would need more general isogenies than (ℓ, ℓ)-isogenies.
- Most frequent case: we can't go up because there is no (ℓ, ℓ)-isogenies at all! (And we can detect this).

The modified CRT algorithm

(Select a prime p.
(3) Select a random Jacobian until it is in the right isogeny class.
(3) Go up to find a Jacobian with CM by O_{K} (if it fails, go back to last step).
(9) Use isogenies to find all other Jacobians with CM by O_{K}.
(3) From the invariants of the maximal abelian surfaces, reconstruct $H_{i} \bmod p$.

Further details

- We sieve the primes p (using a dynamic approach).
- Estimate the number of curves where we can go up as

$$
\sum_{d\left[\left[O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right]\right.} \# \mathfrak{C}(\mathbb{Z}[\pi, \bar{\pi}]) / d
$$

(for $\left[O_{K}: \mathbb{Z}[\pi, \bar{\pi}]\right] / d$ not divisible by a ℓ where we can't go up), with

$$
\# \mathfrak{C}(\mathbb{Z}[\pi, \bar{\pi}])=\frac{c\left(O_{K}: Z[\pi, \bar{\pi}]\right) \# \mathrm{Cl}\left(O_{K}\right) \operatorname{Reg}\left(O_{K}\right)\left(\widehat{O}_{K}^{*}: \widehat{\mathbb{Z}}[\pi, \bar{\pi}]^{*}\right)}{2 \# \mathrm{Cl}(\mathbb{Z}[\pi+\bar{\pi}]) \operatorname{Reg}(\mathbb{Z}[\pi+\bar{\pi}])}
$$

- To find the denominators: do a rationnal reconstruction in K_{0}^{r} using LLL or use Brunier-Yang formulas.

p	l^{d}	α_{d}	\# Curves	Estimate	Time (old)	Time (new)
7	2^{2}	4	7	8	$0.5+0.3$	$0+0.2$
17	2	1	39	32	$4+0.2$	$0+0.1$
23	$2^{2}, 7$	4,3	49	51	$9+2.3$	$0+0.2$
71	2^{2}	4	7	8	$255+0.7$	$5.3+0.2$
97	2	1	39	32	$680+0.3$	$2+0.1$
103	$2^{2}, 17$	4,16	119	127	$829+17.6$	$0.5+1$
113	$2^{5}, 7$	16,6	1281	877	$1334+28.8$	$0.2+1.3$
151	$2^{2}, 7,17$	$4,3,16$	-	-	0	0
					$3162 s$	$13 s$

Computing the class polynomial for $K=\mathbb{Q}(i \sqrt{2+\sqrt{2}}), \mathfrak{C}\left(O_{K}\right)=\{0\}$.
$H_{1}=X-1836660096, \quad H_{2}=X-28343520, \quad H_{3}=X-9762768$

p	l^{d}	α_{d}	\# Curves	Estimate	Time (old)	Time (new)
29	3,23	2,264	-	-	-	-
53	3,43	2,924	-	-	-	-
61	3	2	9	6	$167+0.2$	$0.2+0.5$
79	3^{3}	18	81	54	$376+8.1$	$0.3+0.9$
107	$3^{2}, 43$	6,308	-	-	-	-
113	3,53	1,52	159	155	$1118+137.2$	$0.8+25$
131	$3^{2}, 53$	6,52	477	477	$1872+127.4$	$2.2+44.4$
139	3^{5}	81	$?$	486	-	$1+36.7$
157	3^{4}	27	243	164	$3147+16.5$	-
					$6969 s$	$114 s$

Computing the class polynomial for $K=\mathbb{Q}(i \sqrt{13+2 \sqrt{29}}), \mathfrak{C}\left(O_{K}\right)=\{0\}$.

$$
H_{1}=X-268435456, \quad H_{2}=X+5242880, \quad H_{3}=X+2015232 .
$$

p	l^{d}	α_{d}	\# Curves	Estimate	Time (old)	Time (new)
7	-	-	1	1	0.3	$0+0.1$
23	$\mathbf{1 3}$	84	15	$2(16)$	$9+70.7$	$0.4+24.6$
53	7	3	7	7	$105+0.5$	$7.7+0.5$
59	$2, \mathbf{5}$	1,12	322	$48(286)$	$164+6.4$	$1.4+0.6$
83	3,5	4,24	77	108	$431+9.8$	$2.4+1.1$
103	67	1122	-	-	-	-
107	$7, \mathbf{1 3}$	3,21	105	$8(107)$	$963+69.3$	-
139	$\mathbf{5}^{2}, 7$	60,2	259	$9(260)$	$2189+62.1$	-
181	3	1	161	135	$5040+3.6$	$4.5+0.2$
197	5,109	24,5940	-	-	-	-
199	$\mathbf{5}^{2}$	60	37	$2(39)$	$10440+35.1$	-
223	2,23	1,11	1058	$39(914)$	$10440+35.1$	-
227	109	1485	-	-	-	-
233	$5,7,13$	$8,3,28$	735	$55(770)$	$11580+141.6$	$88.3+29.4$
239	7,109	6,297	-	-	-	-
257	$3,7,13$	$4,6,84$	1155	$109(1521)$	$17160+382.8$	-
313	$3, \mathbf{1 3}$	1,14	$?$	$146(2035)$	-	$165+14.7$
373	5,7	6,24	$?$	312	-	$183.4+3.8$
541	$2,7,13$	$1,3,14$	$?$	$294(4106)$	-	$91+5.5$
571	$3,5,7$	$2,6,6$	$?$	$1111(6663)$	-	$96.6+3.1$
					56585 s	776 s

Computing the class polynomial for $K=\mathbb{Q}(i \sqrt{29+2 \sqrt{29}}), \mathfrak{C}\left(O_{K}\right)=\{0\}$.

$$
H_{1}=244140625 X-2614061544410821165056
$$

A Dihedral example

- K is the CM field defined by $X^{4}+13 X^{2}+41 . O_{K_{0}}=\mathbb{Z}[\alpha]$ where α is a root of $X^{2}-3534 X+177505$.
- We first compute the class polynomials over \mathbb{Z} using Spallek's invariants, and obtain the following polynomials in 5956 seconds:

$$
\begin{gathered}
H_{1}=64 X^{2}+14761305216 X-11157710083200000 \\
H_{2}=16 X^{2}+72590904 X-8609344200000 \\
H_{3}=16 X^{2}+28820286 X-303718531500
\end{gathered}
$$

- Next we compute them over the real subfield and using Streng's invariants. We get in 1401 seconds:

$$
\begin{gathered}
H_{1}=256 X-2030994+56133 \alpha \\
H_{2}=128 X+12637944-2224908 \alpha \\
H_{3}=65536 \mathrm{X}-11920680322632+1305660546324 \alpha
\end{gathered}
$$

- Primes used: 59, 139, 241, 269, 131, 409, 541, 271, 359, 599, 661, 761.

A pessimal view on the complexity of the CRT method in dimension 2

- The degree of the class polynomials is $\widetilde{O}\left(\Delta_{0}^{1 / 2} \Delta_{1}^{1 / 2}\right)$.
- The size of coefficients is bounded by $\widetilde{O}\left(\Delta_{0}^{5 / 2} \Delta_{1}^{3 / 2}\right)$ (non optimal). In practice, they are $\widetilde{O}\left(\Delta_{0}^{1 / 2} \Delta_{1}^{1 / 2}\right)$.
\Rightarrow The size of the class polynomials is $\widetilde{O}\left(\Delta_{0} \Delta_{1}\right)$.
- We need $\widetilde{O}\left(\Delta_{0}^{1 / 2} \Delta_{1}^{1 / 2}\right)$ primes, and by Cebotarev the density of primes we can use is $\widetilde{O}\left(\Delta_{0}^{1 / 2} \Delta_{1}^{1 / 2}\right) \Rightarrow$ the largest prime is $p=\widetilde{O}\left(\Delta_{0} \Delta_{1}\right)$.
\Rightarrow Finding a curve in the right isogeny class will take $\Omega\left(p^{3 / 2}\right)$ so the total complexity is $\Omega\left(\Delta_{0}^{2} \Delta_{1}^{2}\right) \Rightarrow$ we can't achieve quasi-linearity even if the going-up step always succeed!
\Rightarrow A solution would be to work over convenient subspaces of the moduli space.

Perspectives

- In progress: Improve the search for curves in the isogeny class;
- In progress: combine the going-up method with Bisson's sub-exponential endomorphism ring computation. Particularly interesting when a power divides the index;
- Use Ionica pairing based approach to choose horizontal kernels in the maximal step;
- Change the polarization;
- Work inside Humbert surfaces;
- Work with supersingular abelian varieties;
- More general isogenies than (ℓ, ℓ)-isogenies.

