Computing Equations of Curves with Many Points

Virgile Ducet ${ }^{1} \quad$ Claus Fieker ${ }^{2}$
${ }^{1}$ Institut de Mathématiques de Luminy
${ }^{2}$ Fachbereich Mathematik Universität Kaiserslautern

Algorithmic Number Theory Symposium, July 2012

Motivation

Let C / \mathbb{F}_{q} be a curve. Set $N(C)=\left|C\left(\mathbb{F}_{q}\right)\right|$.

Motivation

Let C / \mathbb{F}_{q} be a curve. Set $N(C)=\left|C\left(\mathbb{F}_{q}\right)\right|$.
Question: How big can $N(C)$ be?

Motivation

Let C / \mathbb{F}_{q} be a curve. Set $N(C)=\left|C\left(\mathbb{F}_{q}\right)\right|$.
Question: How big can $N(C)$ be?
Introduce $N_{q}(g)=\max _{\substack{C / \mathbb{F}_{q} \\ g(C)=g}} N(C)$.

Motivation

Let C / \mathbb{F}_{q} be a curve. Set $N(C)=\left|C\left(\mathbb{F}_{q}\right)\right|$.
Question: How big can $N(C)$ be?
Introduce $N_{q}(g)=\max _{C / \mathbb{F}_{q}} N(C)$.

$$
g(C)=g
$$

Upper bounds:

- Hasse-Weil-Serre bound:

$$
\left|N_{q}(g)-q-1\right| \leqslant g \cdot\lfloor 2 \sqrt{q}\rfloor ;
$$

- Oesterlé bound;
- articles of Howe and Lauter ('03, '12), ...

LOWER BOUNDS: Find curves with as many points as possible.

LOWER BOUNDS: Find curves with as many points as possible.
Possible methods:

- curves with explicit equations: Hermitian curves, Ree curves, Suzuki curves,...
- curves defined by explicit coverings: Artin-Schreier-Witt, Kummer,...
- curves with modular structure: elliptic or Drinfel'd modular curves,...
- curves defined by a non-explicit covering: abelian coverings (Class Field Theory, Drinfel'd modules),. . .

LOWER BOUNDS: Find curves with as many points as possible.
Possible methods:

- curves with explicit equations: Hermitian curves, Ree curves, Suzuki curves,...
- curves defined by explicit coverings: Artin-Schreier-Witt, Kummer,...
- curves with modular structure: elliptic or Drinfel'd modular curves,...
- curves defined by a non-explicit covering: abelian coverings (Class Field Theory, Drinfel'd modules),...

Our approach: Class Field Theory.
Therefore we switch between the language of function fields and curves. For instance, if $K=\mathbb{F}_{q}(C)$, we set $N(K) \stackrel{\text { def }}{=} \# \mathrm{Pl}(K, 1)=N(C)$.

Why use Class Field Theory?

Remark:
Let L / K be an algebraic extension of algebraic function fields defined over \mathbb{F}_{q}. Then

$$
N(L) \geqslant[L: K] \# \operatorname{Split}_{\mathbb{F}_{q}}(L / K)+\# \operatorname{Tot}^{\operatorname{Ram}_{\mathbb{F}_{q}}}(L / K) .
$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

Why use Class Field Theory?

Remark:
Let L / K be an algebraic extension of algebraic function fields defined over \mathbb{F}_{q}. Then

$$
N(L) \geqslant[L: K] \# \operatorname{Split}_{\mathbb{F}_{q}}(L / K)+\# \operatorname{Tot}^{\operatorname{Ram}_{\mathbb{F}_{q}}}(L / K)
$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

Problem: One does not know in general the equations of the abelian coverings of K (problematic for applications, for example to coding theory).

Why use Class Field Theory?

REmark:

Let L / K be an algebraic extension of algebraic function fields defined over \mathbb{F}_{q}. Then

$$
N(L) \geqslant[L: K] \# \operatorname{Split}_{\mathbb{F}_{q}}(L / K)+\# \operatorname{Tot}^{\operatorname{Ram}_{\mathbb{F}_{q}}}(L / K) .
$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

Problem: One does not know in general the equations of the abelian coverings of K (problematic for applications, for example to coding theory).

This Talk: we explain how to find these equations and describe an algorithm to find good curves (look at www.manypoints.org).

The Artin Map

Let L / K be an abelian extension. Let P be a place of K and Q be a place of L over P. Let $F_{P}\left(\right.$ resp. $\left.F_{Q}\right)$ be the residue field of K at P (resp. of L at Q).

When P is unramified the reduction map $\operatorname{Gal}_{P}(L / K) \rightarrow \operatorname{Gal}\left(F_{Q} / F_{P}\right)$ is an isomorphism. The pre-image of Frobenius is independent of Q; one denotes it by $(P, L / K)$ and call it the Frobenius automorphism at P.

Definition:

The map $P \mapsto(P, L / K) \in \operatorname{Gal}(L / K)$ can be extended linearly to the set of divisors supported outside the ramified places of L / K. The resulting map is called the Artin map and is denoted $(\cdot, L / K)$.

Class Field Theory

Definition:

A modulus on K is an effective divisor.
Let \mathfrak{m} be a modulus supported on a set $S \subset \mathrm{Pl}_{K}$, we denote by $\mathrm{Div}_{\mathfrak{m}}$ the group of divisors which support is disjoint from S. Set

$$
P_{\mathfrak{m}, 1}=\left\{\operatorname{div}(f): f \in K^{\times} \text {and } v_{P}(f-1) \geq v_{P}(\mathfrak{m}) \text { for all } P \in S\right\}
$$

Definition:

A congruence subgroup modulo \mathfrak{m} is a subgroup $H<\operatorname{Div}_{\mathfrak{m}}$ of finite index such that $P_{\mathfrak{m}, 1} \subseteq H$.

Existence Theorem:

For every modulus \mathfrak{m} and every congruence subgroup H modulo \mathfrak{m}, there exists a unique abelian extension L_{H} of K, called the class field of H, such that the Artin map provides an isomorphism

$$
\operatorname{Div}_{\mathfrak{m}} / H \cong \operatorname{Gal}\left(L_{H} / K\right)
$$

Artin Reciprocity Law:

For every abelian extension L / K, there exists an admissible modulus \mathfrak{m} and a unique congruence subgroup $H_{L, \mathfrak{m}}$ modulo \mathfrak{m}, such that the Artin map provides an isomorphism

$$
\operatorname{Div}_{\mathfrak{m}} / H_{L, \mathfrak{m}} \cong \operatorname{Gal}(L / K)
$$

Definition:

The conductor of L / K, denoted $\mathfrak{f}_{L / K}$, is the smallest admissible modulus. It is supported on exactly the ramified places of L / K.

Main Theorem of Class Field Theory:

Let \mathfrak{m} be a modulus. There is a 1-1 inclusion reversing correspondence between congruence subgroups H modulo \mathfrak{m} and finite abelian extensions L of K of conductor smaller than \mathfrak{m}. Furthermore the Artin map provides an isomorphism

$$
\operatorname{Div}_{\mathfrak{m}} / H \cong \operatorname{Gal}(L / K)
$$

Computing Abelian Extensions

Data: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m}.

Computing Abelian Extensions

Data: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m}.

Goal: Compute the class field L of H.

Computing Abelian Extensions

Data: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m}.

Goal: Compute the class field L of H.

AsSumption: $\operatorname{Div}_{\mathfrak{m}} / H \cong \mathbb{Z} / \ell^{m} \mathbb{Z}$ for a prime number ℓ and an integer $m \geqslant 1$. Two cases: $\ell=p \stackrel{\text { def }}{=} \operatorname{char}(K)$ or $\ell \neq p$.

Computing Abelian Extensions

Data: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m}.

Goal: Compute the class field L of H.
AsSumption: $\operatorname{Div}_{\mathfrak{m}} / H \cong \mathbb{Z} / \ell^{m} \mathbb{Z}$ for a prime number ℓ and an integer $m \geqslant 1$. Two cases: $\ell=p \stackrel{\text { def }}{=} \operatorname{char}(K)$ or $\ell \neq p$.

Strategy: Find an abelian extension M of K containing L for which we can compute explicitly the Artin map. Then compute L as the subfield of M fixed by the image of H.

Remark:
Let $P \in \mathrm{Pl}_{K}$. Then $\left.(P, M / K)\right|_{L}=(P, L / K)$.
So

$$
\begin{aligned}
(H, M / K) & =\{(P, M / K): P \in H\} \\
& =\left\{\sigma \in \operatorname{Gal}(M / K):\left.\sigma\right|_{L}=\operatorname{Id}_{L}\right\} \\
& =\operatorname{Gal}(M / L) .
\end{aligned}
$$

Galois Theory implies $L=M^{(H, M / K)}$.

Set $n=I^{m}$. The two cases are related to the following equations:

$$
\begin{cases}y^{n}=\alpha & \text { if } \ell \neq p \text { (Kummer theory) } \\ \wp(\vec{y})=\vec{\alpha} & \text { if } I=p \text { (Artin-Schreier-Witt theory). }\end{cases}
$$

Set $n=I^{m}$. The two cases are related to the following equations:

$$
\begin{cases}y^{n}=\alpha & \text { if } \ell \neq p \text { (Kummer theory) } \\ \wp(\vec{y})=\vec{\alpha} & \text { if } I=p \text { (Artin-Schreier-Witt theory) }\end{cases}
$$

Case $\ell \neq p$:
Set $K^{\prime}=K\left(\zeta_{n}\right)$ and $L^{\prime}=L\left(\zeta_{n}\right)$. By Kummer theory one can compute a set S of places of K^{\prime} such that $L^{\prime}=K^{\prime}(\sqrt[n]{\alpha})$ for a S-unit α. Adding the nth roots of every S-unit to K^{\prime}, we obtain an abelian extension $M=K^{\prime}\left(\sqrt[n]{U_{S}}\right)$ for which we have an explicit Artin map. Using the data of the congruence subgroup H, one can compute L^{\prime}.

Set $n=I^{m}$. The two cases are related to the following equations:

$$
\begin{cases}y^{n}=\alpha & \text { if } \ell \neq p \text { (Kummer theory) } \\ \wp(\vec{y})=\vec{\alpha} & \text { if } I=p \text { (Artin-Schreier-Witt theory). }\end{cases}
$$

Case $\ell \neq p$:
Set $K^{\prime}=K\left(\zeta_{n}\right)$ and $L^{\prime}=L\left(\zeta_{n}\right)$. By Kummer theory one can compute a set S of places of K^{\prime} such that $L^{\prime}=K^{\prime}(\sqrt[n]{\alpha})$ for a S-unit α. Adding the nth roots of every S-unit to K^{\prime}, we obtain an abelian extension $M=K^{\prime}\left(\sqrt[n]{U_{S}}\right)$ for which we have an explicit Artin map. Using the data of the congruence subgroup H, one can compute L^{\prime}.

The extension L^{\prime} / K is abelian and one can compute its Artin map. Then we apply the same recipe to the tower $L^{\prime} / L / K$.

Case $\ell=p$

Problem: Kummer theory does not apply.

Case $\ell=p$

Problem: Kummer theory does not apply.
Instead: Use Artin-Schreier-Witt theory.

Case $\ell=p$

Problem: Kummer theory does not apply.
Instead: Use Artin-Schreier-Witt theory.
Definition:
The Witt vectors of length m with coefficients in K is the set of m-tuples $\vec{x}=\left(x_{1}, \ldots, x_{m}\right)$ with $x_{i} \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $\mathrm{W}_{m}(K)$.

Case $\ell=p$

Problem: Kummer theory does not apply.
Instead: Use Artin-Schreier-Witt theory.

Definition:

The Witt vectors of length m with coefficients in K is the set of m-tuples $\vec{x}=\left(x_{1}, \ldots, x_{m}\right)$ with $x_{i} \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $\mathrm{W}_{m}(K)$.

It comes equipped with the Artin-Schreier-Witt operator $\wp: \mathrm{W}_{m}(K) \rightarrow \mathrm{W}_{m}(K)$ defined by

$$
\wp(\vec{x})=\left(x_{1}^{p}, \ldots, x_{m}^{p}\right)-\left(x_{1}, \ldots, x_{m}\right) .
$$

Case $\ell=p$

Problem: Kummer theory does not apply.
Instead: Use Artin-Schreier-Witt theory.

Definition:

The Witt vectors of length m with coefficients in K is the set of m-tuples $\vec{x}=\left(x_{1}, \ldots, x_{m}\right)$ with $x_{i} \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $\mathrm{W}_{m}(K)$.

It comes equipped with the Artin-Schreier-Witt operator $\wp: \mathrm{W}_{m}(K) \rightarrow \mathrm{W}_{m}(K)$ defined by

$$
\wp(\vec{x})=\left(x_{1}^{p}, \ldots, x_{m}^{p}\right)-\left(x_{1}, \ldots, x_{m}\right) .
$$

Remark:
Let $\vec{x} \in \mathrm{~W}_{m}(K)$. The equation $\wp(\vec{y})=\vec{x}$ defines an extension

$$
K\left(\wp^{-1}(\vec{x})\right) \stackrel{\text { def }}{=} K\left(y_{1}, \ldots, y_{m}\right)
$$

Main Theorem of ASW theory: There exists an element $\vec{\beta} \in \mathrm{W}_{m}(K)$ such that $L=K\left(\wp^{-1}(\vec{\beta})\right)$.

Main Theorem of ASW theory: There exists an element $\vec{\beta} \in \mathrm{W}_{m}(K)$ such that $L=K\left(\wp^{-1}(\vec{\beta})\right)$.

Notation:

Let \wp_{i} be such that

$$
\wp(\vec{x})=\left(\wp_{1}\left(x_{1}\right), \ldots, \wp_{i}\left(x_{1}, \ldots, x_{i}\right), \ldots, \wp_{m}\left(x_{1}, \ldots, x_{m}\right)\right) .
$$

Set $K_{0}=K$ and $K_{i}=K_{i-1}\left(\wp_{i}^{-1}\left(\beta_{i}\right)\right)$ for $i=1, \ldots, m$.

Main Theorem of ASW theory: There exists an element $\vec{\beta} \in \mathrm{W}_{m}(K)$ such that $L=K\left(\wp^{-1}(\vec{\beta})\right)$.

Notation:

Let \wp_{i} be such that

$$
\wp(\vec{x})=\left(\wp_{1}\left(x_{1}\right), \ldots, \wp_{i}\left(x_{1}, \ldots, x_{i}\right), \ldots, \wp_{m}\left(x_{1}, \ldots, x_{m}\right)\right) .
$$

Set $K_{0}=K$ and $K_{i}=K_{i-1}\left(\wp_{i}^{-1}\left(\beta_{i}\right)\right)$ for $i=1, \ldots, m$.
Strategy to compute $L=K_{m}$: Compute β_{i} and K_{i} recursively.

Main Theorem of ASW theory: There exists an element $\vec{\beta} \in \mathrm{W}_{m}(K)$ such that $L=K\left(\wp^{-1}(\vec{\beta})\right)$.

Notation:

Let \wp_{i} be such that

$$
\wp(\vec{x})=\left(\wp_{1}\left(x_{1}\right), \ldots, \wp_{i}\left(x_{1}, \ldots, x_{i}\right), \ldots, \wp_{m}\left(x_{1}, \ldots, x_{m}\right)\right) .
$$

Set $K_{0}=K$ and $K_{i}=K_{i-1}\left(\wp_{i}^{-1}\left(\beta_{i}\right)\right)$ for $i=1, \ldots, m$.
Strategy to compute $L=K_{m}$: Compute β_{i} and K_{i} recursively.
By the Strong Approximation Theorem and the work of H.L. Schmid (1936) one can find a divisor D_{i} such that $\beta_{i} \in \mathcal{L}\left(D_{i}\right)$.

Set $M_{i}=K\left(x_{1}, \ldots, x_{i-1}, \wp^{-1}\left(\mathcal{L}\left(D_{i}\right)\right)\right)$. Then it also provides an explicit Artin map for the extension M_{i} / K_{i-1}, from which one can compute β_{i} and thus K_{i}.

Cyclic Extensions of Prime Degree

Proposition:

Let L / K be a cyclic extension of prime degree ℓ and of conductor $f_{L / K}$. Assume that they are defined over \mathbb{F}_{q}. Then the genus of L verifies:

$$
g_{L}=1+\ell\left(g_{K}-1\right)+\frac{1}{2}(\ell-1) \operatorname{deg}\left(\mathfrak{f}_{L / K}\right) .
$$

Cyclic Extensions of Prime Degree

Proposition:

Let L / K be a cyclic extension of prime degree ℓ and of conductor $f_{L / K}$. Assume that they are defined over \mathbb{F}_{q}. Then the genus of L verifies:

$$
g_{L}=1+\ell\left(g_{K}-1\right)+\frac{1}{2}(\ell-1) \operatorname{deg}\left(\mathfrak{f}_{L / K}\right)
$$

Remark:
There seems to be no dependence on the ramification type of the extension (tame or wild), but in fact:

Cyclic Extensions of Prime Degree

Proposition:

Let L / K be a cyclic extension of prime degree ℓ and of conductor $f_{L / K}$. Assume that they are defined over \mathbb{F}_{q}. Then the genus of L verifies:

$$
g_{L}=1+\ell\left(g_{K}-1\right)+\frac{1}{2}(\ell-1) \operatorname{deg}\left(\mathfrak{f}_{L / K}\right)
$$

Remark:
There seems to be no dependence on the ramification type of the extension (tame or wild), but in fact:

Proposition:

A place P of K is wildly ramified in L if and only if $\mathfrak{f}_{L / K} \geqslant 2 P$ (and thus tamely ramified if and only if $\left.v_{P}\left(f_{L / K}\right)=1\right)$.

The Algorithm

Input: A function field K / \mathbb{F}_{q}, a prime ℓ, an integer G.
Output: The equations of all cyclic extensions L of K of degree ℓ such that $g(L) \leqslant G$ and $N(L)$ improves the best known record.

1. Compute all the moduli of degree less than
$B=(2 G-2-\ell(2 g(K)-2)) /(\ell-1)$.
2. FOR each such modulus \mathfrak{m} DO
3. Compute the ray class group $\operatorname{Pic}_{\mathfrak{m}} \cong \operatorname{Div}_{\mathfrak{m}} / P_{\mathfrak{m}, 1}$.
4. Compute the set T of subgroups of $\mathrm{Pic}_{\mathfrak{m}}$ of index ℓ.
5. FOR every H in T DO
6. Compute $g(L)$ and $n=N(L)$, where L is the class field of H.
7. IF n is greater than the best known record THEN
8. Update n as the new lower bound on $N_{q}(g(L))$.
9. Compute the equation of L.
10. END IF
11. END FOR
12. END FOR

New Results over \mathbb{F}_{2}

g	$N=\|S\|+\|T\|+\|R\|$	$O B$	g_{0}	\mathfrak{f}	G
14	$16=16+0+0$	16	4	$2 P_{7}$	$\mathbb{Z} / 2 \mathbb{Z}$
17	$18=16+2+0$	18	2	$4 P_{1}+6 P_{1}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
24	$23=20+1+2$	23	4^{\prime}	$2 P_{1}+4 P_{1}+2 P_{2}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
29	$26=24+2+0$	27	4	$4 P_{1}+8 P_{1}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
41	$34=32+2+0$	35	3^{\prime}	$4 P_{1}+4 P_{1}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$
45	$34=32+2+0$	37	2	$4 P_{1}+8 P_{1}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$
46	$35=32+1+2$	38	3	$3 P_{1}+8 P_{1}$	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$

$$
g \text { : genus of the covering. }
$$

N : number of F_{2}-rational points. $O B$: Oesterlé bound.
g_{0} : genus of the base curve. \mathfrak{f} : conductor of the extension.
G : Galois group. S : totally split places.
T : totally ramified places. R : (non-totally) ramified places.

Example:

Take the genus 2 maximal curve C_{0} with equation

$$
y^{2}+\left(x^{3}+x+1\right) y+x^{5}+x^{4}+x^{3}+x
$$

Then the new curve of genus 17 with 18 rational points is a fiber product of Artin-Schreier coverings of C_{0} with equations

$$
\left\{\begin{array}{l}
z^{2}+z+\left(x^{4}+x^{2}+x+1\right) / x^{3} y+\left(x^{6}+x^{5}+x+1\right) / x^{2} \\
w^{2}+w+\left(x^{3}+1\right) / x y+x+1
\end{array}\right.
$$

1998 World Cup's 14th Anniversary!!!!!!!!!!!!!!! France $3=N\left(\mathbb{P}_{\mathbb{F}_{2}}^{1}\right)$ Brazil $g\left(\mathbb{P}_{\mathbb{F}_{2}}^{1}\right)=0$

