Computing Equations of Curves with Many Points

Virgile Ducet¹ Claus Fieker²

¹Institut de Mathématiques de Luminy

²Fachbereich Mathematik Universität Kaiserslautern

Algorithmic Number Theory Symposium, July 2012

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

QUESTION: How big can N(C) be?

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

QUESTION: How big can N(C) be?

Introduce
$$N_q(g) = \max_{\substack{C/\mathbb{F}_q \\ g(C)=g}} N(C).$$

Let C/\mathbb{F}_q be a curve. Set $N(C) = |C(\mathbb{F}_q)|$.

QUESTION: How big can N(C) be?

Introduce
$$N_q(g) = \max_{\substack{C/\mathbb{F}_q \\ g(C)=g}} N(C).$$

UPPER BOUNDS:

Hasse-Weil-Serre bound:

$$|N_q(g) - q - 1| \leq g \cdot \lfloor 2\sqrt{q} \rfloor;$$

- Oesterlé bound;
- articles of Howe and Lauter ('03, '12),...

LOWER BOUNDS: Find curves with as many points as possible.

V. Ducet and C. Fieker (IML, FMUK)

Computing Equations of Curves

LOWER BOUNDS: Find curves with as many points as possible.

Possible methods:

- curves with explicit equations: Hermitian curves, Ree curves, Suzuki curves,...
- ► curves defined by explicit coverings: Artin-Schreier-Witt, Kummer,...
- curves with modular structure: elliptic or Drinfel'd modular curves,...
- curves defined by a non-explicit covering: abelian coverings (Class Field Theory, Drinfel'd modules),...

LOWER BOUNDS: Find curves with as many points as possible.

Possible methods:

- curves with explicit equations: Hermitian curves, Ree curves, Suzuki curves,...
- ► curves defined by explicit coverings: Artin-Schreier-Witt, Kummer,...
- curves with modular structure: elliptic or Drinfel'd modular curves,...
- curves defined by a non-explicit covering: abelian coverings (Class Field Theory, Drinfel'd modules),...

OUR APPROACH: Class Field Theory.

Therefore we switch between the language of function fields and curves. For instance, if $K = \mathbb{F}_q(C)$, we set $N(K) \stackrel{def}{=} \# \operatorname{Pl}(K, 1) = N(C)$. Why use Class Field Theory?

Remark:

Let L/K be an algebraic extension of algebraic function fields defined over $\mathbb{F}_{q}.$ Then

$$N(L) \ge [L:K] # \operatorname{Split}_{\mathbb{F}_q}(L/K) + # \operatorname{TotRam}_{\mathbb{F}_q}(L/K).$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

Why use Class Field Theory?

Remark:

Let L/K be an algebraic extension of algebraic function fields defined over $\mathbb{F}_{q}.$ Then

$$N(L) \ge [L:K] # \operatorname{Split}_{\mathbb{F}_q}(L/K) + # \operatorname{TotRam}_{\mathbb{F}_q}(L/K).$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

PROBLEM: One does not know in general the equations of the abelian coverings of K (problematic for applications, for example to coding theory).

Why use Class Field Theory?

REMARK:

Let L/K be an algebraic extension of algebraic function fields defined over $\mathbb{F}_{q}.$ Then

$$N(L) \ge [L:K] # \operatorname{Split}_{\mathbb{F}_q}(L/K) + # \operatorname{TotRam}_{\mathbb{F}_q}(L/K).$$

Class Field Theory describes the abelian extensions of K in terms of data intrinsic to K and provides a good control on the ramification and decomposition behavior in the extension.

PROBLEM: One does not know in general the equations of the abelian coverings of K (problematic for applications, for example to coding theory).

 $\rm THIS~TALK:$ we explain how to find these equations and describe an algorithm to find good curves (look at www.manypoints.org).

V. Ducet and C. Fieker (IML, FMUK)

Computing Equations of Curves

The Artin Map

Let L/K be an abelian extension. Let P be a place of K and Q be a place of L over P. Let F_P (resp. F_Q) be the residue field of K at P (resp. of L at Q).

When P is unramified the reduction map $\operatorname{Gal}_P(L/K) \to \operatorname{Gal}(F_Q/F_P)$ is an isomorphism. The pre-image of Frobenius is independent of Q; one denotes it by (P, L/K) and call it the *Frobenius automorphism at P*.

DEFINITION:

The map $P \mapsto (P, L/K) \in \text{Gal}(L/K)$ can be extended linearly to the set of divisors supported outside the ramified places of L/K. The resulting map is called the Artin map and is denoted $(\cdot, L/K)$.

Class Field Theory

DEFINITION:

A modulus on K is an effective divisor.

Let \mathfrak{m} be a modulus supported on a set $S \subset \operatorname{Pl}_K$, we denote by $\operatorname{Div}_{\mathfrak{m}}$ the group of divisors which support is disjoint from S. Set

 $P_{\mathfrak{m},1} = \{ \operatorname{div}(f) : f \in K^{\times} \text{ and } v_{P}(f-1) \geq v_{P}(\mathfrak{m}) \text{ for all } P \in S \}.$

DEFINITION:

A congruence subgroup modulo \mathfrak{m} is a subgroup $H < \operatorname{Div}_{\mathfrak{m}}$ of finite index such that $P_{\mathfrak{m},1} \subseteq H.$

EXISTENCE THEOREM:

For every modulus \mathfrak{m} and every congruence subgroup H modulo \mathfrak{m} , there exists a unique abelian extension L_H of K, called the class field of H, such that the Artin map provides an isomorphism

$$\operatorname{Div}_{\mathfrak{m}}/H \cong \operatorname{Gal}(L_H/K).$$

Computing Equations of Curves

ARTIN RECIPROCITY LAW:

For every abelian extension L/K, there exists an *admissible modulus* \mathfrak{m} and a unique congruence subgroup $H_{L,\mathfrak{m}}$ modulo \mathfrak{m} , such that the Artin map provides an isomorphism

$$\operatorname{Div}_{\mathfrak{m}}/H_{L,\mathfrak{m}}\cong \operatorname{Gal}(L/K).$$

DEFINITION:

The conductor of L/K, denoted $\mathfrak{f}_{L/K}$, is the smallest admissible modulus. It is supported on exactly the ramified places of L/K.

MAIN THEOREM OF CLASS FIELD THEORY:

Let \mathfrak{m} be a modulus. There is a 1-1 inclusion reversing correspondence between congruence subgroups H modulo \mathfrak{m} and finite abelian extensions L of K of conductor smaller than \mathfrak{m} . Furthermore the Artin map provides an isomorphism

$$\operatorname{Div}_{\mathfrak{m}}/H \cong \operatorname{Gal}(L/K).$$

DATA: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m} .

DATA: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m} .

GOAL: Compute the class field L of H.

DATA: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m} .

GOAL: Compute the class field L of H.

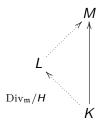
ASSUMPTION: $\operatorname{Div}_{\mathfrak{m}}/H \cong \mathbb{Z}/\ell^m\mathbb{Z}$ for a prime number ℓ and an integer $m \ge 1$. Two cases: $\ell = p \stackrel{def}{=} \operatorname{char}(K)$ or $\ell \neq p$.

DATA: Let \mathfrak{m} be a modulus over K and H be a congruence subgroup modulo \mathfrak{m} .

GOAL: Compute the class field L of H.

ASSUMPTION: $\operatorname{Div}_{\mathfrak{m}}/H \cong \mathbb{Z}/\ell^m\mathbb{Z}$ for a prime number ℓ and an integer $m \ge 1$. Two cases: $\ell = p \stackrel{def}{=} \operatorname{char}(K)$ or $\ell \neq p$.

STRATEGY: Find an abelian extension M of K containing L for which we can compute explicitly the Artin map. Then compute L as the subfield of M fixed by the image of H.



REMARK: Let $P \in \operatorname{Pl}_{K}$. Then $(P, M/K)|_{L} = (P, L/K)$.

So

$$\begin{array}{rcl} (H,M/K) &=& \{(P,M/K):P\in H\} \\ &=& \{\sigma\in \operatorname{Gal}(M/K):\sigma|_L=\operatorname{Id}_L\} \\ &=& \operatorname{Gal}(M/L). \end{array}$$

Galois Theory implies $L = M^{(H,M/K)}$.

Set $n = l^m$. The two cases are related to the following equations:

$$\begin{cases} y^n = \alpha & \text{if } \ell \neq p \text{ (Kummer theory)} \\ \wp(\vec{y}) = \vec{\alpha} & \text{if } I = p \text{ (Artin-Schreier-Witt theory).} \end{cases}$$

Set $n = l^m$. The two cases are related to the following equations:

$$\begin{cases} y^n = \alpha & \text{if } \ell \neq p \text{ (Kummer theory)} \\ \wp(\vec{y}) = \vec{\alpha} & \text{if } l = p \text{ (Artin-Schreier-Witt theory).} \end{cases}$$

Case $\ell \neq p$:

Set $K' = K(\zeta_n)$ and $L' = L(\zeta_n)$. By Kummer theory one can compute a set *S* of places of *K'* such that $L' = K'(\sqrt[n]{\alpha})$ for a *S*-unit α . Adding the *n*th roots of every *S*-unit to *K'*, we obtain an abelian extension $M = K'(\sqrt[n]{U_S})$ for which we have an explicit Artin map. Using the data of the congruence subgroup *H*, one can compute *L'*. Set $n = l^m$. The two cases are related to the following equations:

$$\begin{cases} y^n = \alpha & \text{if } \ell \neq p \text{ (Kummer theory)} \\ \wp(\vec{y}) = \vec{\alpha} & \text{if } l = p \text{ (Artin-Schreier-Witt theory).} \end{cases}$$

Case $\ell \neq p$:

Set $K' = K(\zeta_n)$ and $L' = L(\zeta_n)$. By Kummer theory one can compute a set S of places of K' such that $L' = K'(\sqrt[n]{\alpha})$ for a S-unit α . Adding the *n*th roots of every S-unit to K', we obtain an abelian extension $M = K'(\sqrt[n]{U_S})$ for which we have an explicit Artin map. Using the data of the congruence subgroup H, one can compute L'.

The extension L'/K is abelian and one can compute its Artin map. Then we apply the same recipe to the tower L'/L/K.

Case
$$\ell = p$$

PROBLEM: Kummer theory does not apply.

PROBLEM: Kummer theory does not apply.

INSTEAD: Use Artin-Schreier-Witt theory.

PROBLEM: Kummer theory does not apply.

INSTEAD: Use Artin-Schreier-Witt theory.

DEFINITION:

The Witt vectors of length m with coefficients in K is the set of m-tuples $\vec{x} = (x_1, \ldots, x_m)$ with $x_i \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $W_m(K)$.

PROBLEM: Kummer theory does not apply.

INSTEAD: Use Artin-Schreier-Witt theory.

DEFINITION:

The Witt vectors of length m with coefficients in K is the set of m-tuples $\vec{x} = (x_1, \ldots, x_m)$ with $x_i \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $W_m(K)$.

It comes equipped with the Artin-Schreier-Witt operator $\wp : W_m(K) \to W_m(K)$ defined by

$$\wp(\vec{x}) = (x_1^p, \ldots, x_m^p) - (x_1, \ldots, x_m).$$

PROBLEM: Kummer theory does not apply.

INSTEAD: Use Artin-Schreier-Witt theory.

DEFINITION:

The Witt vectors of length m with coefficients in K is the set of m-tuples $\vec{x} = (x_1, \ldots, x_m)$ with $x_i \in K$ together with (complicated) polynomial addition and multiplication laws making it a commutative ring $W_m(K)$.

It comes equipped with the Artin-Schreier-Witt operator $\wp : W_m(K) \to W_m(K)$ defined by

$$\wp(\vec{x}) = (x_1^p, \ldots, x_m^p) - (x_1, \ldots, x_m).$$

Remark:

Let $\vec{x} \in W_m(K)$. The equation $\wp(\vec{y}) = \vec{x}$ defines an extension

$$K(\wp^{-1}(\vec{x})) \stackrel{def}{=} K(y_1,\ldots,y_m).$$

V. Ducet and C. Fieker (IML, FMUK)

Computing Equations of Curves

NOTATION:

Let \wp_i be such that

$$\wp(\vec{x}) = (\wp_1(x_1), \dots, \wp_i(x_1, \dots, x_i), \dots, \wp_m(x_1, \dots, x_m)).$$

Set $K_0 = K$ and $K_i = K_{i-1}(\wp_i^{-1}(\beta_i))$ for $i = 1, \dots, m$.

NOTATION:

Let \wp_i be such that

$$\wp(\vec{x}) = (\wp_1(x_1), \dots, \wp_i(x_1, \dots, x_i), \dots, \wp_m(x_1, \dots, x_m)).$$

Set $K_0 = K$ and $K_i = K_{i-1}(\wp_i^{-1}(\beta_i))$ for $i = 1, \dots, m$.

Strategy to compute $L = K_m$: Compute β_i and K_i recursively.

NOTATION:

Let \wp_i be such that

$$\wp(\vec{x}) = (\wp_1(x_1), \ldots, \wp_i(x_1, \ldots, x_i), \ldots, \wp_m(x_1, \ldots, x_m)).$$

Set $K_0 = K$ and $K_i = K_{i-1}(\wp_i^{-1}(\beta_i))$ for i = 1, ..., m.

Strategy to compute $L = K_m$: Compute β_i and K_i recursively.

By the Strong Approximation Theorem and the work of H.L. Schmid (1936) one can find a divisor D_i such that $\beta_i \in \mathcal{L}(D_i)$.

Set $M_i = K(x_1, \ldots, x_{i-1}, \wp^{-1}(\mathcal{L}(D_i)))$. Then it also provides an explicit Artin map for the extension M_i/K_{i-1} , from which one can compute β_i and thus K_i .

Cyclic Extensions of Prime Degree

PROPOSITION:

Let L/K be a cyclic extension of prime degree ℓ and of conductor $\mathfrak{f}_{L/K}$. Assume that they are defined over \mathbb{F}_q . Then the genus of L verifies:

$$g_L=1+\ell(g_{\mathcal{K}}-1)+rac{1}{2}(\ell-1)\deg(\mathfrak{f}_{L/\mathcal{K}}).$$

Cyclic Extensions of Prime Degree

PROPOSITION:

Let L/K be a cyclic extension of prime degree ℓ and of conductor $\mathfrak{f}_{L/K}$. Assume that they are defined over \mathbb{F}_q . Then the genus of L verifies:

$$g_L = 1 + \ell(g_K - 1) + rac{1}{2}(\ell - 1)\deg(\mathfrak{f}_{L/K}).$$

Remark:

There seems to be no dependence on the ramification type of the extension (tame or wild), but in fact:

Cyclic Extensions of Prime Degree

PROPOSITION:

Let L/K be a cyclic extension of prime degree ℓ and of conductor $\mathfrak{f}_{L/K}$. Assume that they are defined over \mathbb{F}_q . Then the genus of L verifies:

$$g_L = 1 + \ell(g_K - 1) + rac{1}{2}(\ell - 1)\deg(\mathfrak{f}_{L/K}).$$

Remark:

There seems to be no dependence on the ramification type of the extension (tame or wild), but in fact:

PROPOSITION:

A place P of K is wildly ramified in L if and only if $\mathfrak{f}_{L/K} \ge 2P$ (and thus tamely ramified if and only if $v_P(\mathfrak{f}_{L/K}) = 1$).

The Algorithm

- **Input:** A function field K/\mathbb{F}_q , a prime ℓ , an integer G.
- **Output:** The equations of all cyclic extensions *L* of *K* of degree ℓ such that $g(L) \leq G$ and N(L) improves the best known record.
 - 1. Compute all the moduli of degree less than

$$B = (2G - 2 - \ell(2g(K) - 2))/(\ell - 1).$$

- 2. FOR each such modulus \mathfrak{m} DO
- 3. Compute the ray class group $\operatorname{Pic}_{\mathfrak{m}} \cong \operatorname{Div}_{\mathfrak{m}}/P_{\mathfrak{m},1}$.
- 4. Compute the set T of subgroups of $Pic_{\mathfrak{m}}$ of index ℓ .
- 5. FOR every H in T DO
- 6. Compute g(L) and n = N(L), where L is the class field of H.
- 7. IF *n* is greater than the best known record THEN
- 8. Update *n* as the new lower bound on $N_q(g(L))$.
- 9. Compute the equation of *L*.
- 10. END IF
- 11. END FOR
- 12. END FOR

New Results over \mathbb{F}_2

g	N = S + T + R	OB	g ₀	f	G
14	16 = 16 + 0 + 0	16	4	2P7	$\mathbb{Z}/2\mathbb{Z}$
17	18 = 16 + 2 + 0	18	2	$4P_1 + 6P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$
24	23 = 20 + 1 + 2	23	4′	$2P_1 + 4P_1 + 2P_2$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$
29	26 = 24 + 2 + 0	27	4	$4P_1 + 8P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z}$
41	34 = 32 + 2 + 0	35	3′	$4P_1 + 4P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}$
45	34 = 32 + 2 + 0	37	2	$4P_1 + 8P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}$
46	35 = 32 + 1 + 2	38	3	$3P_1 + 8P_1$	$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}$

g: genus of the covering.

N: number of F₂-rational points. OB: Oesterlé bound.

 g_0 : genus of the base curve. f: conductor of the extension.

G: Galois group. S: totally split places.

T: totally ramified places. R: (non-totally) ramified places.

EXAMPLE:

Take the genus 2 maximal curve C_0 with equation

$$y^{2} + (x^{3} + x + 1)y + x^{5} + x^{4} + x^{3} + x.$$

Then the new curve of genus 17 with 18 rational points is a fiber product of Artin-Schreier coverings of C_0 with equations

$$z^{2} + z + (x^{4} + x^{2} + x + 1)/x^{3}y + (x^{6} + x^{5} + x + 1)/x^{2};$$

 $w^{2} + w + (x^{3} + 1)/xy + x + 1.$

1998 World Cup's 14th Anniversary!!!!!! France 3 = $N(\mathbb{P}^{1}_{\mathbb{F}_{2}})$ Brazil $g(\mathbb{P}^{1}_{\mathbb{F}_{2}}) = 0$

