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Abstract. We study several methods for the numerical computation of Pe-

tersson scalar products, and in particular we prove a generalization of Haber-
land’s formula to any subgroup of finite index G of Γ = PSL2(Z), which gives

a fast method to compute these scalar products when a Hecke eigenbasis is

not necessarily available.

1. Introduction

Let G be a subgroup of Γ = SL2(Z) of finite index r = [Γ : G]. Recall that Γ
acts on the upper half-plane H via linear fractional transformations and that we
have an invariant measure dµ = dxdy/y2. We will denote by D(G) a “reasonable”
fundamental domain for the action of G on H, see Definition 4.1 below.

Given two modular forms f1 and f2 having the same weight k and the same
multiplier system v on G, we recall that one defines the Petersson scalar product
〈f1, f2〉G (abbreviated PSP), when it exists, by the formula

〈f1, f2〉G =
1

[Γ : G]

∫
G\H

f1(τ)f2(τ)yk
dx dy

y2
=

1

r

∫
D(G)

f1(τ)f2(τ)yk dµ .

This is a fundamental quantity which enters almost everywhere in the theory of
modular forms, and the aim of the present paper is to study how to compute it
numerically in practice. The normalizing factor 1/r is included so that the result
does not depend on which group is taken with respect to which both f1 and f2 are
modular.

The absolute convergence of the above integral is assured if either f1 or f2 is a
cusp form, or if we are in weight 1/2. Note however that it can also converge in
other cases. We will always consider the case where one of f1 and f2 is a cusp form
and we will assume that k ≥ 2 and k integral. It is an interesting and nontrivial
question to ask what can be done when k = 1.

When the space Sk(G, v) of cusp forms of weight k and multiplier system v is
known explicily, and in particular the decomposition into Hecke eigenforms (when
G = Γ0(N) or Γ1(N) for instance), there are specific methods that we will mention,
if the decomposition of f1 and f2 on the eigenbasis can be easily computed. But we
are more interested in the general context where one does not need to know either
Sk(G, v) or the eigenbasis decompositions, but where we assume that for any τ ∈ H
one can compute rapidly f1(τ) and f2(τ) to reasonably high accuracy.

In the sequel we will let (γj)1≤j≤r be a system of representatives of right cosets
of G\Γ, so that Γ =

⊔
1≤j≤r Gγj . In particular, if F is a fundamental domain for

the full modular group Γ (for instance the standard one), then
⋃

1≤j≤r γj(F) is a
fundamental domain for G, where the union is essentially disjoint, with the only
possible intersections being on the boundaries.
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Recall that if γ =
(
a b
c d

)
∈ Γ we write f

∣∣
k
γ to mean

f
∣∣
k
γ(τ) = (cτ + d)−kf

(
aτ + b

cτ + d

)
,

so that f ∈ Mk(G, v) if and only if f
∣∣
k
γ = v(γ)f for all γ ∈ G together with f

holomorphic on H and at the cusps, and f ∈ Sk(G, v) if in addition f vanishes at
the cusps.

It is clear that f
∣∣
k
gγj = v(g)f

∣∣
k
γj , so up to the factor v(g) the function fj =

f
∣∣
k
γj is independent of the chosen representative of the right coset Gγj . In addition,

for any α ∈ Γ we have by definition γjα = gjγa(j) for some gj ∈ G, the map j 7→ a(j)

being a permutation of [1, r], so up to the factors v(gj), the family of fj
∣∣
k
α is simply

a permutation of the fj .

2. Some Standard Methods

Before coming to the more original part of the paper where we explain how to
compute PSP’s in a quite general setting, we recall with some detail some well-
known methods.

Although not general, as test examples, we will choose f1 = f2 = ∆(τ) =
η(τ)24 ∈ S12(Γ), f1 = f2 = ∆5(τ) = (η(τ)η(5τ))4 ∈ S4(Γ0(5)), and f1 = f2 =
∆11(τ) = (η(τ)η(11τ))2 ∈ S2(Γ0(11)), which is the cusp form associated to the
elliptic curve X0(11). To 47 decimals, we have

〈∆,∆〉Γ = 0.00000103536205680432092234781681222516459322491 · · ·
〈∆5,∆5〉Γ0(5) = 0.00014513335082978187614092680220909259631066600 · · ·

〈∆11,∆11〉Γ0(11) = 0.00390834565612459898524738548138211386179054941 · · · .

In most cases, we assume for simplicity that G = Γ, but we will of course state the
necessary modifications for a general subgroup of finite index G.

2.1. Computing from the Definition. A first method is to use the definition
directly: assuming for instance G = Γ, we have

〈f1, f2〉 =

∫
F

f1(τ)f2(τ)yk−2 dx dy

=

∫ 1/2

−1/2

(∫ ∞
√

1−x2

f1(x+ iy)f2(x+ iy)yk−2 dy

)
dx .

Since the functions fi are holomorphic, to compute the integrals numerically one
can use the doubly-exponential integration method (see for instance Section 9.3 of
[4]). This little-known but remarkable method is especially efficient for holomorphic
functions, and it can be shown that to obtain an accuracy of N decimals requires
O(N log(N)) evaluations of the function to be integrated.

However we have here a double integral, so the method will requireO(N2 log2(N))
evaluations of the functions, which can be rather expensive. Of course this can be
generalized to any subgroup G by using a natural choice of fundamental domain
D(G) =

⋃
1≤j≤r γj(F) and making the obvious changes of variable. Here is a small

table of the timings to compute 〈f, f〉G to the given number N of decimals using
this method. The timings are in seconds, and those not given (and indicated by
−−) are greater than 30 minutes. The present timings have been made on a single
processor of a standard 1.8 GHz Intel core i7 CPU, but they are highly dependent
on the implementation, so this table is only indicative.
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f � N 19 38 57 96 250 500

∆ 11 16 87 143 −− −−
∆5 154 219 1185 −− −− −−
∆11 327 468 −− −− −− −−

To summarize: the advantages of this method are its complete generality and
simplicity, its main disadvantage being that it is quite slow, especially at high
accuracy and/or for a subgroup of large index.

2.2. Using Kloosterman Sums. Thanks to the computation of the Fourier ex-
pansion of Poincaré series for Γ, it is easy to show that

1

〈∆,∆〉
=

(4π)11

10!τ(n)

δn,1 + 2π · n11/2
∑
c≥1

K(n, 1; c)

c
J11

(
4πn1/2

c

) ,

and similar formulas exist in higher weight and for congruence subgroups.
The convergence of this type of series is essentially of the order of O(1/ck−2)

(here with k = 12). This shows that, although useful, the above formula has severe
limitations. First, even in the case of ∆, the convergence in O(1/c10) and the
necessity of computing Kloosterman sums and Bessel functions implies that one
can reasonably compute perhaps 106 terms if one is patient, giving an accuracy
of 60 decimals. A more important limitation occurs for subgroups of Γ, for which
there exists forms of lower weight than 12. For instance, in weight 2 the absolute
convergence is not even clear, and in weight 4 the convergence is in O(1/c2), which
is too slow to obtain any reasonable accuracy.

Here again is a small table, but limited to ∆ since the convergence for ∆5 would
be too slow:

f � N 19 38 57 96 250 500

∆ 0.01 3 900 −− −− −−
To summarize: the advantage of this method is its speed for high weight and

reasonably low accuracy such as 19 or 38 decimals, but is essentially useless in all
other cases. In addition, it is restricted to congruence subgroups.

2.3. Using L(Sym2(f), k). Once again for simplicity we restrict to G = Γ but
there is no difficulty in generalizing.

Since there exists an explicit orthogonal basis of eigenfunctions in Mk(Γ), com-
puting Petersson scalar products of two arbitrary forms can easily be reduced to
the computation of 〈f, f〉 for f a normalized eigenform. If

L(f, s) =
∑
n≥1

a(n)

ns
=
∏
p

1

1− a(p)p−s + pk−1−2s
=
∏
p

1

(1− αpp−s)(1− βpp−s)

with αp + βp = a(p) and αpβp = pk−1, recall that we define the symmetric square

L-function L(Sym2(f), s) for <(s) > k by the formula

L(Sym2(f), s) =
∏
p

1

(1− α2
pp
−s)(1− αpβpp−s)(1− β2

pp
−s)

.

The main properties of this function are summarized in the following:

Theorem 2.1. Let f =
∑
n≥1 a(n)qn ∈ Sk(Γ) be a normalized Hecke eigenform.

(1) (Fourier expansion). We have

L(Sym2(f), s) =
∑
n≥1

A(n)

ns
with A(n) =

∑
m|n

(−1)Ω(m)mk−1a(n/m)2 ,
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where Ω(m) is the number of prime divisors of m counted with multiplicity.
(2) (Functional equation). The function L(Sym2(f), s) can be extended holo-

morphically to the whole of C, and the completed L-function

Λ(Sym2(f), s) = π−3s/2Γ(s/2)Γ((s+ 1)/2)Γ((s− k)/2 + 1)L(Sym2(f), s)

satisfies the functional equation

Λ(Sym2(f), 2k − 1− s) = Λ(Sym2(f), s) .

(3) (Special value). We have

L(Sym2(f), k) =
π

2

(4π)k

(k − 1)!
〈f, f〉 .

Proof. The meromorphic continuation, functional equation, and special value are
very classical and immediate consequences of the Rankin–Selberg method. The
holomorphy is more difficult and was proved independently by Shimura and Zagier
in 1975. �

Note that similar results are of course valid for subgroups.
The last statement of the theorem allows us to reduce the computation of 〈f, f〉 to

that of L(Sym2(f), k). For this, the direct use of the definition is of little help, since
it is not even clear that the series or product defining this L-function converge, and
even if they do, the convergence will be extremely slow. However, the crucial point
is the following: any Dirichlet series satisfying a functional equation of standard
type can be evaluated numerically very efficiently using exponentially convergent
series, see for instance [1]. Specializing to our case, it is easy to show the following
theorem:

Theorem 2.2. Let f =
∑
n≥1 a(n)qn ∈ Sk(Γ) be a Hecke eigenform. Set C =

2 · π3/2, γ(s) = C−sΓ(s)Γ((s− k)/2 + 1), and

Fk(s, x) = γ(s)− xs
(

2F1,k(s, x) + π1/2F2,k(s, x) + F3,k(s, x)
)
,

where

F1,k(s, x) =
∑

1≤m≤(k−2)/2

(−1)k/2−m−1 (2m− 1)!

(k/2−m− 1)!

(Cx)−2m

s− 2m
,

F2,k(s, x) =
∑
m≥0

(−1)k/2−m−1 22m+k(m+ k/2)!

(2m+ 1)!(2m+ k)!

(Cx)2m+1

s+ 2m+ 1
, and

F3,k(s, x) =
∑
m≥0

(−1)k/2−m−1 1

(2m)!(m+ k/2− 1)!

(Cx)2m

2m+ s
·

·
(

2H2m +Hm+k/2−1 − 3γ − 2 log(Cx) +
2

2m+ s

)
,

where as usual Hn =
∑

1≤j≤n 1/j and γ is Euler’s constant.

(1) For any s ∈ C with <(s) > k − 2 and any t0 > 0, we have

γ(s)L(Sym2(f), s) =
∑
n≥1

A(n)

ns
Fk(s, nt0) +

∑
n≥1

A(n)

n2k−1−sFk(2k − 1− s, n/t0) ,

where A(n) are the coefficients given in Theorem 2.1 (1).
(2) In particular

〈f, f〉 = 21−kπk/2−1
(∑
n≥1

A(n)

nk
(Fk(k, n) + nFk(k − 1, n))

)
.
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Note that even though there is cancellation for large x, the series for Fk(s, x) are
sufficient for practical computation, but if desired one can also compute asymptotic
expansions for large x, showing in particular that Fk(s, x) tends to 0 exponentially.

Here is a small table, again limited to ∆, but this time only for simplicity of
implementation.

f � N 19 38 57 96 250 500

∆ 0.03 0.09 0.2 0.8 11 97

The advantages of this method is that it is general and fast, the main disadvan-
tage being that its implementation requires great care in writing the correct formu-
las, especially for subgroups, and dealing with cancellation and accuracy problems.
But once these hurdles overcome, it is the best method that we have seen up to
now, and most experts in the field would agree that it is the best available. How-
ever, as already mentioned, it assumes that the eigenfunction decomposition of f
be known, and this is not always easy nor possible, so we come now to a different
method, which is completely general.

3. Basic Lemmas

The main computational difficulty related to Petersson products is that they are
truly double integrals. In the first näıve approach, we have explained that nonethe-
less these integrals can be computed, somewhat slowly, by using doubly-exponential
integration techniques. A remarkable fact however, discovered by Haberland [6] (see
also [9]) some time ago, is that PSP’s can be reduced to the computation of a rea-
sonably small finite number of simple integrals, which can now be evaluated very
rapidly using doubly-exponential integration.

Haberland’s result was given for general weights k but only for the full modular
group. In a slightly different form it was generalized long ago to Γ0(N) but only
in weight k = 2 and trivial character first by Cremona [5] and Zagier [11] in the
context of computing the degree of modular parametrizations of elliptic curves (see
the more recent paper of Watkins [10] on this subject), and much more recently
by Merel [7] in connection with Manin symbols. It was realized that a complete
generalization should not be difficult to obtain, and it is one of the purposes of this
paper to give it. Note that in [8] the authors also give such a generalization, in a
slightly different form, and also for non cuspforms. In what follows, we will assume
that f1 and f2 are both cuspforms; if one of the fi is not a cuspform we can either
find its decomposition into its Eisenstein and cuspidal part, which can usually easy
be done, or use the generalization due to [8].

Our goal in this section, which is the main step toward Haberland’s formulas,
is to show that PSP’s are related to other double integrals, which are not “true”
double integrals in the sense that they can easily be expressed in terms of simple
integrals. For this, we need some preliminary definitions and results. We assume G,
(γj)1≤j≤r, k, v, f1, and f2 as above, and we will set f1,j = f1

∣∣
k
γj and f2,j = f2

∣∣
k
γj

for 1 ≤ j ≤ r. As mentioned above, for simplicity we assume that f1 and f2 are
both cuspforms.

3.1. The Differentials ε and δ.

Definition 3.1. We set

ε(f1, f2)(τ1, τ2) = f1(τ1)f2(τ2)(τ1−τ2)k−2 dτ1 dτ2 and δ(f1, f2) =
∑

1≤j≤r

ε(f1,j , f2,j) .

Lemma 3.2. Let α ∈ Γ.

(1) We have ε(f1, f2)(ατ1, ατ2) = ε
(
f1

∣∣
k
α, f2

∣∣
k
α
)

(τ1, τ2).
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(2) The expression ε(f1,j , f2,j) does not depend on the choice of the right coset
representative γj.

(3) If γjα = gjγa(j) with gj ∈ G we have ε(f1,j , f2,j)(ατ1, ατ2) = ε(f1,a(j), f2,a(j)).
(4) We have δ(f1, f2)(ατ1, ατ2) = δ(f1, f2), in other words δ(f1, f2) is invariant

under Γ.

Proof. (1). Writing α =
(
a b
c d

)
, we have

ε(f1, f2)(ατ1, ατ2) = f1

∣∣
k
α(τ1) f2

∣∣
k
α(τ2) ·

· (cτ1 + d)k(cτ2 + d)
k
(ατ1 − ατ2)k−2 dατ1 dατ2

= f1

∣∣
k
α(τ1) f2

∣∣
k
α(τ2)(τ1 − τ2)k−2 dτ1 dτ2

= ε
(
f1

∣∣
k
α, f2

∣∣
k
α
)

(τ1, τ2) ,

using the immediate but fundamental identity

(cτ1 + d)k(cτ2 + d)
k
(ατ1 − ατ2)k−2 dατ1 dατ2 = (τ1 − τ2)k−2 dτ1 dτ2 .

(2). Indeed, if g ∈ G we have f1

∣∣
k
gγj = v(g)f1,j and similarly for f2, so the

result follows from v(g)v(g) = 1.

(3). By definition we have f1,j

∣∣
k
α = f1

∣∣
k
γjα = f1

∣∣
k
gjγa(j) = v(gj)f1,a(j) since

f1 ∈ Mk(G, v), and similarly for f2,j , and using again v(gj)v(gj) = 1, we obtain
(3), and (4) follows by summing on j since the map j 7→ a(j) is a permutation. �

3.2. The Simple Integral F2,j.

Definition 3.3. Let Z ∈ H be fixed, and set

F2,j(Z; τ) = F2,j(τ) =

∫ τ

Z

f2,j(τ2)(τ − τ2)k−2 dτ2 .

Remarks.

(1) We could also define F1,j in a similar manner, but we will only need F2,j

since we temporarily treat f1 and f2 in a nonsymmetric manner.
(2) Note that F2,j is in general not holomorphic, so must be considered as a

function of τ and τ .
(3) We have

F2,j(Z1; τ)− F2,j(Z2; τ) =

∫ Z2

Z1

f2,j(τ2)(τ − τ2)k−2 dτ2 ,

which is a polynomial (hence in particular a holomorphic function) in τ .

Lemma 3.4. (1) We have

∂F2,j

∂τ
= f2,j(τ)(τ − τ)k−2 .

(2) For any α ∈ Γ we have

F2,j

∣∣
2−kα(τ) =

∫ τ

α−1(Z)

f2,j

∣∣
k
α(τ2)(τ − τ2)k−2 dτ2 .

(3) In particular, if we write γjα = gjγa(j) with gj ∈ G, we have

F2,j

∣∣
2−kα(τ) = v(gj)(F2,a(j)(τ)− Pa(j)(α; τ)) ,

where

Pa(j)(α; τ) =

∫ α−1(Z)

Z

f2,a(j)(τ2)(τ − τ2)k−2 dτ2
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is a polynomial in τ of degree less than or equal to k− 2 (recall once again
that we assume k ≥ 2).

(4) We have(∫ B

A

−
∫ α(B)

α(A)

) ∑
1≤j≤r

f1,j(τ)F2,j(τ)dτ =

∫ B

A

∑
1≤j≤r

f1,j(τ)Pj(α; τ) dτ .

Proof. (1). We have F2,j(τ) =
∫ τ
Z
f2,j(τ2)(τ − τ2)k−2 dτ2, so

∂F2,j(τ)

∂τ
= f2,j(τ)(τ − τ)k−2 ,

proving (1) after conjugation.

(2). Setting τ2 = αz and writing α =
(
a b
c d

)
, we have

F2,j

∣∣
2−kα(τ) = (cτ + d)k−2

∫ ατ

Z

f2,j(τ2)(ατ − τ2)k−2 dτ2

= (cτ + d)k−2

∫ τ

α−1Z

(cz + d)k−2f2,j

∣∣
k
α(z)(ατ − αz)k−2 dz

=

∫ τ

α−1Z

f2,j

∣∣
k
α(z)(τ − z)k−2 dz ,

since αu− αv = (u− v)/((cu+ d)(cv + d)), proving (2).

(3). Since as above f2,j

∣∣
k
α = v(gj)f2,a(j), it follows from (2) that

F2,j

∣∣
2−kα(τ) = v(gj)

∫ τ

α−1(Z)

f2,a(j)(τ2)(τ − τ2)k−2 dτ2 ,

proving (3).

(4). Setting τ = αz with α =
(
a b
c d

)
and as before γjα = gjγa(j), we have∫ α(B)

α(A)

f1,j(τ)F2,j(τ)dτ =

∫ B

A

f1,j(αz)F2,j(αz)(cz + d)−2 dz

=

∫ B

A

f1,j

∣∣
k
α(z)F2,j

∣∣
2−kα(z) dz

= v(gj)v(gj)

∫ B

A

f1,a(j)(τ)(F2,a(j)(τ)− Pa(j)(α; τ)) dτ ,

and since j 7→ a(j) is a bijection, we obtain∫ α(B)

α(A)

∑
1≤j≤r

f1,j(τ)F2,j(τ)dτ =

∫ B

A

∑
1≤j≤r

f1,j(τ)(F2,j(τ)− Pj(α; τ)) dτ ,

proving (4). �

Corollary 3.5. Let f1 and f2 be in Mk(G, v), one of them being a cusp form. For
any subgroup H of Γ of finite index s = [Γ : H] we have

(2i)k−1rs〈f1, f2〉G =

∫
∂(D(H))

∑
1≤j≤r

f1,j(τ)F2,j(τ) dτ ,

where ∂(D(H)) denotes the boundary of a reasonable fundamental domain D(H)
of H.

Note that the subgroup H need not have anything to do with the subgroup G.
7



Proof. By definition we have

(2i)k−1r〈f1, f2〉G =

∫
D(G)

f1(τ)f2(τ)(τ − τ)k−2 dτ dτ

=
∑

1≤j≤r

∫
γj(D(Γ))

f1(τ)f2(τ)(τ − τ)k−2 dτ dτ

=

∫
D(Γ)

∑
1≤j≤r

f1,j(τ)f2,j(τ)(τ − τ)k−2 dτ dτ

=

∫
D(Γ)

δ(f1, f2)(τ, τ) = (1/s)

∫
D(H)

δ(f1, f2)(τ, τ) ,

after an evident change of variable, and since δ is invariant by Γ by Lemma 3.2.
Now since f1,j is holomorphic, we have ∂f1,j/∂τ = 0, so by Stokes’s theorem and
the above lemma we have

(2i)k−1rs〈f1, f2〉G =

∫
D(H)

∑
1≤j≤r

∂(f1,jF2,j)

∂τ
dτ dτ =

∫
∂(D(H))

∑
1≤j≤r

f1,j(τ)F2,j(τ) dτ ,

as claimed. �

3.3. The Basic Double Integral J . We set the following:

Definition 3.6. If A1, B1, A2, B2 are in H, the modular forms f1 and f2 being
understood, we set, when defined

J (A1, B1;A2, B2) =

∫ B1

A1

∫ B2

A2

δ(f1, f2)

=
∑

1≤j≤r

∫ B1

A1

∫ B2

A2

f1,j(τ1)f2,j(τ2)(τ1 − τ2)k−2 dτ1 dτ2 ,

where as above f1,j = f1

∣∣
k
γj and f2,j = f2

∣∣
k
γj.

When we need to emphasize the dependence in f1 and f2 we will of course
write J (f1, f2;A1, B1;A2, B2) instead of J (A1, B1;A2, B2). Also, as usual when
integrating on H it is understood that integrals having a cusp as an endpoint must
end with a hyperbolic circle. The following properties are immediate:

Lemma 3.7. (1) The above definition does not depend on the paths of integra-
tion, as long as the conditions at the cusps are satisfied.

(2) The above definition does not depend on the right coset representatives γj.
(3) The function J is transitive separately on (A1, B1) and on (A2, B2), in

other words

J (A1, C1;A2, B2) + J (C1, B1;A2, B2) = J (A1, B1;A2, B2) ,

and similarly for (A2, B2).
(4) We have

J (f1, f2;A2, B2;A1, B1) = (−1)k−2J (f2, f1;A1, B1;A2, B2) .

(5) We have

J (A1, B1;A2, B2) =
∑

1≤j≤r

∑
0≤n≤k−2

(−1)n
(
k − 2

n

)
·

·
∫ B1

A1

τk−2−nf1,j(τ) dτ

∫ B2

A2

τnf2,j(τ) dτ ,

where we must assume that f1 and f2 are both cusp forms if at least one of
the Ai or Bi is a cusp.
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In particular, this last statement shows that J is much easier to compute than
a PSP, and it is in this sense that we said above that it is not a “true” double
integral.

Proposition 3.8. For any α ∈ Γ we have

J (αA1, αB1;αA2, αB2) = J (A1, B1;A2, B2) .

Proof. This is an immediate consequence of the Γ-invariance of δ proved in Lemma
3.2. �

4. The Main Result

4.1. Fundamental Domains. Before stating and proving the main result, we
must discuss fundamental domains of subgroups of Γ. We first set the following
definition:

Definition 4.1. Let G ⊂ Γ be a subgroup of finite index r. A subset D(G) of H is
called a reasonable fundamental domain (or simply a fundamental domain) for G
if the following conditions are satisfied:

(1) D(G) is a finite union of connected and simply connected open subsets of
H.

(2) The boundary ∂(D(G)) = D(G) \D(G) has measure 0.

(3) For any τ ∈ H there exists g ∈ G such that gτ ∈ D(G). In addition, if
gτ ∈ D(G) then g is unique, or equivalently, if g1 and g2 ∈ G are such that
g1(τ) and g2(τ) are in D(G), then gi(τ) ∈ ∂(D(G)).

If F is the standard fundamental domain for the full modular group Γ, it is clear
that D(G) =

⋃
γj(F

◦) is a reasonable fundamental domain. The following results
are well-known:

Proposition 4.2. The fundamental domain D(G) can be chosen so that its bound-
ary ∂(D(G)) is a union of an even number of oriented hyperbolic circles [Ai, Ai+1[1≤i≤2n

(indices modulo 2n) such that there exists a family (αi)1≤i≤2n of elements of Γ and
a permutation τ of [1, 2n] satisfying the following properties:

(1) τ is an involution without fixed points (in other words τ2 = 1 and τ(i) 6= i
for all i), or equivalently τ is a product of n disjoint transpositions (im, jm)1≤m≤n.

(2) ατ(i) = α−1
i .

(3) αi(Ai) = Aτ(i)+1 and αi(Ai+1) = Aτ(i), so that αi sends bijectively [Ai, Ai+1[
to [Aτ(i)+1, Aτ(i)[.

Corollary 4.3. If τ is the product of the n disjoint transpositions (im, jm)1≤m≤n,
then αim sends bijectively [Aim , Aim+1[ to the reverse of [Ajm , Ajm+1[, and

∂(D(H)) =
⊔

1≤m≤n

([Aim , Aim+1[t[Ajm , Ajm+1[) .

Proof. Clear. �

4.2. Examples of Fundamental Domains. For simplicity, we will choose sub-
groups G having a fundamental domain whose boundary has only 4 sides, and τ
will always be the product (1, 2)(3, 4) of the two transpositions exchanging 1 and
2, and 3 and 4, so i1 = 1 and i2 = 3. The fundamental domain is thus a hyperbolic
quadrilateral given by its vertices A1, A2, A3, and A4, and α1 sends [A1, A2[ bijec-
tively to the reverse of [A2, A3[, and α3 sends [A3, A4[ bijectively to the reverse of
[A4, A1[.

We consider a number of different subgroups H of Γ, and give one or more
fundamental domains of the above type for each, where as usual ρ = e2iπ/3:
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(1) H = Γ, with A1 = ρ+ 1, A2 = i∞, A3 = ρ, A4 = i, α1 = T−1, and α3 = S,
which corresponds to the standard fundamental domain F, where as usual
T = ( 1 1

0 1 ) and S =
(

0 −1
1 0

)
.

(2) H = Γ, with A1 = 0, A2 = i, A3 = i∞, A4 = ρ, α1 = S, and α3 = ST .
(3) H = Γ2 the unique subgroup of index 2 in Γ, with A1 = ρ + 1, A2 = i∞,

A3 = ρ, A4 = 0, α1 = T−1, and α3 = TST = ST−1S = ( 1 0
1 1 ).

(4) H = Γ2 the unique subgroup of index 2 in Γ, with A1 = 0, A2 = i∞,
A3 = −1, A4 = ρ, α1 = T−1 and α3 = T−1S =

(−1 −1
1 0

)
.

(5) H = Γ3 one of the subgroups of index 3 in Γ, with A1 = 1, A2 = i∞,
A3 = −1, A4 = I, α1 = T−2, and α3 = S.

(6) H = Γ0(3), which has index 4 in Γ, with A1 = (ρ + 2)/3, A2 = i∞,
A3 = (ρ− 1)/3, A4 = 0, α1 = T−1, and α3 = ST−3S = ( 1 0

3 1 ).
(7) H = Γ(2) the principal congruence subgroup of level 2, which has index

6 in Γ and is a free group, with A1 = 1, A2 = i∞, A3 = −1, A4 = 0,
α1 = T−2, and α3 = ST−2S = ( 1 0

2 1 ).

Proof. (1) is of course completely classical, and the others, which can all be found
somewhere in the literature, can be usually deduced by splitting the standard fun-
damental domain of (1) into a finite number of pieces and then applying to those a
suitable finite number of elements of Γ. One can also prove the results directly in
the same way as the classical proofs of (1). �

4.3. The Main Result.

Proposition 4.4. Keep the above notation and let H be a subgroup of finite index
s in Γ. For any Z ∈ H we have

(2i)k−1rs〈f1, f2〉G =
∑

1≤m≤n

J (Aim , Aim+1;Z,α−1
im

(Z)) .

Proof. By Corollary 3.5 and Lemma 3.4 (4), we have

(2i)k−1rs〈f1, f2〉G =
∑

1≤m≤n

(∫ Aim+1

Aim

−
∫ αim (Aim+1)

αim (Aim )

) ∑
1≤j≤r

f1,j(τ)F2,j(τ) dτ

=
∑

1≤m≤n

∫ Aim+1

Aim

∑
1≤j≤r

f1,j(τ)Pj(αim ; τ) dτ ,

proving the proposition using the definition of Pj and J . �

Since we have seen that J is not a “true” double integral but an explicit finite
linear combination of products of two simple integrals, we see that we have achieved
our goal of expressing PSP’s in terms of simple integrals. In the next section, we
will specialize this formula to the fundamental domains given above.

5. The Main Corollaries

5.1. General Formulas. From the above proposition, we can deduce infinitely
many expressions of PSP’s in terms of simple integrals. We give a few here:

Theorem 5.1. Assume that f1 and f2 are in Mk(G, v), one of them being a cusp
form.
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(1) For all Z, we have

(2i)k−1r〈f1, f2〉G = J (ρ, i∞;Z − 1, Z) + J (ρ, i;Z,−1/Z)

= J (i, i∞;Z,−1/Z) + J (ρ, i∞;−(Z + 1)/Z,Z)

= (J (ρ, i∞;Z − 1, Z) + J (ρ, i∞;−(Z + 1)/Z,−1/Z))/2

= (J (0, i∞;Z,Z + 1) + J (−1, ρ;Z,−1/(Z + 1)))/2

= (J (0, i∞;Z,Z/(Z + 1)) + J (ρ, i∞;−1/(Z + 1), Z))/2

= (J (0, i∞;Z − 1, Z + 1) + J (−1, I;Z,−1/Z))/3

= (J (ρ, 0;Z/(Z + 1), Z/(1− 2Z)) + J (ρ, 1; (Z − 1)/Z,Z/(Z + 1)))/4

= (J (0, i∞;Z − 1, Z + 1) + J (−1, 0;Z,Z/(1− 2Z)))/6

= (J (0, i∞;Z − 1, Z + 1) + J (0, i∞;−(Z + 1)/Z, (Z − 1)/Z))/6 .

(2) In particular

(2i)k−1r〈f1, f2〉G = J (i, ρ; 0, i∞) = J (i, i∞; ρ, ρ+ 1) = J (ρ, i∞; i− 1, i)

= J (ρ, i∞;−1, 0)/2 = J (ρ, i∞; ρ− 1, ρ+ 1)/2

= J (0, i∞; ρ, ρ+ 1)/2 = J (0, i∞;−1, ρ)/2 = J (0, i∞;−1, ρ+ 1)/4

= J (0, i∞;−1, I)/3 = J (0, i∞; I − 1, I + 1)/3

= J (0, i∞;−1, 1)/6 = (J (0, i∞;−1, 0)− J (−1, 0; 0, i∞))/6 .

Proof. The formulas of (1) follow from the different subgroups H and corresponding
fundamental domains given in the preceding section, together with Proposition 3.8
expressing the Γ-invariance of J . The formulas of (2) are essentially specializations
of those of (1) to specific values of Z, using Proposition 3.8 and transitivity of the
function J . The details are left to the reader. �

Note that even though the last formula of (2) involves two evaluations of the
function J instead of one, so is slower, we have included it first because it is the
only formula which is symmetrical in f1 and f2, and second because it leads directly
to Haberland’s formulas given below.

5.2. Haberland’s Formulas for Subgroups. Even though the above theorem
is sufficient for computational needs, we now reach our goal of generalizing Haber-
land’s formulas to general subgroups of finite index of Γ.

Theorem 5.2. Recall that for any cusp form f we let rn(f) =
∫ i∞

0
τnf(τ) dτ

denote the nth period of f , and that T = ( 1 1
0 1 ).

(1) If f1 and f2 are in Sk(G, v), we have the formula

6r(−2i)k−1〈f1, f2〉G =
∑

m+n≤k−2

(
k − 2

m+ n

)(
m+ n

m

)
·

·
∑

1≤j≤r

(
(−1)mrm(f1,j)rn(f2,j

∣∣
k
T )− (−1)nrm(f1,j

∣∣
k
T )rn(f2,j)

)
,

where we recall that fi,j = fi
∣∣
k
γj.

(2) In particular,

− 6r(−2i)k−2〈f, f〉G =
∑

m+n≤k−2

(
k − 2

m+ n

)(
m+ n

m

)
·

·
∑

1≤j≤r

(−1)m=
(
rm(f1,j)rn(f2,j

∣∣
k
T )
)
.
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Proof. As already mentioned, by the binomial theorem we have

J (−1, 0; 0, i∞) =
∑

1≤j≤r

∑
0≤n≤k−2

(−1)n
(
k − 2

n

)
rn(f2,j)

∫ 0

−1

τk−2−nf1,j(τ) dτ .

Setting τ = −1/(z + 1) = ST (z) = U(z), we have∫ 0

−1

τk−2−nf1,j(τ) dτ = (−1)k−2−n
∫ i∞

0

(z + 1)nf1,j

∣∣
k
U(z) dz

= (−1)k−2−n
∑

0≤m≤n

(
n

m

)
rm(f1,j

∣∣
k
U) ,

so using the trivial equality rk−2−n(f) = (−1)k−1−nrn(f
∣∣
k
S), we obtain

J (−1, 0; 0, i∞) = (−1)k−2
∑

0≤m≤n≤k−2

(
k − 2

n

)(
n

m

) ∑
1≤j≤r

rm(f1,j

∣∣
k
U)rn(f2,j)

=
∑

0≤m≤n≤k−2

(−1)n+1

(
k − 2

n

)(
n

m

) ∑
1≤j≤r

rm(f1,j

∣∣
k
U)rk−2−n(f2,j

∣∣
k
S) .

and since by Lemma 3.7 (2) J does not depend on the chosen representatives of
right cosets, replacing γj by γjS, and then changing n into k − 2− n gives

J (−1, 0; 0, i∞) =
∑

m+n≤k−2

(−1)k−1−n
(
k − 2

m+ n

)(
m+ n

m

) ∑
1≤j≤r

rm(f1,j

∣∣
k
T )rn(f2,j) .

By symmetry, we have

J (0, i∞;−1, 0) =
∑

m+n≤k−2

(−1)k−1−m
(
k − 2

m+ n

)(
m+ n

m

) ∑
1≤j≤r

rm(f1,j)rn(f2,j

∣∣
k
T ) ,

so we deduce from the last formula of Theorem 5.1 that

6r(2i)k−1〈f1, f2〉G = (−1)k−1
∑

m+n≤k−2

(
k − 2

m+ n

)(
m+ n

m

)
·

·
∑

1≤j≤r

(
(−1)mrm(f1,j)rn(f2,j

∣∣
k
T )− (−1)nrm(f1,j

∣∣
k
T )rn(f2,j)

)
,

proving (1), and (2) follows immediately. �

Even though we will not need it, note that in the same way we can prove the
following:

Proposition 5.3. Under the same assumptions we have∑
m+n≤k−2

(
k − 2

m+ n

)(
m+ n

m

)
·

·
∑

1≤j≤r

(
(−1)mrm(f1,j)rn(f2,j

∣∣
k
T ) + (−1)nrm(f1,j

∣∣
k
T )rn(f2,j)

)
=
∑

1≤j≤r

∑
m+n=k−2

(−1)m
(
k − 2

m

)
rm(f1,j)rn(f2,j) .

Proof. Simply expand as above the identity

J (−1, 0; 0, i∞) + J (0, i∞;−1, 0) = −J (0, i∞; 0, i∞) .

�
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Corollary 5.4 (Haberland). Assume that G = Γ, so that r = 1, v = 1, and k is
even. We have

3(−2i)k−1〈f1, f2〉 =
∑

m+n≤k−2
m+n≡1 (mod 2)

(
k − 2

m+ n

)(
m+ n

m

)
(−1)mrm(f1)rn(f2) ,

and ∑′

m+n≤k−2
m+n≡0 (mod 2)

(
k − 2

m+ n

)(
m+ n

m

)
(−1)mrm(f1)rn(f2) = 0 ,

where
∑′

means that the term m+ n = k− 2 must be counted with coefficient 1/2.

Proof. Clear. �

6. Using Theorem 5.1

We now consider methods for computing PSP’s based on the results obtained
above. First, let us consider one of the formulas of Theorem 5.1, for instance the
formula

6r(2i)k−1〈f1, f2〉G = J (0, i∞;−1, 1) .

Once again we will assume for simplicity that G = Γ but the reasoning is completely
general. We have

J (0, i∞;−1, 1) =
∑

0≤n≤k−2

(−1)n
(
k − 2

n

)∫ i∞

0

τk−2−nf1(τ) dτ

∫ 1

−1

τnf2(τ) dτ ,

so the problem boils down to the computation of k − 1 integrals involving f1 and
k − 1 integrals involving f2 (r(k − 1) integrals in the general case).

The computation of
∫ i∞

0
τk−2−nf(τ) dτ = rk−2−n(f) can be done in two quite

different ways. On the one hand, we can apply the above-mentioned theory of
double-exponential integration, which here works very well since it is only a simple
and not a double integral.

An important implementation remark must be noted here: since f(τ) may be
costly to compute, it is preferable to use the integration method on the vector valued
function (1, τ, . . . , τk−2)f(τ) or on the polynomial valued function (X − τ)k−2f(τ),
instead of on each component individually, since this only requires one evaluation
of f instead of (k − 1).

On the other hand, we can use the elementary link between this integral and the
value of the Λ-function attached to f : indeed, we have trivially rj(f) = ij+1Λ(f, j+
1), where Λ(f, s) = (2π)−sΓ(s)L(f, s) satisfies the functional equation Λ(f, k−s) =
(−1)k/2Λ(f, s). Thus, using the standard method explained above, but here in a
much simpler context since the inverse Mellin transform of (2π)−sΓ(s) is simply
e−2πx, we obtain the formula

Λ(f, s) =
∑
n≥1

a(n)

(2πn)s
Γ(s, 2πnt0) + (−1)k/2

∑
n≥1

a(n)

(2πn)k−s
Γ(k − s, 2πn/t0) ,

where

Γ(s, x) =

∫ ∞
x

e−tts−1 dt

is the incomplete gamma function, which can be computed in many different effi-
cient ways.

The computation of
∫ 1

−1
τnf(τ) dτ poses slightly different problems. We can of

course still use double-exponential integration. On the other hand, the link with
L-functions still exists but is slightly more subtle (unless G = Γ). Indeed, we first
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write
∫ 1

−1
=
∫ 0

−1
+
∫ 1

0
, in the first integral we set τ = ST (z) = −1/(z + 1), and in

the second integral we set τ = z/(z + 1). We obtain∫ 1

−1

τnf(τ) dτ = (−1)n
∫ i∞

0

(z + 1)k−2−nf(−1/(z + 1)) dz

+

∫ i∞

0

zn(z + 1)k−2−nf(z/(z + 1)) dz .

If G = Γ then the transforms of f are equal to f , so expanding by the binomial
theorem we are reduced to the computation of at most k−1 periods of f . If desired
we can in fact use directly Haberland’s formula, see below.

If G 6= Γ, a new difficulty appears: since the transforms of f by Γ are not in
general equal to f , we have to compute their periods. The doubly-exponential inte-
gration method is of course always available, but the use of the L-function explained
above now requires the knowledge of the Fourier expansions at infinity of the func-
tions fj = f

∣∣
k
γj , using the notation of the beginning of this section; equivalently,

given f ∈ Mk(G, v) in some way, we need to compute the Fourier expansion of f
at the cusps of G, not only at infinity. This is still another computational problem
which we do not consider here.

Here is a small table of the timings in seconds to compute 〈f, f〉G to the given
number N of decimals using this method, without using at all the functional equa-
tion but only double-exponential integration, so as to keep it as general as possible.
Note that in my implementation, the fastest among the formulas given by Theorem
5.1 for ∆, ∆5, and ∆11 is the one given above involving J (0, i∞;−1, 1), but this
may not be the case for other implementations.

f � N 19 38 57 96 250 500

∆ 0.06 0.06 0.14 0.19 2.02 11.3
∆5 0.35 0.46 1.16 1.60 17.1 94.3
∆11 0.67 0.89 2.24 3.11 33.7 188

As an illustration of the power of double-exponential integration, note that for
instance to compute 〈∆,∆〉 to 500 decimal digits, we only need 500 sample points,
so only 1000 evaluations of ∆ (which is of course efficiently computed as ∆(τ) =
η24(τ)).

To summarize, in order to use Theorem 5.1 in the simplest possible manner,
I suggest using the doubly-exponential integration methods, since here they only
apply to simple integrals.

7. Using Theorem 5.2

As mentioned above, a variant is to use directly Theorem 5.2. This should be
done in the following way: using either double-exponential integration or the L-
function method if available, we compute the (k − 1)r periods rm(f1,j), as well
as the (k − 1)r periods rn(f2,j) if f1 6= f2 (as mentioned above, these should be
computed as r vectors with k− 1 components). It is not necessary to compute the
periods of f1,j

∣∣
k
T and f2,j

∣∣
k
T . Indeed, we can write γjT = gjγt(j), where gj ∈ G

and j 7→ t(j) is a permutation of [1, r]. Thus, since f1 ∈Mk(G, v), we have

rm(f1,j

∣∣
k
T ) = rm(f1

∣∣
k
γjT ) = v(gj)rm(f1,t(j)) ,

so no additional computation is necessary. The corresponding table of timings is
as follows:
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f � N 19 38 57 96 250 500

∆ 0.02 0.02 0.06 0.08 0.86 4.96
∆5 0.23 0.29 0.72 1.00 10.5 58.4
∆11 0.48 0.61 1.48 2.12 22.0 122.5

Note that the main gain compared to the use of Theorem 5.1 comes from the
fact that since f2 = f1, the periods have to be computed only once.

8. Using Rationality Theorems

There is a more subtle way of using periods to compute Petersson scalar products,
but only in the special case of Hecke eigenforms: it is a well-known theorem of Manin
that in the case of G = Γ, if f is a normalized eigenform there exist positive real
numbers ω+ and ω− such that the even (resp., odd) periods are algebraic multiples
of ω+ (resp., of ω−), and that ω+ and ω− can be chosen such that 〈f, f〉 = ω+ω−.
Since ω+ and ω− are essentially periods, they are thus very easy to compute as
explained above, so this gives a very efficient way of computing 〈f, f〉. For instance,
once one knows that

〈∆,∆〉 =
225

2048i
r1(∆)r2(∆) ,

without using any tricks and computing the periods using the doubly-exponential
integration method, we obtain the result to 500 decimals in only 9 seconds, while
using the L-function method we obtain the result in 1 second, so there is no special
advantage in this case.

However, in the case of congruence subgroups G of Γ, similar results hold, and
here we may use rationality to our advantage. I thank N. Skoruppa for the precise
statement of this theorem.

Theorem 8.1. Denote by γ+
j =

(
aj bj
cj dj

)
a system of representatives of right cosets

of G\Γ, set γ−j =
(
−bj −aj
dj cj

)
= P−1γjSP , where P =

(−1 0
0 1

)
, and for f ∈Mk(G, v)

write f±j = f
∣∣
k
γ±j . Finally, let

R±j (f)(X) =

∫ i∞

0

(X ∓ τ)k−2f±j dτ ,

and

P±j (f) = R+
j (f)±R−j (f) .

Assume that f is a normalized eigenfunction of all Hecke operators, so that the
Fourier coefficients of f at infinity are algebraic, and denote by K = Q(f) the
number field generated by them. There exist complex numbers ω± such that the
coefficients of the polynomials P±j (f)(X)/ω± are in K. In addition, ω± can be

chosen so that ω+ω− = 〈f, f〉.

Remarks.

(1) I do not know if this theorem is stated explicitly in the literature, although
it certainly is implicit.

(2) I thank an anonymous referee for pointing out that a similar theorem is

valid with γ−j =
(
aj −bj
−cj dj

)
= P−1γjP instead.

For f = ∆, as mentioned above we choose for instance ω+ = r2(∆)/i and
ω− = r1(∆), and we have

〈∆,∆〉 = (225/2048)ω+ω− .
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For f = ∆5, we choose for instance ω+ = r0(∆5)/i and ω− = r1(∆5), and we
have

〈∆5,∆5〉 = −(13/24)ω+ω− .

For f = ∆11, we choose for instance ω+ = r0(∆11)/i and ω− = <(r0(∆11; ( 1 0
3 1 )))

(which is one of the simplest choices), and we have

〈∆11,∆11〉 = (5/12)ω+ω− .

The table of timings is now as follows:

f � N 19 38 57 96 250 500

∆ 0.013 0.017 0.043 0.063 0.75 4.41
∆5 0.023 0.028 0.071 0.103 1.20 7.07
∆11 0.06 0.09 0.20 0.28 3.08 17.58

We see that this is by far the fastest method, especially when the index r = [Γ : G]
is large, since we only need to compute two periods. Its main disadvantages are
first that it is applicable only to Hecke eigenforms, and second that we need to
compute the rational (or algebraic) constants which occur for each form f , which
we do not know how to give in closed form, although such a formula may well exist.
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