
COUNTING VALUE SETS: ALGORITHM AND COMPLEXITY

QI CHENG, JOSHUA E. HILL, AND DAQING WAN

Abstract. Let p be a prime. Given a polynomial in Fpm [x] of degree d over
the finite field Fpm , one can view it as a map from Fpm to Fpm , and examine
the image of this map, also known as the value set. In this paper, we present

the first non-trivial algorithm and the first complexity result on explicitly
computing the cardinality of this value set. We show an elementary connection
between this cardinality and the number of points on a family of varieties in
affine space. We then apply Lauder and Wan’s p-adic point-counting algorithm

to count these points, resulting in a non-trivial algorithm for calculating the
cardinality of the value set. The running time of our algorithm is (pmd)O(d).
In particular, this is a polynomial-time algorithm for fixed d if p is reasonably
small. We also show that the problem is #P-hard when the polynomial is

given in a sparse representation, p = 2, and m is allowed to vary, or when
the polynomial is given as a straight-line program, m = 1 and p is allowed to
vary. Additionally, we prove that it is NP-hard to decide whether a polynomial
represented by a straight-line program has a root in a prime-order finite field,

thus resolving an open problem proposed by Kaltofen and Koiran in [5, 6].

1. Introduction

In a finite field with q = pm (p prime) elements, Fq, take a polynomial, f ∈ Fq [x]
with degree d > 0. Denote the image set of this polynomial as

Vf = {f (α) | α ∈ Fq}

and denote the cardinality of this set as # (Vf).
There are a few trivial bounds that can be immediately established. There are

only q elements in the field, so # (Vf) ≤ q. Additionally, any polynomial of degree
d can have at most d roots, thus for all a ∈ Vf , f(x) = a is satisfied at most d
times. This is true for every element in Vf , so # (Vf) d ≥ q, whence⌈ q

d

⌉
≤ #(Vf) ≤ q

(where ⌈·⌉ is the ceiling function).
Both of these bounds can be achieved: if # (Vf) = q, then f is called a permu-

tation polynomial and if # (Vf) =
⌈
q
d

⌉
, then f is said to have a “minimal value

set”.
The problem of establishing # (Vf) has been studied in various forms for at

least the last 115 years, but exact formulations for # (Vf) are known only for
polynomials in very specific forms. Results that apply to general polynomials are
asymptotic in nature, or provide estimates whose errors have reasonable bounds
only on average [11].

All three authors are partially supported by the NSF.

1

2 QI CHENG, JOSHUA E. HILL, AND DAQING WAN

The fundamental problem of counting the value set cardinality # (Vf) can be
thought of as a much more general version of the problem of determining if a partic-
ular polynomial is a permutation polynomial. Shparlinski [14] provided a baby-step
giant-step type test that determines if a given polynomial is a permutation poly-
nomial by extending [17] to an algorithm that runs in Õ((dq)6/7). This is still fully
exponential in log q. Ma and von zur Gathen [10] provide a ZPP (zero-error proba-
bilistic polynomial-time) algorithm for testing if a given polynomial is a permutation
polynomial. According to [7], the first deterministic polynomial-time algorithm for
testing permutation polynomials is obtained by Lenstra using the classification of
exceptional polynomials which in turn depends on the classification of finite simple
groups. Subsequently, an elementary approach based on the Gao-Kaltofen-Lauder
factorization algorithm is given by Kayal [7].

For the more general problem of exactly computing # (Vf), essentially nothing
is known about this problem’s complexity and no non-trivial algorithms are known.
For instance, no baby-step giant-step type algorithm is known in computing # (Vf).
No probabilistic polynomial-time algorithm is known. Finding a non-trivial algo-
rithm and proving a non-trivial complexity result for the value counting were raised
as open problems in [10], where a probabilistic approximation algorithm is given.
In this paper, we provide the first non-trivial algorithm and the first non-trivial
complexity result for the exact counting of the value set problem.

1.1. Our results. Perhaps the most obvious method to calculate # (Vf) is to eval-
uate the polynomial at each point in Fq and count how many distinct images result.

This algorithm has a time and space complexity (dq)O(1). One can also approach
this problem by operating on points in the co-domain. One has f(x) = a for some
x ∈ Fq if and only if fa(X) = f(X)− a has a zero in Fq; this algorithm again has

a time complexity (dq)O(1), but the space complexity is improved considerably to
(d log q)O(1).

In this paper we present several results on determining the cardinality of value
sets. On the algorithmic side, we show an elementary connection between this
cardinality and the number of points on a family of varieties in affine space. We
then apply Lauder and Wan’s p-adic point-counting algorithm [9], resulting in a
non-trivial algorithm for calculating the image set cardinality in the case that p is
sufficiently small (i.e., p = O((d log q)C) for some positive constant C). Precisely,
we have

Theorem 6. There exists an explicit deterministic algorithm and an explicit poly-
nomial R such that for any f ∈ Fq[x] of degree d, where q = pm (p prime), the
algorithm computes the cardinality of the image set, #(Vf), in a number of bit
operations bounded by R

(
mdddpd

)
.

The running time of this algorithm is polynomial in both p and m, but is ex-
ponential in d. In particular, this is a polynomial-time algorithm for fixed d if the
characteristic p is small (q = pm can be large, but p = O((d log q)C).

On the complexity side, we have several hardness results on the value set problem.
We frame these results using some standard classes in complexity theory, which
we outline here. NP is the complexity class of decision problem whose positive
solutions can be verified in polynomial time. NP-hard is the computational class
of decision problems that all NP problems can be reduced to using a polynomial-
time reduction. NP-complete is the complexity class of all NP-hard problems whose

COUNTING VALUE SETS: ALGORITHM AND COMPLEXITY 3

solution can be verified in polynomial time (that is, NP-complete is the intersection
of NP-hard and NP). Co-NP-complete is the complexity class of problems where
answering the logical complement of the decision problem is NP-complete.

The corresponding counting complexity theory classes that we use are as follows.
#P (read “sharp-P”) is the set of counting problems whose corresponding decision
problem is in NP. #P-hard is the computational class of counting problems that
all #P problems can be reduced to using a polynomial-time counting reduction.
#P-complete is the intersection of #P-hard and #P.

With a field of characteristic p = 2, we have

Theorem 3. The problem of counting the value set of a sparse polynomial over a
finite field of characteristic p = 2 is #P-hard.

The central approach in our proof of this theorem is to reduce the problem of
counting satisfying assignments for a 3SAT formula to the problem of value set
counting.

Over a prime-order finite field, we have

Theorem 5. Over a prime-order finite field Fp, the problem of counting the value
set is #P-hard under RP-reduction (randomized polynomial-time reduction) if the
polynomial is given as a straight-line program.

Additionally, we prove that it is NP-hard to decide whether a polynomial in
Z[x] represented by a straight-line program has a root in a prime-order finite field,
thus resolving an open problem proposed in [5, 6]. We accomplish the complexity
results over prime-order finite fields by reducing the prime-order finite field subset
sum problem (PFFSSP) to these problems.

In the PFFSSP, given a prime p, an integer b and a set of integers S =
{a1, a2, · · · , at}, we want to decide the solvability of the equation

a1x1 + a2x2 + · · ·+ atxt ≡ b (mod p)

with xi ∈ {0, 1} for 1 ≤ i ≤ t. The main idea comes from the observation that if
t < log p/3, there is a sparse polynomial α(x) ∈ Fp[x] such that as x runs over Fp,
the vector

(α(x), α(x+ 1), · · · , α(x+ t− 1))

runs over all the elements in {0, 1}t. In fact, a lightly modified version of the
quadratic character α(x) = (x(p−1)/2 + xp−1)/2 suffices. So the PFFSSP can be

reduced to deciding whether the sparse shift polynomial
∑t−1

i=0 ai+1α(x+ i)− b = 0
has a solution in Fp.

2. Background

2.1. The subset sum problem. To prove the complexity results, we use the sub-
set sum problem (SSP) extensively. The SSP is a well-known problem in computer
science. In one instance of the SSP, given an integer b and a set of positive integers
S = {a1, a2, · · · , at},

(1) (Decision version) the goal is to decide whether there exists a subset T ⊆ S
such that the sum of all the integers in T equals b,

(2) (Search version) the goal is to find a subset T ⊆ S such that the sum of all
the integers in T equals b,

4 QI CHENG, JOSHUA E. HILL, AND DAQING WAN

(3) (Counting version) the goal is to count the number of subsets T ⊆ S such
that the sum of all the integers in T equals b.

The decision version of the SSP is a classical NP-complete problem. The counting
version of the SSP is #P-complete, which can be easily derived from proofs of the
NP-completeness of the decision version, e.g. [3, Theorem 34.15].

One can view the SSP as a problem of solving the linear equation

a1x1 + a2x2 + · · ·+ atxt = b

with xi ∈ {0, 1} for 1 ≤ i ≤ t. The prime-order finite field subset sum problem is a
similar problem where in addition to b and S, one is given a prime p, and the goal
is to decide the solvability of the equation

a1x1 + a2x2 + · · ·+ atxt ≡ b (mod p)

with xi ∈ {0, 1} for 1 ≤ i ≤ t.

Proposition 1. The prime-order finite field subset sum problem is NP-hard under
RP-reduction.

Proof. To reduce the subset sum problem to the prime-order finite field subset
sum problem, one finds a prime p >

∑t
i=1 ai, which can be done in randomized

polynomial time. �

Remark 1. To make the reduction deterministic, one needs to de-randomize the
problem of finding a large prime, which appears to be difficult [15].

2.2. Polynomial representations. There are different ways to represent a poly-
nomial over a field F. The dense representation lists all the coefficients of a poly-
nomial, including the zero coefficients. The sparse representation lists only the
nonzero coefficients, along with the degrees of the corresponding terms. If most
of the coefficients of a polynomial are zero, then the sparse representation is much
shorter than the dense representation. A sparse shift representation of a polynomial
in F[x] is a list of n triples (ai, bi, ei) ∈ F×F×Z≥0 which represents the polynomial∑

1≤i≤n

ai(x+ bi)
ei .

More generally, a straight-line program for a univariate polynomial in Z[x] or
Fp[x] is a sequence of assignments, starting from x1 = 1 and x2 = x. After that,
the i-th assignment has the form

xi = xj ⊙ xk

where 0 ≤ j, k < i and ⊙ is one of the three operations +,−,×. We first let α be
an element in Fpm such that Fpm = Fp[α]. A straight-line program for a univariate
polynomial in Fpm [x] can be defined similarly, except that the sequence starts from
x1 = α and x2 = x. One can verify that a straight-line program computes a
univariate polynomial, and that sparse polynomials and sparse shift polynomials
have short straight-line programs. A polynomial produced by a short straight-line
program may have very high degree, and most of its coefficients may be nonzero,
so it may be costly to write it in either a dense form or a sparse form.

COUNTING VALUE SETS: ALGORITHM AND COMPLEXITY 5

3. Hardness of solving straight-line polynomials

It is known that deciding whether there is a root in a finite field for a sparse
polynomial is NP-hard [8]. In a related work, it was shown that deciding whether
there is a p-adic rational root for a sparse polynomial is NP-hard [1]. However, the
complexity of deciding the solvability of a straight-line polynomial in Z[x] within a
prime-order finite field was not known. This open problem was proposed in [5] and
[6]. We resolve this problem within this section, and this same idea will be used
later on to prove the hardness result of the value set counting problem.

Let p be an odd prime. Let χ be the quadratic character modulo p, namely
χ(x) equals 1,−1, or 0, depending on whether x is a quadratic residue, a quadratic
non-residue, or is congruent to 0 modulo p. For x ∈ Fp, χ(x) = x(p−1)/2. Consider
the list

(1) χ(1), χ(2), · · · , χ(p− 1).

It is a sequence in {1,−1}p−1. The following bound is a standard consequence of
the celebrated Weil bound for character sums, see [13] for a detailed proof.

Proposition 2. Let (b1, b2, · · · , bt) be a sequence in {1,−1}t. Then the number of
x ∈ Fp such that

χ(x) = b1, χ(x+ 1) = b2, · · · , χ(x+ t− 1) = bt

is in the range (p/2t − t(3 +
√
p), p/2t + t(3 +

√
p)).

The proposition implies that if t < log p/3, then every possible sequence in
{−1, 1}t occurs as a consecutive sub-sequence in expression (1). In many situations
it is more convenient to use binary 0/1 sequences, which suggests instead using
the polynomial (x(p−1)/2 + 1)/2, but this results in a small problem at x = 0. We
instead use the sparse polynomial

(2) α(x) = (x(p−1)/2 + xp−1)/2.

α(x) takes value in {0, 1} if x ∈ Fp and α(x) = 1 iff χ(x) = 1.

Corollary 1. If t < log p/3, then for any binary sequence (b1, b2, · · · , bt) ∈ {0, 1}t,
there exists a x ∈ Fp such that

α(x) = b1, α(x+ 1) = b2, · · · , α(x+ t− 1) = bt.

In other words, if t < log p/3, the map

x 7→ (α(x), α(x+ 1), · · · , α(x+ t− 1))

is an onto map from Fp to {0, 1}t; this map thus sends an algebraic object to a
combinatorial object.

Given a straight-line polynomial f(x) ∈ Z[x] and a prime p, how hard is it
to decide whether the polynomial has a solution in Fp? We now prove that this
problem is NP-hard.

6 QI CHENG, JOSHUA E. HILL, AND DAQING WAN

Theorem 1. Given a sparse shift polynomial f(x) ∈ Z[x], and a large prime p, it
is NP-hard to decide whether f(x) has a root in Fp under RP-reduction.

Proof. We reduce the (decision version of the) subset sum problem to this problem.
Given b ∈ Z≥0 and S = {a1, a2, · · · , at} ⊆ Z≥0, one can then find a prime, p, such

that p > max(23t,
∑t

i=1 ai) and construct a sparse shift polynomial

(3) β(x) =
t−1∑
i=0

aiα(x+ i)− b.

If the polynomial has a solution modulo p, then the answer to the subset sum
problem is “yes”, since for any x ∈ Fp, α(x+ i) ∈ {0, 1}.

In the other direction, if the answer to the subset sum problem is “yes”, then
according to Corollary 1, the polynomial has a solution in Fp. Note that the
reduction can be computed in randomized polynomial time. �

4. Complexity of the value set counting problem

In this section, we prove several results about the complexity of the value set
counting problem.

4.1. Finite fields of characteristic 2. We will use a problem about NC0
5 circuits

to prove that counting the value set of a sparse polynomial in a field of characteristic
2 is #P-hard. A Boolean circuit is in NC0

5 if every output bit of the circuit depends
only on at most 5 input bits. We can view a circuit with n input bits and m output
bits as a map from {0, 1}n to {0, 1}m and call the image of the map the value set
of the circuit. The following proposition is implied in [4]; we provide a sketch of
the proof.

Proposition 3. Given a 3SAT formula with n variables and m clauses, one can
construct in polynomial time an NC 0

5 circuit with n+m input bits and n+m outputs
bits, such that if there are M satisfying assignments for the 3SAT formula, then
the cardinality of the value set of the NC0

5 circuit is 2n+m − 2m−1M . In particular,
if the 3SAT formula can not be satisfied, then the circuit computes a permutation
from {0, 1}n+m to {0, 1}n+m.

Proof. Denote the variables of the 3SAT formula by x1, x2, · · · , xn, and the clauses
of the 3SAT formula by C1, C2, · · · , Cm. Build a circuit with n+m input bits and
n+m output bits as follows. The input bits will be denoted by x1, x2, · · · , xn and
y1, y2, · · · , ym, and output bits will be denoted by z1, z2, · · · , zn, w1, w2, · · · , wm.
Set zi = xi for 1 ≤ i ≤ n. And set

wi = (Ci ∧ (yi ⊕ y(i+1 (mod m)))) ∨ (¬Ci ∧ yi)

for 1 ≤ i ≤ m. In other words, if Ci is evaluated to be TRUE, then output
yi⊕ y(i+1 (mod m)) as wi, and otherwise output yi as wi. Note that Ci depends only

on 3 variables from {x1, x2, · · · , xn}, thus we obtain an NC0
5 circuit. After fixing an

assignment to xi’s, zi’s are also fixed, and the transformation from (y1, y2, · · · , ym)
to (w1, w2, · · · , wm) is linear over F2. One can verify that the linear transformation
has rank m−1 if the assignment satisfies all the clauses, and it has rank m (namely
it has full rank) if some of the clauses are not satisfied. So the cardinality of the
value set of the circuit is

M2m−1 + (2n −M)2m = 2n+m − 2m−1M. �

COUNTING VALUE SETS: ALGORITHM AND COMPLEXITY 7

If we replace the Boolean gates in the NC0
5 circuit by algebraic gates over F2, we

obtain an algebraic circuit that computes a polynomial map from Fn+m
2 to itself,

where each polynomial depends only on 5 variables and has degree equal to or
less than 5. There is an F2-basis for F2n+m , say ω1, ω2, · · · , ωn+m which induces a
bijection from Fn+m

2 to F2n+m given by

(x1, x2, · · · , xn+m) 7→ x =
n+m∑
i=1

xiωi

which has an inverse that can be represented by sparse polynomials in F2n+m [x].
Using this fact, we can replace the input bits of the algebraic circuit by sparse
polynomials, and collect the output bits together using the base to form a single
element in F2n+m . We thus obtain a sparse univariate polynomial in F2n+m [x] from
the NC0

5 circuit such that their value sets have the same cardinality. We thus have
the following theorem:

Theorem 2. Given a 3SAT formula with n variables and m clauses, one can
construct in polynomial time a sparse polynomial γ(x) over F2n+m such that the
value set of γ(x) has cardinality 2n+m−2m−1M , where M is the number of satisfying
assignments of the 3SAT formula.

Since counting the number of satisfying assignments for a 3SAT formula is known
to be #P-complete, we have our main theorem:

Theorem 3. The problem of counting the value set of a sparse polynomial over a
finite field of characteristic p = 2 is #P-hard.

Corollary 2. The set of sparse permutation polynomials over finite fields of char-
acteristic p = 2 is co-NP-complete.

4.2. Prime-order finite fields. The construction in Theorem 2 relies on building
extensions over F2. The technique cannot be adopted easily to the prime-order finite
field case. We will prove that counting the value set of a straight-line polynomial
over prime-order finite field is #P-hard. We reduce the counting version of the
subset sum problem to the value set counting problem.

Theorem 4. Given access to an oracle that solves the value set counting problem
for straight-line polynomials over prime-order finite fields, there is a randomized
polynomial-time algorithm solving the counting version of the SSP.

Proof. Given an instance of the counting subset sum problem, say b with the set
S = {a1, a2, · · · , an}, if b >

∑n
i=1 ai, we answer 0; if b = 0, then we answer 1.

Otherwise we find a prime p > max(23t, 2
∑n

i=1 ai) and ask the oracle to count the
value set of the sparse shift polynomial

f(x) := (1− β(x)p−1)(
t−1∑
i=0

α(x+ i)2i)

over the prime-order field Fp, where α(x) and β(x) are as defined in equations (2)
and (3), respectively. We output the answer # (Vf)− 1, which is easily seen to be
exactly the number of subsets of {a1, · · · , an} which sum to b. �

Since the counting version of the SSP is #P-complete, this theorem yields

8 QI CHENG, JOSHUA E. HILL, AND DAQING WAN

Theorem 5. Over a prime-order finite field Fp, the problem of counting the value
set is #P-hard under RP-reduction, if the polynomial is given as a straight-line
program.

5. The Image Set and Point Counting

Proposition 4. If f ∈ Fq [x] is a polynomial of degree d > 0, then the cardinality
of its image set is

(4) # (Vf) =
d∑

i=1

(−1)i−1Niσi

(
1,

1

2
, . . . ,

1

d

)
where Nk = #

({
(x1, . . . , xk) ∈ Fk

q | f(x1) = · · · = f(xk)
})

and σi denotes the ith
elementary symmetric function on d elements.

Proof. For any y ∈ Vf , define

Ñk,y =
{
(x1, . . . , xk) ∈ Fk

q | f(x1) = · · · = f(xk) = y
}

and denote the corresponding cardinality of these sets as

Nk,y = #
(
Ñk,y

)
and finally, note that

(5) Nk =
∑
y∈Vf

Nk,y.

Let us refer to the right hand side of (4) as η; plugging (5) into this expression
and rearranging, we get

η =
∑
y∈Vf

d∑
i=1

(−1)i−1Ni,y σi

(
1,

1

2
, . . . ,

1

d

)
.

Let us call the inner sum ωy, that is:

ωy =
d∑

i=1

(−1)i−1Ni,y σi

(
1,

1

2
, . . . ,

1

d

)
.

If we can show that for all y ∈ Vf we have ωy = 1, then we clearly have η =
#(Vf).

Let y ∈ Vf be fixed. Let k = #
(
f−1(y)

)
. It is clear that 1 ≤ k ≤ d and Ni,y = ki

for 0 ≤ i ≤ d. Substituting this in, our expression mercifully becomes somewhat
nicer:

ωy = 1−
d∑

i=0

(−1)ikiσi

(
1,

1

2
, . . . ,

1

d

)

= 1−
d∑

i=0

(−1)iσi

(
k1, k

1

2
, . . . , k

1

d

)
(6)

= 1−
[
(1− k1)

(
1− k

1

2

)
· · ·

(
1− k

1

d

)]
(7)

= 1.

COUNTING VALUE SETS: ALGORITHM AND COMPLEXITY 9

From step (6) to step (7), we are using the identity
n∏

j=1

(λ−Xj) =

n∑
j=0

(−1)
j
λn−jσj (X1, . . . , Xn) .

Note that the bracketed term of (7) is 0, as k must be an integer such that
1 ≤ k ≤ d, so one term in the product will be 0.

Thus, we have η = #(Vf), as desired. �
Proposition 4 gives us a way to express # (Vf) in terms of the numbers of rational

points on a sequence of curves over Fq. If we had a way of getting Nk for 1 ≤ k ≤ d,
then it would be easy to calculate # (Vf).

We proceed by examining a family of related spaces,

Ñk =
{
(x1, . . . , xk) ∈ Fk

q | f(x1) = · · · = f(xk)
}
.

We immediately note that Nk = #
(
Ñk

)
.

Spaces similar to our Ñk have been used several times[16, 2] to establish various
asymptotic results for # (Vf). The spaces used in these works require that xi ̸= xj

for i ̸= j. We will see that our work would have been dramatically harder if we had
imposed these additional restrictions.

The spaces Ñk aren’t of any nice form (in particular, we cannot assume they
are non-singular projective, abelian varieties, etc.), so we proceed by using the p-
adic point counting method described in [9], which runs in polynomial time for any
variety over a field of small characteristic (i.e., p = O((d log q)C) for some positive
constant C).

Theorem 6. There exists an explicit deterministic algorithm and an explicit poly-
nomial R such that for any f ∈ Fq[x] of degree d, where q = pm (p prime), the
algorithm computes the cardinality of the image set, #(Vf), in a number of bit
operations bounded by R

(
mdddpd

)
.

Proof. We first note that:

Ñk =
{
(x1, . . . , xk) ∈ Fk

q | f(x1) = · · · = f(xk)
}

=

(x1, . . . , xk) ∈ Fk
q

∣∣∣∣∣∣∣∣∣
f(x1) − f(x2) = 0
f(x1) − f(x3) = 0

...
f(x1) − f(xk) = 0

 .

For reasons soon to become clear, we need to represent this as the solution set of
a single polynomial. Let us introduce additional variables z1 to zk−1, and denote
x = (x1, . . . , xk) and z = (z1, . . . , zk−1). Now examine the auxiliary function

(8) Fk (x, z) = z1 (f(x1)− f(x2)) + · · ·+ zk−1 (f(x1)− f(xk)) .

Clearly, if γ ∈ Ñk, then Fk (γ, z) is the zero function. If γ ∈ Fk
q \ Ñk, then the

solutions of Fk (γ, z) = 0 specify a (k − 2)-dimensional Fq-linear subspace of Fk−1
q .

Thus, if we denote the cardinality of the solution set to Fk(x, z) = 0 as # (Fk),
then we see that

(Fk) = qk−1Nk + qk−2
(
qk −Nk

)
= Nkq

k−2 (q − 1) + q2k−2.

10 QI CHENG, JOSHUA E. HILL, AND DAQING WAN

Solving for Nk, we find that

(9) Nk =
#(Fk)− q2k−2

qk−2 (q − 1)
.

Thus we have an easy way to determine what Nk is depending on the number of
points on this hypersurface defined by the single polynomial equation Fk = 0.

The main theorem in [9] yields an algorithm for toric point counting in Fqℓ that

is polynomial time when the characteristic is small (i.e., p = O((d log q)C) for some
positive constant C) that works for general varieties. In [9, §6.4], this theorem is
adapted to be a generic point counting algorithm.

Adapting this result to our problem, we see that Fk has a total degree of d+ 1,
is in 2k − 1 variables, and that we only care about the case where ℓ = 1. Thus,
the runtime for this algorithm is Õ(28k+1m6k+4k6k+2d6k−3p4k+2) bit operations.
In order to calculate # (Vf) using equation (4), we calculate Nk for 1 ≤ k ≤ d,
scaled by an elementary symmetric polynomial. All of the necessary elementary
symmetric polynomials can be evaluated using Newton’s identity (see [12]) in less
than O(d2 log d) multiplications. As such, the entire calculation has a runtime of

Õ(28d+1m6d+4d12d−1p4d+2) bit operations. For consistency with [9], we can then
note that as d > 1, we can write 28d+1 = d(logd 2)(8d+1). Thus, there is a polynomial,
R, in one variable such that the runtime of this algorithm is bounded by R(mdddpd)
bit operations. In the dense polynomial model, the polynomial f has input size
O (d log q), so this algorithm does not have polynomial runtime with respect to the
input length. This algorithm has runtime that is exponential in the degree of the
polynomial, d, and polynomial in m and p. �

As a note, had we adopted the spaces constructed in prior works[16, 2], we would
have then required xi ̸= xj for i ̸= j. The standard approach to representing such
inequalities is the “Rabinovich trick”. To use this trick, we would have introduced
an additional variable, say y, and the additional equation

y
∏
i<j

(xj − xi) = 1.

This is a degree
(
k
2

)
+ 1 polynomial, which would have led to an equation corre-

sponding to (8) of at least degree
(
k
2

)
+ 2 with 2k + 1 variables, which would have

increased the work factor of the algorithm significantly.

6. Open Problems

The algorithm presented relies on Lauder-Wan, which is intended to calculate
the number of Fq-rational points associated with general varieties. We use this on a
polynomial of a very special form. As such, it may be possible to get a considerably
more efficient algorithm by exploiting symmetry in the resulting Newton polytope.

Though value sets of polynomials appear to be closely related to zero sets, they
are not as well studied. There are many interesting open problems about value
sets. The most important one is to find a counting algorithm with running time
(d log q)O(1), that is, a deterministic polynomial-time algorithm in the dense model.
It is not clear if this is always possible. Our result affirmatively solves this problem
for fixed d if characteristic p is reasonably small. We conjecture that the same
result is true for fixed d and all characteristic p.

COUNTING VALUE SETS: ALGORITHM AND COMPLEXITY 11

For the complexity side, can one prove that the counting problem for sparse
polynomials in prime-order finite fields is hard? Can one prove that the counting
problem for dense input model is hard for general degree d?
Acknowledgment: We thank Dr. Tsuyoshi Ito for pointing out reference [4] to us.

References

[1] Martin Avendano, Ashraf Ibrahim, J. Maurice Rojas, and Korben Rusek. Randomized np-
completeness for p-adic rational roots of sparse polynomials in one variable. In ISSAC, pages
331–338, 2010.

[2] B. J. Birch and H. P. F. Swinnerton-Dyer. Note on a problem of Chowla. Polska Akademia

Nauk. Instytut Matematyczny. Acta Arithmetica, 5:417–423, 1959.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT

electrical engineering and computer science series. MIT Press, 2001.
[4] B. Durand. Inversion of 2d cellular automata: some complexity results. Theoretical Computer

Science, 134(2):387–401, 1994.
[5] Erich Kaltofen. Polynomial factorization: a success story. In The 2003 international sym-

posium on Symbolic and algebraic computation (presentation), ISSAC ’03, 2003. http:

//www4.ncsu.edu/∼kaltofen/bibliography/lectures/lectures.html#issacphiladelphia.
[6] Erich Kaltofen and Pascal Koiran. On the complexity of factoring bivariate supersparse (la-

cunary) polynomials. In Proceedings of the 2005 international symposium on Symbolic and
algebraic computation, ISSAC ’05, pages 208–215, New York, NY, USA, 2005. ACM.

[7] Neeraj Kayal. Solvability of a system of bivariate polynomial equations over a finite field

(extended abstract). In Automata, languages and programming, volume 3580 of Lecture Notes
in Comput. Sci., pages 551–562. Springer, Berlin, 2005.

[8] Aviad Kipnis and Adi Shamir. Cryptanalysis of the hfe public key cryptosystem by relineariza-

tion. In Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’99, pages 19–30, London, UK, 1999. Springer-Verlag.

[9] Alan G. B. Lauder and Daqing Wan. Counting points on varieties over finite fields of small
characteristic. In J.P. Buhler and P. Stevenhagen, editors, Algorithmic Number Theory, pages

579 – 612. Cambridge University Press, 2008.
[10] Keju Ma and Joachim von zur Gathen. The computational complexity of recognizing permu-

tation functions. Computational Complexity, 5(1):76–97, 1995.
[11] Keju Ma and Joachim von zur Gathen. Tests for permutation functions. Finite Fields and

their Applications, 1(1):31–56, 1995.
[12] D. G. Mead. Newton’s identities. The American Mathematical Monthly, 99(8):pp. 749–751,

1992.
[13] René Peralta. On the distribution of quadratic residues and nonresidues modulo a prime

number. Mathematics of Computation, 58(197):433–440, 1992.
[14] I. E. Shparlinski. A deterministic test for permutation polynomials. Computational Complex-

ity, 2(2):129–132, 1992.
[15] Terence Tao, Ernie Croot III, and Harald Helfgott. Deterministic methods to find primes.

Mathematics of Computation, 2011. To appear.
[16] Saburô Uchiyama. Note on the mean value of V (f). Proceedings of the Japan Academy,

31:199–201, 1955.

[17] Joachim von zur Gathen. Tests for permutation polynomials. SIAM Journal on Computing,
20(3):591–602, 1991.

12 QI CHENG, JOSHUA E. HILL, AND DAQING WAN

(Qi Cheng) School of Computer Science, The University of Oklahoma, Norman, OK

73019, USA
E-mail address: qcheng@cs.ou.edu

(Joshua E. Hill) Department of Mathematics, University of California, Irvine, CA

92697, USA
E-mail address: hillje@math.uci.edu

(DaqingWan)Department of Mathematics, University of California, Irvine, CA 92697,
USA

E-mail address: dwan@math.uci.edu

