SOLVING QUADRATIC EQUATIONS IN

 DIMENSION 5 OR MORE WITHOUT FACTORING

Pierre Castel

pierre.castel@unicaen.fr - http://www.math.unicaen.fr/~castel
Laboratoire de Mathématiques Nicolas Oresme CNRS UMR 6139
Université de Caen (France)

Summary

(1) Introduction
(2) The algorithm
(3) Complexity
(4) Example

What's next: Introduction

(1) Introduction

Quadratic equations...

We consider homogenous quadratic equations with integral coefficients and search for a nontrivial and integral solution.

Quadratic equations...

We consider homogenous quadratic equations with integral coefficients and search for a nontrivial and integral solution. Dimension 1:

Equation:

$$
a x^{2}=0
$$

Solution:

$$
x=0
$$

Quadratic equations. . .

We consider homogenous quadratic equations with integral coefficients and search for a nontrivial and integral solution. Dimension 1:

Equation:

$$
a x^{2}=0
$$

Dimension 2:

Equation:

$$
a x^{2}+b x y+c y^{2}=0
$$

Solution:

$$
x=0
$$

Solution:

(1) Compute $\Delta=b^{2}-4 a c$
(2) If Δ is a square, solutions are:

$$
x=\frac{-b \pm \sqrt{\Delta}}{2 a} y
$$

Minimisation and Reduction

We use the matrix notation: Q is the n-dimensional symmetric matrix containing the coefficients of the equation.
The equation is now:

$$
{ }^{t} X Q X=0
$$

with $X \in \mathbb{Z}^{n}$.

Minimisation and Reduction

We use the matrix notation: Q is the n-dimensional symmetric matrix containing the coefficients of the equation.
The equation is now:

$$
{ }^{t} X Q X=0
$$

with $X \in \mathbb{Z}^{n}$.
Let Q be a quadratic form with determinant Δ.

- Minimising Q : finding transformations for Q in order to get another quadratic form Q^{\prime} with same dimension as Q such that:
- Q^{\prime} and Q have the same solutions (up to a basis change),
- $\operatorname{det}\left(Q^{\prime}\right)$ divides Δ.

Minimisation and Reduction

We use the matrix notation: Q is the n-dimensional symmetric matrix containing the coefficients of the equation.
The equation is now:

$$
{ }^{t} X Q X=0
$$

with $X \in \mathbb{Z}^{n}$.
Let Q be a quadratic form with determinant Δ.

- Minimising Q : finding transformations for Q in order to get another quadratic form Q^{\prime} with same dimension as Q such that:
- Q^{\prime} and Q have the same solutions (up to a basis change),
- $\operatorname{det}\left(Q^{\prime}\right)$ divides Δ.
- Reducing the form Q : it's finding a basis change B such that:
- $\operatorname{det}(B)= \pm 1$,
- the coefficients of $Q^{\prime}={ }^{t} B Q B$ are smaller than the ones of Q.

Quadratic equations in dimensions 3, 4 and more: Simon's

 algorithm(1) Factor the determinant of Q,
(2) Minimise Q relatively to each prime factor of $\operatorname{det}(Q)$,
(3) Reduce Q using the LLL algorithm,
(9) Use number theory tools in order to end the minimisation of Q,
(3) Considering intersections of some isotropic spaces of good dimension, deduce a solution for the form of the beginning.

Quadratic equations in dimensions 3, 4 and more: Simon's algorithm
(1) Factor the determinant of Q,
(2) Minimise Q relatively to each prime factor of $\operatorname{det}(Q)$,
(3) Reduce Q using the LLL algorithm,
(9) Use number theory tools in order to end the minimisation of Q,
(6) Considering intersections of some isotropic spaces of good dimension, deduce a solution for the form of the beginning.

This algorithm:

- creates a link between factoring and solving quadratic equations
- can be generalised to forms of higher dimension

The problem:

Pro:
As soon as the factorisation of the determinant is known, Simon's algorithm is very efficient.

The problem:

Pro:

As soon as the factorisation of the determinant is known, Simon's algorithm is very efficient.

Cons:

But as soon as the size of the determinant reaches $\simeq 50$ digits, the factorisation becomes prohibitively slow.

The problem:

Pro:

As soon as the factorisation of the determinant is known, Simon's algorithm is very efficient.

Cons:

But as soon as the size of the determinant reaches $\simeq 50$ digits, the factorisation becomes prohibitively slow.

So, we are given the following problem:

Problem:

Let Q be a dimension 5 quadratic form. We assume that $\operatorname{det}(Q)$ cannot be factored (in a reasonable amount of time). Find a non zero vector $X \in \mathbb{Z}^{5}$ such that:

$$
{ }^{t} X Q X=0
$$

What's next: The algorithm

(2) The algorithm

- Principle
- Completion
- Computing a solution
- Minimisations

Principle

Simon's algorithm is very efficient as soon as the factorization of $\operatorname{det}(Q)$ is known.

Principle

Simon's algorithm is very efficient as soon as the factorization of $\operatorname{det}(Q)$ is known.

Idea:
(1) Build another quadratic form Q_{6} starting from Q for which computing a solution is " easy ",

Principle

Simon's algorithm is very efficient as soon as the factorization of $\operatorname{det}(Q)$ is known.

Idea:
(1) Build another quadratic form Q_{6} starting from Q for which computing a solution is "easy ",
(2) Use Simon's algorithm to find a solution for Q_{6},

Principle

Simon's algorithm is very efficient as soon as the factorization of $\operatorname{det}(Q)$ is known.

Idea:
(1) Build another quadratic form Q_{6} starting from Q for which computing a solution is "easy ",
(2) Use Simon's algorithm to find a solution for Q_{6},
(3) Deduce a solution for Q.

How to build Q_{6} ?

If Q designs the matrix of the quadratic form Q, we build Q_{6} in the following way:

$$
Q_{6}=\left[\begin{array}{c:c}
Q & X \\
\hdashline{ }^{t}{ }^{t} X & z
\end{array}\right]
$$

Where $X \in \mathbb{Z}^{5}$ is randomly chosen and $z \in \mathbb{Z}$.

How to build Q_{6} ?

If Q designs the matrix of the quadratic form Q, we build Q_{6} in the following way:

$$
Q_{6}=\left[\begin{array}{c:c}
Q & X \\
\hdashline{ }^{t}{ }^{t} & z_{X}
\end{array}\right]
$$

Where $X \in \mathbb{Z}^{5}$ is randomly chosen and $z \in \mathbb{Z}$.
So we have:

$$
\operatorname{det}\left(Q_{6}\right)=\operatorname{det}(Q) z-{ }^{t} X \operatorname{Co}(Q) X
$$

And we choose z such that: $\operatorname{det}\left(Q_{6}\right)=-{ }^{t} X \operatorname{Co}(Q) X(\bmod \operatorname{det}(Q))$.

The way to the solution...

As the value of $\operatorname{det}\left(Q_{6}\right)$ is known in advance, we try some vector X until we have $\operatorname{det}\left(Q_{6}\right)$ prime.

Principle:

$\operatorname{det}\left(Q_{6}\right)$ being prime, it is possible to use Simon's algorithm in order to find a vector $T \in \mathbb{Z}^{6}$ such that:

$$
{ }^{t} T Q_{6} T=0
$$

The vector T is isotropic for Q_{6}. So, in a basis whose first vector is T, Q_{6} has the form:

$$
Q_{6}=\left[\begin{array}{llllll}
0 & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right]
$$

Decomposition $Q_{6}=H \oplus Q_{4}$

The vector T is a solution for Q_{6} so there exists an hyperbolic plane which contains it. With linear algebra (GCD), we get a "correct" basis. In such a basis, Q_{6} has the shape:

$$
Q_{6}=\left[\begin{array}{cc:cccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & \alpha & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & & & & \\
0 & 0 & & Q_{4} & \\
0 & 0 & & & \\
0 & 0 & & & &
\end{array}\right]
$$

Where $\alpha \in\{0,1\}$ and Q_{4} is a dimension 4 quadratic form, with determinant $-\operatorname{det}\left(Q_{6}\right)$. So it's prime again...

Decomposition $Q_{6}=H \oplus H^{\prime} \oplus Q_{2}$

...so we do it again: Simon's algorithm and linear algebra with Q_{4}. In the new basis, Q_{6} has the following shape:

$$
Q_{6}=\left[\begin{array}{cc:cc:cc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & \alpha & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & \beta & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & Q_{2} \\
0 & 0 & 0 & 0 &
\end{array}\right]
$$

where $\alpha, \beta \in\{0,1\}$ and Q_{2} is a dimension 2 quadratic form.

If we denote by e_{1} and e_{3} the following basis vectors:

$$
Q_{6}=\left[\begin{array}{cc:cc:cc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & \alpha & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & \beta & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & Q_{2}
\end{array}\right]
$$

If we denote by e_{1} and e_{3} the following basis vectors:

$$
Q_{6}=\left[\begin{array}{cc:cc:cc}
e_{1} & e_{3} \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & \alpha & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & \beta & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & Q_{2} \\
0 & 0 & 0 & 0 &
\end{array}\right]
$$

Then e_{1} and e_{3} are both isotropics and orthogonals.

If we denote by e_{1} and e_{3} the following basis vectors:

$$
Q_{6}=\left[\begin{array}{cc:cc:cc}
e_{1} & e_{3} \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & \alpha & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & \beta & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & Q_{2} \\
0 & 0 & 0 & 0 &
\end{array}\right]
$$

Then e_{1} and e_{3} are both isotropics and orthogonals.

The solution:

consider a linear combinaison whose last coordinate is zero. Example:

$$
\widetilde{S}=e_{3}(6) \times e_{1}-e_{1}(6) \times e_{3}
$$

So \widetilde{S} has the shape:

$$
\widetilde{S}=\left[\begin{array}{c}
S \\
-\overline{0}
\end{array}\right] \text { with } S \in \mathbb{Z}^{5}
$$

Assuming that all of the basis changes have been applied, we have:

$$
\begin{aligned}
{ }^{\tau} \widetilde{S} Q_{6} \widetilde{S} & =\left[\begin{array}{ll:l}
& { }^{t} S & 0
\end{array}\right]\left[\begin{array}{c:c}
Q & X \\
\hdashline{ }^{t} \bar{X} & z
\end{array}\right]\left[\begin{array}{c}
S \\
0
\end{array}\right] \\
& ={ }^{t} S Q S \\
& =0
\end{aligned}
$$

We have then:

S is a solution to our problem.

The algorithm:

(1) Complete Q in Q_{6} in such a way that $\operatorname{det}\left(Q_{6}\right)$ is prime,
(2) Use Simon's algorithm for Q_{6},
(3) Using linear algebra, decompose Q_{6} in $Q_{6}=H \oplus Q_{4}(H$ hyperbolic plane),
(9) Do step 2 for Q_{4},
(0) Using linear algebra, decompose Q_{6} in $Q_{6}=H \oplus H^{\prime} \oplus Q_{2}(H$, H^{\prime} hyperbolic planes),
(0) Deduce a solution for Q.

Smith Normal Form:

SNF Decomposition

Let A be a $k \times k$ matrix with integer entries and non zero determinant. There exists a unique matrix in Smith Normal Form D such that $U A V=D$ with U and V unimodular and integer entries.

If we denote by $d_{i}=d_{i, i}$, the d_{i} are the elementary divisors of the matrix A, and we have :

$$
U A V=\left[\begin{array}{rrrr}
d_{1} & 0 & \ldots & 0 \\
0 & d_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & d_{k}
\end{array}\right]
$$

with $d_{i+1} \mid d_{i}$ for $1 \leq i<k$

The problem:

In the algorithm, we are looking for $X \in \mathbb{Z}^{5}$ such that $\operatorname{det}\left(Q_{6}\right)$ is prime. However :

Lemma
Let Q be a dimension 5 quadratic form with determinant Δ. Then for all $X \in \mathbb{Z}^{5}$ and $z \in \mathbb{Z}, d_{2}(Q)$ divides $\operatorname{det}\left(Q_{6}\right)$.

The problem:

In the algorithm, we are looking for $X \in \mathbb{Z}^{5}$ such that $\operatorname{det}\left(Q_{6}\right)$ is prime. However :

Lemma

Let Q be a dimension 5 quadratic form with determinant Δ. Then for all $X \in \mathbb{Z}^{5}$ and $z \in \mathbb{Z}, d_{2}(Q)$ divides $\operatorname{det}\left(Q_{6}\right)$.

Problem
If $d_{2}(Q) \neq 1$, $\operatorname{det}\left(Q_{6}\right)$ will never be a prime !

The solution:

Solution
 Do minimisations on Q to be in the case where $d_{2}(Q)=1$.

The solution:

Solution

Do minimisations on Q to be in the case where $d_{2}(Q)=1$.

We have the different cases:
(1) Case $d_{5}(Q) \neq 1$,
(2) Case $d_{4}(Q) \neq 1$ and $d_{5}(Q)=1$,
(3) Case $d_{3}(Q) \neq 1$ and $d_{4}(Q)=1$,
(c) Case $d_{2}(Q) \neq 1$ and $d_{3}(Q)=1$.

Cases 1, 2 and 3

We apply the basis change given by the matrix V of the SNF of Q :

- if $d_{5}(Q) \neq 1$:
- we just have to divide the matrix by d_{5},
- we have divided $\operatorname{det}(Q)$ by $\left(d_{5}\right)^{5}$.
- if $d_{4}(Q) \neq 1$ and $d_{5}(Q)=1$:
- we multiply the last row and column by d_{4},
- we divide the matrix by d_{4},
- we have multiplied $\operatorname{det}(Q)$ by $\left(d_{4}\right)^{2}$ and divided by $\left(d_{4}\right)^{5}$.
- if $d_{3}(Q) \neq 1$ and $d_{4}(Q)=1$:
- we multiply the two last rows and columns by d_{3},
- we divide the matrix by d_{3},
- we have multiplied $\operatorname{det}(Q)$ by $\left(d_{3}\right)^{4}$ and divided by $\left(d_{3}\right)^{5}$.

Case $d_{2}(Q) \neq 1$ and $d_{3}(Q)=1$

We first apply the basis change given by the matrix V of the SNF of Q. In such a base, Q has the form :

$$
\left[\begin{array}{cc:ccc}
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
\hdashline d_{2 *} & d_{2 *} & * & * & * \\
d_{2} * & d_{2 *} * & * & * & * \\
d_{2} * & d_{2} * & * & * & *
\end{array}\right]
$$

Case $d_{2}(Q) \neq 1$ and $d_{3}(Q)=1$

We first apply the basis change given by the matrix V of the SNF of Q. In such a base, Q has the form :

$$
\left[\begin{array}{cc:ccc}
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
\hdashline d_{2 *} & d_{2 *} & * & * & * \\
d_{2} * & d_{2} * & * & * & * \\
d_{2} * & d_{2} * & * & * & *
\end{array}\right]
$$

- We would like to multiply the 3 lasts rows and columns by d_{2} and divide the matrix by d_{2}.

Case $d_{2}(Q) \neq 1$ and $d_{3}(Q)=1$

We first apply the basis change given by the matrix V of the SNF of Q. In such a base, Q has the form :

$$
\left[\begin{array}{cc:ccc}
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
\hdashline d_{2 *} & d_{2 *} & * & * & * \\
d_{2} * & d_{2 *} * & * & * & * \\
d_{2} * & d_{2} * & * & * & *
\end{array}\right]
$$

- We would like to multiply the 3 lasts rows and columns by d_{2} and divide the matrix by d_{2}.
- But if we do this, we multiply the determinant by d_{2}^{6} and we divide it by $d_{2}^{5} \ldots$

Case $d_{2}(Q) \neq 1$ and $d_{3}(Q)=1$

We first apply the basis change given by the matrix V of the SNF of Q. In such a base, Q has the form :

$$
\left[\begin{array}{cc:ccc}
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
\hdashline d_{2} * & d_{2} * & * & * & * \\
d_{2} * & d_{2} * & * & * & * \\
d_{2} * & d_{2} * & * & * & *
\end{array}\right]
$$

- We would like to multiply the 3 lasts rows and columns by d_{2} and divide the matrix by d_{2}.
- But if we do this, we multiply the determinant by d_{2}^{6} and we divide it by $d_{2}^{5} \ldots$

Solution:

Solve a quadratic equation modulo d_{2} such that:
$Q_{3,3} \equiv 0\left(\bmod d_{2}\right)$
and do the desired operation on the two lasts rows and columns.

How to get $Q_{3,3} \equiv 0\left(\bmod d_{2}\right)$?

We begin by a Gram-Schmidt orthogonalisation on the 3×3 block modulo d_{2}. In that basis, the block Q_{3} has the form:

$$
\left[\begin{array}{lll}
a & & 0 \\
& b & \\
0 & & c
\end{array}\right] \quad\left(\bmod d_{2}\right)
$$

How to get $Q_{3,3} \equiv 0\left(\bmod d_{2}\right)$?

We begin by a Gram-Schmidt orthogonalisation on the 3×3 block modulo d_{2}. In that basis, the block Q_{3} has the form:

$$
\left[\begin{array}{lll}
a & & 0 \\
& b & \\
0 & & c
\end{array}\right] \quad\left(\bmod d_{2}\right)
$$

It remains to solve the equation:

$$
a x^{2}+b y^{2}+c z^{2} \equiv 0 \quad\left(\bmod d_{2}\right)
$$

How to get $Q_{3,3} \equiv 0\left(\bmod d_{2}\right)$?

We begin by a Gram-Schmidt orthogonalisation on the 3×3 block modulo d_{2}. In that basis, the block Q_{3} has the form:

$$
\left[\begin{array}{lll}
a & & 0 \\
& b & \\
0 & & c
\end{array}\right] \quad\left(\bmod d_{2}\right)
$$

It remains to solve the equation:

$$
a x^{2}+b y^{2}+c z^{2} \equiv 0 \quad\left(\bmod d_{2}\right)
$$

How?
(1) Simon's algorithm?

How to get $Q_{3,3} \equiv 0\left(\bmod d_{2}\right)$?

We begin by a Gram-Schmidt orthogonalisation on the 3×3 block modulo d_{2}. In that basis, the block Q_{3} has the form:

$$
\left[\begin{array}{lll}
a & & 0 \\
& b & \\
0 & & c
\end{array}\right] \quad\left(\bmod d_{2}\right)
$$

It remains to solve the equation:

$$
a x^{2}+b y^{2}+c z^{2} \equiv 0 \quad\left(\bmod d_{2}\right)
$$

How?
(1) Simon's algorithm?
(2) CRT?

How to get $Q_{3,3} \equiv 0\left(\bmod d_{2}\right)$?

We begin by a Gram-Schmidt orthogonalisation on the 3×3 block modulo d_{2}. In that basis, the block Q_{3} has the form:

$$
\left[\begin{array}{lll}
a & & 0 \\
& b & \\
0 & & c
\end{array}\right] \quad\left(\bmod d_{2}\right)
$$

It remains to solve the equation:

$$
a x^{2}+b y^{2}+c z^{2} \equiv 0 \quad\left(\bmod d_{2}\right)
$$

How?
(1) Simon's algorithm?
(2) CRT?
(3) Pollard-Schnorr's algorithm.

Pollard-Schnorr's algorithm (1987)

Solves equations of type:

$$
x^{2}+k y^{2}=m \quad(\bmod n)
$$

Pollard-Schnorr's algorithm (1987)

Solves equations of type:

$$
x^{2}+k y^{2}=m \quad(\bmod n)
$$

Without factoring n

Principle:

- Based on the property of multiplicativity of the norm in quadratic extensions:

$$
\left(x_{1}^{2}+k y_{1}^{2}\right)\left(x_{2}^{2}+k y_{2}^{2}\right)=X^{2}+k Y^{2}
$$

- Variables changes to decrease the size of the coefficients
- To be in the case where:

$$
(k, m) \in\{(1,1),(-1,1),(-1,-1)\}
$$

Using Pollard-Schnorr

We'd like to solve:

$$
a x^{2}+b y^{2}+c z^{2}=0 \quad\left(\bmod d_{2}\right)
$$

Using Pollard-Schnorr

We'd like to solve:

$$
a x^{2}+b y^{2}+c z^{2}=0 \quad\left(\bmod d_{2}\right)
$$

We are going to use Pollard-Schnorr to solve:

$$
x^{2}+\frac{b}{a} y^{2}=\frac{-c}{a}\left(\bmod d_{2}\right)
$$

Taking $z=1$ gives us a vector as we wish. ie in the basis containing the founded vector, Q has exactly the form:

$$
\left[\begin{array}{cc:ccc}
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
\hdashline d_{2} * & d_{2} * & d_{2} * & * & * \\
d_{2} * & d_{2} * & * & * & * \\
d_{2} * & d_{2} * & * & * & *
\end{array}\right]
$$

Finishing the minimisation

Now that Q has the right form, we are able to minimise:

$$
\left[\begin{array}{rrrrr}
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
d_{2} * & d_{2} * & d_{2} * & * & * \\
d_{2} * & d_{2} * & * & * & * \\
d_{2} * & d_{2} * & * & * & *
\end{array}\right]
$$

Finishing the minimisation

Now that Q has the right form, we are able to minimise:

$$
\left[\begin{array}{lllll}
d_{2} * & d_{2} * & d_{2} * & d_{2}^{2} * & d_{2}^{2} * \\
d_{2} * & d_{2} * & d_{2} * & d_{2}^{2} * & d_{2}^{2} * \\
d_{2} * & d_{2} * & d_{2} * & d_{2} * & d_{2} * \\
d_{2}^{2} * & d_{2}^{2} * & d_{2} * & d_{2}^{2} * & d_{2}^{2} * \\
d_{2}^{2} * & d_{2}^{2} * & d_{2} * & d_{2}^{2} * & d_{2}^{2} *
\end{array}\right]
$$

(1) We multiply the two lasts rows and columns by d_{2}

Finishing the minimisation

Now that Q has the right form, we are able to minimise:

$$
\left[\begin{array}{rrrrr}
* & * & * & d_{2} * & d_{2} * \\
* & * & * & d_{2} * & d_{2} * \\
* & * & * & * & * \\
d_{2} * & d_{2} * & * & d_{2} * & d_{2} * \\
d_{2} * & d_{2} * & * & d_{2} * & d_{2} *
\end{array}\right]
$$

(1) We multiply the two lasts rows and columns by d_{2}
(2) We divide the matrix by d_{2}

Finishing the minimisation

Now that Q has the right form, we are able to minimise:

$$
\left[\begin{array}{rrrrr}
* & * & * & d_{2} * & d_{2} * \\
* & * & * & d_{2} * & d_{2} * \\
* & * & * & * & * \\
d_{2} * & d_{2} * & * & d_{2} * & d_{2} * \\
d_{2} * & d_{2} * & * & d_{2} * & d_{2} *
\end{array}\right]
$$

(1) We multiply the two lasts rows and columns by d_{2}
(2) We divide the matrix by d_{2}

Result:

We have multiplied $\operatorname{det}(Q)$ by d_{2}^{4} and divided it by d_{2}^{5}, \Rightarrow we have gained a factor d_{2}.

What's next: Complexity

(3) Complexity

Complexity

We write $g=\widetilde{\mathcal{O}}(f)$ if there exists $\alpha \in \mathbb{R}, \alpha \geq 0$ such that $g=\mathcal{O}\left(f \log (f)^{\alpha}\right)$.

Complexity
Minimisation steps: $\widetilde{\mathcal{O}}\left(\log \left(\left\|\Delta_{5}\right\|\right)^{7}\right)$
Completion step: $\widetilde{\mathcal{O}}\left(\log \left(\left\|\Delta_{5}\right\|\right)^{5}\right)$
End of the algorithm: $\widetilde{\mathcal{O}}\left(P\left(\log \left(\left\|\Delta_{5}\right\|\right)\right)\right)$

P : non explicit polynomial given by the complexity of Simon's algorithm in dimensions 6 and 4.

Global complexity:

$$
\text { Probabilistic under } \mathrm{GHR} \text { in } \widetilde{\mathcal{O}}\left(\log \left(\left|\Delta_{5}\right|\right)^{7}+P\left(\log \left(\left|\Delta_{5}\right|\right)\right)\right)
$$

Comparison

What's next: Example

(4) Example

A " small " example:

A " small " example:
$Q=\begin{gathered}=\square=\square \\ \\ \operatorname{det}(Q)=-11867840459046067337070056060552749739799119\end{gathered}$ 612329906860272443106184215243620398241227088686 567163766883478844593814634595440693436234949087 491127359642479616640449784173297408619004481068 892088901946331771235813312305187060960723053316 362644916580516538177629348730016210305936885561 563614993869248 ($\simeq 300$ digits)

Thanks for your attention.

Pierre Castel

pierre.castel@unicaen.fr
http://www.math.unicaen.fr/~ castel

