

Solving quadratic equations in dimension 5 or more without factoring

ANTS X UCSD July, 9–13 2012

Pierre Castel

pierre.castel@unicaen.fr - http://www.math.unicaen.fr/~castel

Laboratoire de Mathématiques Nicolas Oresme CNRS UMR 6139 Université de Caen (France)

Summary

2 The algorithm

3 Complexity

What's next: Introduction

Quadratic equations...

We consider homogenous quadratic equations with integral coefficients and search for a nontrivial and integral solution.

Quadratic equations...

We consider homogenous quadratic equations with integral coefficients and search for a nontrivial and integral solution. Dimension 1:

Quadratic equations...

We consider homogenous quadratic equations with integral coefficients and search for a nontrivial and integral solution. Dimension 1:

Solution: x = 0

Dimension 2:

Equation:
$$ax^2 + bxy + cy^2 = 0$$

Solution:

- Compute $\Delta = b^2 4ac$
- If ∆ is a square, solutions are:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} y$$

Minimisation and Reduction

We use the matrix notation: Q is the *n*-dimensional symmetric matrix containing the coefficients of the equation. The equation is now:

 $^{t}XQX = 0$

with $X \in \mathbb{Z}^n$.

Minimisation and Reduction

We use the matrix notation: Q is the *n*-dimensional symmetric matrix containing the coefficients of the equation. The equation is now:

 $^{t}XQX = 0$

with $X \in \mathbb{Z}^n$.

Let Q be a quadratic form with determinant Δ .

- Minimising Q: finding transformations for Q in order to get another quadratic form Q' with same dimension as Q such that:
 - Q' and Q have the same solutions (up to a basis change),
 - det(Q') divides Δ .

Minimisation and Reduction

We use the matrix notation: Q is the *n*-dimensional symmetric matrix containing the coefficients of the equation. The equation is now:

 $^{t}XQX = 0$

with $X \in \mathbb{Z}^n$.

Let Q be a quadratic form with determinant Δ .

- Minimising Q: finding transformations for Q in order to get another quadratic form Q' with same dimension as Q such that:
 - Q' and Q have the same solutions (up to a basis change),
 - det(Q') divides Δ .
- ▶ Reducing the form *Q*: it's finding a basis change *B* such that:
 - $det(B) = \pm 1$,
 - the coefficients of $Q' = {}^{t}BQB$ are smaller than the ones of Q.

Quadratic equations in dimensions 3, 4 and more: Simon's algorithm

- Factor the determinant of Q,
- 2 Minimise Q relatively to each prime factor of det(Q),
- Seduce Q using the LLL algorithm,
- Use number theory tools in order to end the minimisation of Q,
- Considering intersections of some isotropic spaces of good dimension, deduce a solution for the form of the beginning.

Quadratic equations in dimensions 3, 4 and more: Simon's algorithm

- Factor the determinant of Q,
- 2 Minimise Q relatively to each prime factor of det(Q),
- **③** Reduce Q using the LLL algorithm,
- Use number theory tools in order to end the minimisation of Q,
- Onsidering intersections of some isotropic spaces of good dimension, deduce a solution for the form of the beginning.

This algorithm:

- creates a link between factoring and solving quadratic equations
- can be generalised to forms of higher dimension

Pro:

As soon as the factorisation of the determinant is known, Simon's algorithm is very efficient.

Pro:

As soon as the factorisation of the determinant is known, Simon's algorithm is very efficient.

Cons:

But as soon as the size of the determinant reaches $\simeq 50$ digits, the factorisation becomes prohibitively slow.

Pro:

As soon as the factorisation of the determinant is known, Simon's algorithm is very efficient.

Cons:

But as soon as the size of the determinant reaches $\simeq 50$ digits, the factorisation becomes prohibitively slow.

So, we are given the following problem:

Problem:

Let Q be a dimension 5 quadratic form. We assume that det(Q) cannot be factored (in a reasonable amount of time). Find a non zero vector $X \in \mathbb{Z}^5$ such that:

 $^{t}XQX = 0$

What's next: The algorithm

2 The algorithm

- Principle
- Completion
- Computing a solution
- Minimisations

Simon's algorithm is very efficient as soon as the factorization of det(Q) is known.

Simon's algorithm is very efficient as soon as the factorization of det(Q) is known.

Idea:

 Build another quadratic form Q₆ starting from Q for which computing a solution is " easy ",

Simon's algorithm is very efficient as soon as the factorization of det(Q) is known.

Idea:

- Build another quadratic form Q₆ starting from Q for which computing a solution is " easy ",
- **2** Use Simon's algorithm to find a solution for Q_6 ,

Simon's algorithm is very efficient as soon as the factorization of det(Q) is known.

Idea:

- Build another quadratic form Q₆ starting from Q for which computing a solution is " easy ",
- 2 Use Simon's algorithm to find a solution for Q_6 ,
- Deduce a solution for Q.

How to build Q_6 ?

If Q designs the matrix of the quadratic form Q, we build Q_6 in the following way:

$$Q_{6} = \begin{bmatrix} Q & & & \\ Q & & X \\ & & & \\ - & -\frac{1}{t\bar{X}} & -\frac{1}{t} & z \end{bmatrix}$$

Where $X \in \mathbb{Z}^5$ is randomly chosen and $z \in \mathbb{Z}$.

How to build Q_6 ?

If Q designs the matrix of the quadratic form Q, we build Q_6 in the following way:

$$Q_{6} = \begin{bmatrix} Q & X \\ Q & X \\ - & -t_{\overline{X}} & -t_{\overline{X}} \end{bmatrix}$$

Where $X \in \mathbb{Z}^5$ is randomly chosen and $z \in \mathbb{Z}$. So we have:

$$\det(Q_6) = \det(Q)z - {}^tX \operatorname{Co}(Q)X$$

And we choose z such that: $det(Q_6) = -{}^t X \operatorname{Co}(Q) X \pmod{\det(Q)}.$ The way to the solution...

As the value of $det(Q_6)$ is known in advance, we try some vector X until we have $det(Q_6)$ prime.

Principle:

det(Q_6) being prime, it is possible to use Simon's algorithm in order to find a vector $T \in \mathbb{Z}^6$ such that:

 ${}^{t}TQ_{6}T=0$

The vector T is isotropic for Q_6 . So, in a basis whose first vector is T, Q_6 has the form:

Decomposition $Q_6 = H \oplus Q_4$

The vector T is a solution for Q_6 so there exists an hyperbolic plane which contains it. With linear algebra (GCD), we get a "correct" basis. In such a basis, Q_6 has the shape:

Where $\alpha \in \{0, 1\}$ and Q_4 is a dimension 4 quadratic form, with determinant $-\det(Q_6)$. So it's prime again...

Decomposition $Q_6 = H \oplus H' \oplus Q_2$

...so we do it again : Simon's algorithm and linear algebra with Q_4 . In the new basis, Q_6 has the following shape:

where α , $\beta \in \{0,1\}$ and Q_2 is a dimension 2 quadratic form.

If we denote by e_1 and e_3 the following basis vectors:

If we denote by e_1 and e_3 the following basis vectors:

$$Q_{6} = \begin{bmatrix} e_{1} & e_{3} \\ 0 & 1 & 0 & 0 & 0 \\ \frac{1}{0} & \alpha & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \beta & 0 & 0 \\ 0 & 0 & 1 & \beta & 0 & 0 \\ 0 & 0 & 0 & 0 & Q_{2} \end{bmatrix}$$

Then e_1 and e_3 are both isotropics and orthogonals.

If we denote by e_1 and e_3 the following basis vectors:

Then e_1 and e_3 are both isotropics and orthogonals.

The solution:

consider a linear combinaison whose last coordinate is zero. Example:

$$\widetilde{S}=e_3(6) imes e_1-e_1(6) imes e_3$$

So \tilde{S} has the shape:

$$\widetilde{S} = \begin{bmatrix} S \\ & 0 \end{bmatrix}$$
 with $S \in \mathbb{Z}^5$

Assuming that all of the basis changes have been applied, we have:

$${}^{t}\widetilde{S}Q_{6}\widetilde{S} = \begin{bmatrix} {}^{t}S & | & 0 \end{bmatrix} \begin{bmatrix} Q & | & X \\ - & -t\overline{X} & - & -t\overline{Z} \end{bmatrix} \begin{bmatrix} S \\ - & \overline{0} \end{bmatrix}$$
$$= {}^{t}SQS$$
$$= 0$$

We have then: S is a solution to our problem.

The algorithm:

- **(**) Complete Q in Q_6 in such a way that $det(Q_6)$ is prime,
- **2** Use Simon's algorithm for Q_6 ,
- Osing linear algebra, decompose Q₆ in Q₆ = H ⊕ Q₄ (H hyperbolic plane),
- Do step 2 for Q_4 ,
- Osing linear algebra, decompose Q₆ in Q₆ = H ⊕ H' ⊕ Q₂ (H, H' hyperbolic planes),
- Deduce a solution for Q.

Smith Normal Form:

SNF Decomposition

Let A be a $k \times k$ matrix with integer entries and non zero determinant. There exists a unique matrix in Smith Normal Form D such that UAV = D with U and V unimodular and integer entries.

If we denote by $d_i = d_{i,i}$, the d_i are the *elementary divisors* of the matrix A, and we have :

$$UAV = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_k \end{bmatrix}$$

with $d_{i+1} \mid d_i$ for $1 \leq i < k$

In the algorithm, we are looking for $X \in \mathbb{Z}^5$ such that $\det(Q_6)$ is prime. However :

Lemma

Let Q be a dimension 5 quadratic form with determinant Δ . Then for all $X \in \mathbb{Z}^5$ and $z \in \mathbb{Z}$, $d_2(Q)$ divides det (Q_6) .

In the algorithm, we are looking for $X \in \mathbb{Z}^5$ such that $\det(Q_6)$ is prime. However :

Lemma

Let Q be a dimension 5 quadratic form with determinant Δ . Then for all $X \in \mathbb{Z}^5$ and $z \in \mathbb{Z}$, $d_2(Q)$ divides det (Q_6) .

Problem

If $d_2(Q) \neq 1$, det (Q_6) will never be a prime !

The solution:

Solution

Do minimisations on Q to be in the case where $d_2(Q) = 1$.

The solution:

Solution

Do minimisations on Q to be in the case where $d_2(Q) = 1$.

We have the different cases:

- Case $d_5(Q) \neq 1$,
- 2 Case $d_4(Q) \neq 1$ and $d_5(Q) = 1$,
- Case $d_3(Q) \neq 1$ and $d_4(Q) = 1$,
- Case $d_2(Q) \neq 1$ and $d_3(Q) = 1$.

Cases 1, 2 and 3

We apply the basis change given by the matrix V of the SNF of Q:

- if $d_5(Q) \neq 1$:
 - we just have to divide the matrix by d_5 ,
 - we have divided det(Q) by $(d_5)^5$.
- if $d_4(Q) \neq 1$ and $d_5(Q) = 1$:
 - we multiply the last row and column by d_4 ,
 - we divide the matrix by d_4 ,
 - we have multiplied det(Q) by $(d_4)^2$ and divided by $(d_4)^5$.
- if $d_3(Q) \neq 1$ and $d_4(Q) = 1$:
 - we multiply the two last rows and columns by d_3 ,
 - we divide the matrix by d_3 ,
 - we have multiplied det(Q) by $(d_3)^4$ and divided by $(d_3)^5$.

We first apply the basis change given by the matrix V of the SNF of Q. In such a base, Q has the form :

d_{2*}	d 2*	d ₂ *	d 2*	<i>d</i> ₂ *]
<i>d</i> ₂ *				
<i>d</i> ₂ *	d_2*	*	*	*
d_2*	d_2*	*	*	*
d ₂ *	d ₂ *	*	*	*

We first apply the basis change given by the matrix V of the SNF of Q. In such a base, Q has the form :

We would like to multiply the 3 lasts rows and columns by d₂ and divide the matrix by d₂.

We first apply the basis change given by the matrix V of the SNF of Q. In such a base, Q has the form :

- We would like to multiply the 3 lasts rows and columns by d₂ and divide the matrix by d₂.
- But if we do this, we multiply the determinant by d⁶₂ and we divide it by d⁵₂...

We first apply the basis change given by the matrix V of the SNF of Q. In such a base, Q has the form :

- We would like to multiply the 3 lasts rows and columns by d₂ and divide the matrix by d₂.
- But if we do this, we multiply the determinant by d⁶₂ and we divide it by d⁵₂...

Solution:

Solve a quadratic equation modulo d_2 such that: $Q_{3,3} \equiv 0 \pmod{d_2}$ and do the desired operation on the two lasts rows and columns.

We begin by a Gram–Schmidt orthogonalisation on the 3×3 block modulo d_2 . In that basis, the block Q_3 has the form:

$$\begin{bmatrix} a & 0 \\ b & \\ 0 & c \end{bmatrix} \pmod{d_2}$$

We begin by a Gram–Schmidt orthogonalisation on the 3×3 block modulo d_2 . In that basis, the block Q_3 has the form:

$$\begin{bmatrix} a & 0 \\ b & \\ 0 & c \end{bmatrix} \pmod{d_2}$$

It remains to solve the equation:

$$ax^2 + by^2 + cz^2 \equiv 0 \pmod{d_2}$$

We begin by a Gram–Schmidt orthogonalisation on the 3×3 block modulo d_2 . In that basis, the block Q_3 has the form:

$$\begin{bmatrix} a & 0 \\ b & \\ 0 & c \end{bmatrix} \pmod{d_2}$$

It remains to solve the equation:

$$ax^2 + by^2 + cz^2 \equiv 0 \pmod{d_2}$$

How?

Simon's algorithm?

We begin by a Gram–Schmidt orthogonalisation on the 3×3 block modulo d_2 . In that basis, the block Q_3 has the form:

$$\begin{bmatrix} a & 0 \\ b & \\ 0 & c \end{bmatrix} \pmod{d_2}$$

It remains to solve the equation:

$$ax^2 + by^2 + cz^2 \equiv 0 \pmod{d_2}$$

How?

- Simon's algorithm?
- 2 CRT?

We begin by a Gram–Schmidt orthogonalisation on the 3×3 block modulo d_2 . In that basis, the block Q_3 has the form:

$$\begin{bmatrix} a & 0 \\ b & \\ 0 & c \end{bmatrix} \pmod{d_2}$$

It remains to solve the equation:

$$ax^2 + by^2 + cz^2 \equiv 0 \pmod{d_2}$$

How?

- Simon's algorithm?
- 2 CRT?
- Pollard–Schnorr's algorithm.

Pollard–Schnorr's algorithm (1987)

Solves equations of type:

$$x^2 + ky^2 = m \pmod{n}$$

Pollard–Schnorr's algorithm (1987)

Solves equations of type:

$$x^2 + ky^2 = m \pmod{n}$$

Without factoring *n*

Principle:

Based on the property of multiplicativity of the norm in quadratic extensions:

 $(x_1^2 + ky_1^2)(x_2^2 + ky_2^2) = X^2 + kY^2$

Variables changes to decrease the size of the coefficients

• To be in the case where:

$$(k,m) \in \{(1,1), (-1,1), (-1,-1)\}$$

Using Pollard–Schnorr

We'd like to solve:

$$ax^2 + by^2 + cz^2 = 0 \pmod{d_2}$$

Using Pollard–Schnorr

We'd like to solve:

$$ax^2 + by^2 + cz^2 = 0 \pmod{d_2}$$

We are going to use Pollard-Schnorr to solve:

$$x^2 + \frac{b}{a}y^2 = \frac{-c}{a} \pmod{d_2}$$

Taking z = 1 gives us a vector as we wish. ie in the basis containing the founded vector, Q has exactly the form:

$$\begin{bmatrix} d_{2}* & d_{2}* & d_{2}* & d_{2}* & d_{2}* \\ d_{2}* & d_{2}* & d_{2}* & d_{2}* & d_{2}* \\ d_{2}* & d_{2}* & d_{2}* & d_{2}* & d_{2}* \\ d_{2}* & d_{2}* & d_{2}* & * & * \\ d_{2}* & d_{2}* & * & * & * \end{bmatrix}$$

Now that Q has the right form, we are able to minimise:

$$\begin{bmatrix} d_{2}* & d_{2}* & d_{2}* & d_{2}* & d_{2}* \\ d_{2}* & d_{2}* & d_{2}* & d_{2}* & d_{2}* \\ d_{2}* & d_{2}* & d_{2}* & & * \\ d_{2}* & d_{2}* & & & * \\ d_{2}* & d_{2}* & & & & * \\ d_{2}* & d_{2}* & & & & & * \\ \end{bmatrix}$$

Now that Q has the right form, we are able to minimise:

$$\begin{bmatrix} d_2 * & d_2 * & d_2 * & d_2^2 * & d_2^2 * \\ d_2 * & d_2 * & d_2 * & d_2^2 * & d_2^2 * \\ d_2 * & d_2 * & d_2 * & d_2 * & d_2 * \\ d_2^2 * & d_2^2 * & d_2 * & d_2^2 * & d_2^2 * \\ d_2^2 * & d_2^2 * & d_2 * & d_2^2 * & d_2^2 * \end{bmatrix}$$

() We multiply the two lasts rows and columns by d_2

Now that Q has the right form, we are able to minimise:

$$\begin{bmatrix} * & * & d_{2}* & d_{2}* \\ * & * & d_{2}* & d_{2}* \\ * & * & * & * \\ d_{2}* & d_{2}* & d_{2}* & d_{2}* \\ d_{2}* & d_{2}* & d_{2}* & d_{2}* \end{bmatrix}$$

- We multiply the two lasts rows and columns by d_2
- **2** We divide the matrix by d_2

Now that Q has the right form, we are able to minimise:

$$\begin{bmatrix} * & * & * & d_2 * & d_2 * \\ * & * & * & d_2 * & d_2 * \\ * & * & * & * & * \\ d_2 * & d_2 * & * & d_2 * & d_2 * \\ d_2 * & d_2 * & * & d_2 * & d_2 * \end{bmatrix}$$

- We multiply the two lasts rows and columns by d_2
- **2** We divide the matrix by d_2

Result:

We have multiplied det(Q) by d_2^4 and divided it by d_2^5 , \Rightarrow we have gained a factor d_2 . What's next: Complexity

Complexity

We write $g = \widetilde{\mathcal{O}}(f)$ if there exists $\alpha \in \mathbb{R}, \alpha \ge 0$ such that $g = \mathcal{O}(f \log(f)^{\alpha})$.

P: non explicit polynomial given by the complexity of Simon's algorithm in dimensions 6 and 4.

Global complexity:

Probabilistic under GHR in $\widetilde{\mathcal{O}}\left(\log\left(|\Delta_5|\right)^7 + P\left(\log\left(|\Delta_5|\right)\right)\right)$

Comparison

What's next: Example

A " small " example:

Q

A " small " example:

det(Q) = -11867840459046067337070056060552749739799119 612329906860272443106184215243620398241227088686 567163766883478844593814634595440693436234949087 491127359642479616640449784173297408619004481068 892088901946331771235813312305187060960723053316 362644916580516538177629348730016210305936885561 $563614993869248 (\simeq 300 \ digits)$

43091139250756 539230310141554003731339211753653001715011353400073700139500

4020442012775265601974642990831491294778188 380145595557788129455255501133953455525952772828228552285127764517794517794517794517965908538907918859025597788 -4271549909487856922090525814277898339841

Thanks for your attention.

Pierre Castel

pierre.castel@unicaen.fr http://www.math.unicaen.fr/~castel