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Abstract. We give an algorithm that finds a sequence of approximations with
Dirichlet coefficients bounded by a constant only depending on the dimension.

The algorithm uses the LLL-algorithm for lattice basis reduction. We present

a version of the algorithm that runs in polynomial time of the input.

1. Introduction

The regular continued fraction algorithm is a classical algorithm to approximate
reals by rational numbers. Dirichlet [15] proved that for every a ∈ R there are
infinitely many integers q such that

(1) ‖q a‖ < q−1,

where ‖x‖ denotes the distance between x and the nearest integer. The exponent
−1 of q is minimal; if it is replaced by any number e < −1, then there exist real
numbers a such that only finitely many integers q satisfy ‖q a‖ < qe.

Hurwitz [8] proved that the continued fraction algorithm finds, for every a ∈ R \Q,
an infinite sequence of increasing integers qn with

‖qn a‖ <
1√
5
q−1n .

If the constant 1√
5

is replaced by any smaller one, then this statement is false.

Legendre [14] showed that the continued fraction algorithm finds all good approxi-
mations, in the sense that if for some positive integer q

‖q a‖ < 1

2
q−1,

then q is one of the qn found by the algorithm.

As to the generalization of approximations in higher dimensions Dirichlet proved
the following theorem; see Chapter II of [18].

Theorem 2. Let an n×m matrix A with entries aij ∈ R \Q be given and suppose
that 1, ai1, . . . , aim are linearly independent over Q for some i with 1 ≤ i ≤ n.
There exist infinitely many coprime m-tuples of integers (q1, . . . , qm) such that with
q = max

j
|qj | ≥ 1, we have

(3) max
i
‖q1 ai1 + · · ·+ qm aim‖ < q−

m
n .

1
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If the exponent −mn is replaced by any smaller number, there exists a matrix A for
which the inequality holds for finitely many coprime tuples (q1, q2, . . . , qm) only.

Definition 4. Let an n × m matrix A with entries aij ∈ R \ Q be given. The
Dirichlet coefficient of an m-tuple (q1, . . . , qm) is q

m
n max

i
‖q1 ai1 + · · ·+ qm aim‖ .

The proof of the theorem does not give an efficient way of finding a series of ap-
proximations with a Dirichlet coefficient less than 1. For the case m = 1 the first
multi-dimensional continued fraction algorithm was given by Jacobi [9]. Many more
followed, see for instance Perron [17], Brun [5], Lagarias [13] and Just [10]. Bren-
tjes [4] gives a detailed history and description of such algorithms. Schweiger’s
book [19] gives a broad overview. For n = 1 there is, amongst others, the algorithm
by Ferguson and Forcade [7]. However, there is no efficient algorithm guaranteed
to find a series of approximations with Dirichlet coefficient smaller than 1.

In 1982 the LLL-algorithm for lattice basis reduction was published in [16]. The au-
thors noted that their algorithm could be used for finding Diophantine approxima-
tions of given rationals with Dirichlet coefficient only depending on the dimension;
see Corollary 14. Just [10] developed an algorithm based on lattice reduction that
detects Z-linear dependence in the ai, in the case m = 1. If no such dependence is
found her algorithm returns integers q with

max
i
‖qai‖ ≤ c

(
n∑
i=1

a2i

)1/2

q−1/(2n(n−1)),

where c is a constant depending on n. The exponent −1/(2n(n− 1)) is larger than
the Dirichlet exponent −1/n. Lagarias [12] used the LLL-algorithm in a series
of lattices to find good approximations for the case m = 1. Let a1, . . . , an ∈ Q
and let N be a positive integer; suppose there exists Q ∈ N with 1 ≤ Q ≤ N such
that max

j
||Qaj || < ε. Then Lagarias’ algorithm on input a1, . . . , an and N finds in

polynomial time a q with 1 ≤ q ≤ 2
n
2N such that max

j
||q aj || ≤

√
5n2

n−1
2 ε. One

difference with our work is that Lagarias focuses on the quality ||q aj ||, while we

focus on the Dirichlet coefficient q
1
n ||q aj ||. We also consider the case m > 1.

The main result of the present paper is an algorithm that by iterating the LLL-
algorithm gives a series of approximations of given rationals with optimal Dirichlet
exponent. Where the LLL-algorithm gives one approximation, our dynamic al-
gorithm gives a series of successive approximations. To be more precise: for a
given n × m-matrix A with entries aij ∈ Q and a given upper bound qmax the
algorithm returns a sequence of m-tuples (q1, . . . , qm) such that for every Q with

2
(m+n+3)(m+n)

4m ≤ Q ≤ qmax one of these m-tuples satisfies

max
j
|qj | ≤ Q and max

i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

(m+n+3)(m+n)
4n Q−

m
n .

The exponent −mn of Q can not be improved and therefore we say that these
approximations have optimal Dirichlet exponent.

Our algorithm is a multi-dimensional continued fraction algorithm in the sense
that we work in a lattice basis and that we only interchange basis vectors and add
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integer multiples of basis vectors to another. Our algorithm differs from other
multi-dimensional continued fraction algorithms in that the lattice is not fixed
across iterations. In Lemma 26 we show that if there exists an extremely good
approximation, our algorithm finds a very good one. We derive in Theorem 36
how the output of our algorithm gives a lower bound on the quality of possible
approximations with coefficients up to a certain limit. In Section 4 we show that
a slightly modified version of our algorithm runs in polynomial time. In Section 5
we present some numerical data.

An earlier version of this paper appeared as Chapter V of the thesis of the second
author [20]. Some style and numbering options were adopted from this.

2. Lattice reduction and the LLL-algorithm

In this section we give the definitions and results that we need for our algorithm.

Let r be a positive integer. A subset L of the r-dimensional real Euclidean vector
space Rr is called a lattice if there exists a basis b1, . . . , br of Rr such that

L =

r∑
i=1

Zbi =

{
r∑
i=1

zibi; zi ∈ Z (1 ≤ i ≤ r)

}
.

We say that b1, . . . , br is a basis for L. The determinant of the lattice L is defined
by |det(b1, . . . , br)| and we denote it as det(L).

For any linearly independent b1, . . . , br ∈ Rr the Gram-Schmidt process yields an
orthogonal basis b∗1, . . . , b

∗
r for Rr, by defining inductively

b∗i = bi −
i−1∑
j=1

µijb
∗
j for 1 ≤ i ≤ r and(5)

µij =
(bi, b

∗
j )

(b∗j , b
∗
j )
,

where ( , ) denotes the ordinary inner product on Rr.

We call a basis b1, . . . , br for a lattice L reduced if

|µij | ≤
1

2
for 1 ≤ j < i ≤ r

and

|b∗i + µii−1b
∗
i−1|2 ≤

3

4
|b∗i−1|2 for 1 ≤ i ≤ r,

where |x| denotes the Euclidean length of x.

The following two propositions were proven in [16].
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Proposition 6. Let b1, . . . , br be a reduced basis for a lattice L in Rr. Then we
have

(i) |b1| ≤ 2(r−1)/4
(
det(L)

)1/r
,

(ii) |b1|2 ≤ 2r−1 |x|2, for every x ∈ L, x 6= 0,

(iii)

r∏
i=1

|bi| ≤ 2r(r−1)/4 det(L).

Proposition 7. Let L ⊂ Zr be a lattice with a basis b1, b2, . . . , br, and let F ∈ R,
F ≥ 2, be such that |bi|2 ≤ F for 1 ≤ i ≤ r. Then the number of arithmetic
operations needed by the LLL-algorithm is O(r4 logF ) and the integers on which
these operations are performed each have binary length O(r logF ).

In the following Lemma the approach suggested in the original LLL-paper for find-
ing (simultaneous) Diophantine approximations is generalized to the case m > 1.

Lemma 8. Let an n×m-matrix A with entries aij ∈ R and an ε ∈ (0, 1) be given.
Let L be the lattice formed by the columns of the (m+ n)× (m+ n)-matrix

(9) B =



1 0 . . . 0 a11 . . . a1m

0 1
. . . 0 a21 . . . a2m

...
...

...
...

0 . . . 0 1 an1 . . . anm
0 . . . 0 0 c 0
...

...
...

. . .

0 . . . 0 0 0 c


,

with c =
(

2−
m+n−1

4 ε
)m+n

m

.

The LLL-algorithm applied to L will yield an m-tuple (q1, . . . , qm) of integers with

max
j
|qj | ≤ 2

(m+n−1)(m+n)
4m ε−

n
m and(10)

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ ε.(11)

Proof. The LLL-algorithm finds a reduced basis b1, . . . , bm+n for the lattice L. For
each vector b in this basis there exist pi ∈ Z, for 1 ≤ i ≤ n, and qj ∈ Z, for
1 ≤ j ≤ m, such that

b =



q1a11 + · · ·+ qma1m − p1
...

q1an1 + · · ·+ qmanm − pn
cq1
...

cqm


.

Proposition 6(i) gives an upper bound for the length of the first basis vector,

|b1| ≤ 2
m+n−1

4 c
m

m+n .
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From this vector b1 we find integers q1, . . . , qm, such that

max
j
|qj | ≤ 2

m+n−1
4 c

−n
m+n and(12)

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

m+n−1
4 c

m
m+n .(13)

Substituting c =
(

2−
m+n−1

4 ε
)m+n

m

gives the results. �

From equations (12) and (13) we obtain the following corollary.

Corollary 14. For any n ×m-matrix A with entries aij ∈ R the LLL-algorithm
can be used to obtain an m-tuple (q1, . . . , qm) that satisfies, with q = max

j
|qj |,

(15) max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

(m+n−1)(m+n)
4n q−

m
n .

3. The Iterated LLL-algorithm

We iterate the LLL-algorithm over a series of lattices to find a sequence of approx-
imations. We start with a lattice determined by a basis of the form (9). After the
LLL-algorithm finds a reduced basis for this lattice, we decrease the constant c by
dividing the last m rows of the matrix by a constant d greater than 1. By doing
so, ε is divided by d

m
m+n . We repeat this process until the upper bound (10) for

max |qj | guaranteed by the LLL-algorithm exceeds a given upper bound qmax.

To ease notation we put d = 2 and ε = 1
2 .

Iterated LLL-algorithm (ILLL)

Input
An n×m-matrix A with entries aij in R.
An upper bound qmax > 1.

Output
For each integer k with 1 ≤ k ≤ k′, see (18), we obtain a vector q(k) ∈ Zm with

max
j
|qj(k)| ≤ 2

(m+n−1)(m+n)
4m 2

kn
m ,(16)

max
i
‖q1(k) ai1 + · · ·+ qm(k) aim‖ ≤

1

2k
.(17)

Description of the algorithm

(1) Construct the basis matrix B as given in (9) from A.
(2) Apply the LLL-algorithm to B.
(3) Deduce q1, . . . , qm from the first vector in the reduced basis returned by

the LLL-algorithm.

(4) Divide the last m rows of B by 2
m+n
m

(5) Stop if the upper bound for q guaranteed by the algorithm (16) exceeds
qmax; else go to Step 2.
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Define

(18) k′ :=

⌈
− (m+ n− 1)(m+ n)

4n
+
m log2 qmax

n

⌉
.

Remark 19. The number 2
m+n
m in Step 4 may be replaced by d

m+n
m for any real

number d > 1. When we additionally set ε = 1
d this yields that

max
j
|qj(k)| ≤ 2

(m+n−1)(m+n)
4m d

kn
m and(20)

max
i
‖q1(k)ai1 + · · ·+ qm(k)aim‖ < d−k.(21)

In this paper, with the exception of the numerical examples in Section 5, we always
take d = 2 and ε = 1

2 .

Lemma 22. Let an n × m-matrix A with entries aij in R and an upper bound
qmax > 1 be given. With this input, the number of times the ILLL-algorithm applies
the LLL-algorithm equals k′ from (18).

Proof. One derives the number of iterations by solving k from the stopping crite-
rion (16)

qmax ≤ 2
(m+n−1)(m+n)

4m 2
kn
m ,

that is:
m

n
log2 qmax ≤

(m+ n− 1)(m+ n)

4n
+ k.

We stop iterating as soon as the integer k reaches the ceiling k′ as in (18). �

We define

c(k) = c(k−1)/2
m+n
m for k > 1, where c(1) = c as given in Lemma 8.

In iteration k we are working in the lattice defined by the basis in (9) with c replaced
by c(k).

Lemma 23. The output q(k) = (q1(k), q2(k), . . . , qm(k)) of the ILLL-algorithm
satisfies (16) and (17), for ≤ k ≤ k′.

Proof. In the k-th iteration we use c(k) =
(

2−
m+n+3

4 −k+1
)m+n

m

. Substituting c(k)

for c in equations (12) and (13) yields (16) and (17), respectively. �

The following theorem gives the main result of the present paper, as mentioned
in the introduction. The algorithm returns a sequence of approximations with all
coefficients smaller than Q, optimal Dirichlet exponent and Dirichlet coefficient
only depending on the dimensions m and n .

Theorem 24. Let an n×m-matrix A with entries aij in R, and qmax > 1 be given.
The ILLL-algorithm finds a sequence of m-tuples (q1, . . . , qm) of integers such that

for every Q with 2
(m+n+3)(m+n)

4m ≤ Q ≤ qmax one of these m-tuples satisfies

max
j
|qj | ≤ Q and max

i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

(m+n+3)(m+n)
4n Q−

m
n .
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Proof. Take k ∈ N such that

(25) 2
(m+n+3)(m+n)

4m · 2
(k−1)n
m ≤ Q < 2

(m+n+3)(m+n)
4m · 2 knm .

From Lemma 23 we know that q(k) = (q1(k), q2(k), . . . , qm(k)) satisfies the inequal-
ity

max
j
|qj(k)| ≤ 2

(m+n+3)(m+n)
4m 2

(k−1)n
m ≤ Q.

From the right hand side of inequality (25) if follows that 1
2k
< 2

(m+n+3)(m+n)
4n Q−

m
n .

From Lemma 23 and this inequality we derive that

max
i
‖q1(k) ai1 + · · ·+ qm(k) aim‖ ≤

1

2k
< 2

(m+n+3)(m+n)
4n Q−

m
n .

�

Proposition 6(ii) guarantees that if there exists an extremely short vector in the
lattice, then the LLL-algorithm finds a rather short lattice vector. We extend this
result to the realm of successive approximations. In the next lemma we show that
for every very good approximation (satisfying (28)), the ILLL-algorithm finds a
rather good one (satisfying (31)) not too far away from it (as specified by (30)).

Lemma 26. Let an n×m-matrix A with entries aij in R, a real number 0 < δ < 1
and an integer s > 1 be given. If there exists an m-tuple (s1, . . . , sm) of integers
with

s = max
j
|sj | > 2

(m+n−1)n
4m

(
nδ2

m

) n
2(m+n)

(27)

and

max
i
‖s1ai1 + · · ·+ smaim‖ ≤ δs

−m
n ,(28)

then applying the ILLL-algorithm with

(29) qmax ≥ 2
m2+m(n−1)+4n

4m

( m

nδ2

) n
2(m+n)

s

yields an m-tuple (q1, . . . , qm) of integers with

max
j
|qj | ≤ 2

m2+m(n−1)+4n
4m

( m

nδ2

) n
2(m+n)

s(30)

and

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

m+n
2
√
nδs

−m
n .(31)

Proof. Let 1 ≤ k ≤ k′ be an integer. Proposition 6(ii) gives that for each m-tuple
q(k) found by the algorithm

n∑
i=1

‖q1(k)ai1 + · · ·+ qm(k)aim‖2 + c(k)2
m∑
j=1

qj(k)2

≤ 2m+n−1

 n∑
i=1

‖s1a11 + · · ·+ smaim‖2 + c(k)2
m∑
j=1

s2j

 .
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From this and (27) and (28) it follows that

(32) max
i
‖q1(k)ai1 + · · ·+ qm(k)aim‖2 ≤ 2m+n−1

(
nδ2s

−2m
n + c(k)2ms2

)
.

Take the smallest positive integer K such that

(33) c(K) ≤
√
n

m
δs−

m+n
n .

We find for the K-th iteration from (32) and (33)

max
i
‖q1(K)ai1 + · · ·+ qm(K)aim‖ ≤ 2

m+n
2
√
nδs

−m
n ,

which gives (31).

We show that under assumption (29) the ILLL-algorithm goes through at least K
iterations. We may assume K > 1, since the ILLL-algorithm does always at least
1 iteration. From Lemma 22 we find that if qmax satisfies

qmax > 2
Kn
m 2

(m+n−1)(m+n)
4m ,

then the ILLL-algorithm does at least K iterations. Our choice of K implies

c(K − 1) =
c(1)

2
(m+n)(K−2)

m

=
2−

(m+n+3)(m+n)
4m

2
(m+n)(K−2)

m

>

√
n

m
δs−

m+n
n ,

and we obtain

2
Kn
m < 2−

(m+n−5)n
4m

( m

nδ2

) n
2(m+n)

s.

From this we find that

qmax > 2
m2+m(n−1)+4n

4m

( m

nδ2

) n
2(m+n)

s

is a satisfying condition to guarantee that the algorithm does at least K iterations.

Furthermore, either 2
−(m+n)

m

√
n
mδs

−m+n
n < c(K) or K = 1. In the former case we

find from (12) that

max
j
|qj(K)| ≤ 2

m+n−1
4 c(K)

−n
m+n < 2

m+n−1
4 2

n
m

( m

nδ2

) n
2(m+n)

s.

In the latter case we obtain from (12)

max
j
|qj(1)| ≤ 2

m+n−1
4 c(1)

−n
m+n = 2

m+n−1
4 2

(m+n+3)n
4m

and, by (27),

2
m+n−1

4 2
(m+n+3)n

4m = 2
m+n−1

4 2
n
m 2

(m+n−1)n
4m < 2

m+n−1
4 2

n
m

( m

nδ2

) n
2(m+n)

s.

We conclude that for all K ≥ 1

max
j
|qj(K)| ≤ 2

m2+m(n−1)+4n
4m

( m

nδ2

) n
2(m+n)

s.

�

From equations (30) and (31) we obtain the following corollary.
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Corollary 34. With the assumptions of Lemma 26, the ILLL-algorithm can be
used to obtain an m-tuple (q1, . . . , qm) of integers that satisfies

(35) q
m
n max

i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

m2+m(3n−1)+4n+2n2

4n m
m

2(m+n) (nδ2)
n

2(m+n) ,

where again q = max
j
|qj |.

Theorem 36. Let an n × m-matrix A with entries aij in R and qmax > 1 be
given. Assume that γ is such that for every m-tuple (q1, . . . , qm) returned by the
ILLL-algorithm

(37) q
m
n max

i
‖q1ai1 + . . . qmaim‖ > γ, where q = max

j
|qj |.

Then every m-tuple (s1, . . . , sm) of integers with s = maxj |sj | and

2
(m+n−1)n

4m

(
nδ2

m

) n
2(m+n)

< s < 2−
m2+m(n−1)+4n

4m

(
nδ2

m

) n
2(m+n)

qmax

satisfies
s
m
n max

i
‖s1ai1 + · · ·+ smaim‖ > δ,

with

(38) δ = 2
−(m+n)(m2+m(3n−1)+4n+2n2)

4n2 m
−m
2n n

−1
2 γ

m+n
n .

Proof. Assume that every vector returned by our algorithm satisfies (37) and that
there exists an m-tuple (s1, . . . , sm) with s = maxj |sj | such that

2
(m+n−1)n

4m

(
nδ2

m

) n
2(m+n)

< s < 2−
m2+m(n−1)+4n

4m

(
nδ2

m

) n
2(m+n)

qmax

and s
m
n max

i
‖s1ai1 + · · ·+ smaim‖ ≤ δ.

From the upper bound on s it follows that qmax satisfies (29). We apply Lemma 26
and find that the algorithm finds an m-tuple (q1, . . . , qm) that satisfies (35). Sub-
stituting δ as given in (38) gives

q
m
n max

i
‖q1ai1 + · · ·+ qmaim‖ ≤ γ,

which is a contradiction with our assumption. �

4. A polynomial time version of the ILLL-algorithm

We have used real numbers in our theoretical results, but in a practical implemen-
tation of the algorithm we only use rational numbers. Without loss of generality
we may assume that these numbers are in the interval [0, 1]. In this section we
describe the changes to the algorithm and we show that this modified version of
the algorithm runs in polynomial time.

As input for the rational algorithm we take

• the dimensions m and n,
• a rational number ε ∈ (0, 1),

• an integer M that is large compared to (m+n)2

m − m+n
m log ε,
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• an n×m-matrix A with entries 0 < aij ≤ 1, where each aij =
pij
2M

for some
integer pij ,
• an integer qmax < 2M .

Remark 39. In this rational algorithm all irrational numbers are approximated by
rational numbers with denominator 2M . Thus M denotes the precision that is used.

When we construct the matrix B in Step 1 of the ILLL-algorithm we approximate
c as given in (9) by a rational number

(40) ĉ =
d2Mce

2M
=

⌈
2M
(

2−
m+n−1

4 ε
)m+n

m

⌉
2M

.

Hence c < ĉ ≤ c+ 1
2M
.

In iteration k we use a rational ĉ(k) that for k ≥ 2 is given by

ĉ(k) =

⌈
2M ĉ(k − 1)2−

m+n
m

⌉
2M

and ĉ(1) = ĉ as in (40),

and we change Step 4 of the ILLL-algorithm to ‘multiply the last m rows of B by
ĉ(k − 1)/ĉ(k)’. The other steps of the rational iterated algorithm are as described
in Section 3.

4.1. The running time of the rational algorithm.

Theorem 41. Let the input be given as described above. Then the number of
arithmetic operations needed by the ILLL-algorithm and the binary length of the
integers on which these operations are performed are both bounded by a polynomial
in m,n and M .

Proof. The number of times we apply the LLL-algorithm is not changed by ratio-
nalizing c, so we find the number of iterations k′ from Lemma 22

k′ =

⌈
− (m+ n− 1)(m+ n)

4n
+
m log2 qmax

n

⌉
<

⌈
mM

n

⌉
.

It is obvious that Steps 1, 3, 4 and 5 of the algorithm are polynomial in the size
of the input and we focus on the LLL-step. We determine an upper bound for the
length of a basis vector used at the beginning of an iteration in the ILLL-algorithm.

In the first application of the LLL-algorithm the length of the initial basis vectors
as given in (9) is bounded by

|bi|2 ≤ max
j

{
1, a21j + · · ·+ a2nj +mĉ2

}
≤ m+ n, for 1 ≤ i ≤ m+ n .

where we use that 0 < aij < 1 and ĉ ≤ 1.

The input of each following application of the LLL-algorithm is derived from the
reduced basis found in the previous iteration by making some of the entries strictly
smaller. Part (ii) of Proposition 6 yields that for every vector bi in a reduced basis
it holds that

|bi|2 ≤ 2
(m+n)(m+n−1)

2 (det(L))2
m+n∏

j=1,j 6=i

|bi|−2.
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The determinant of our starting lattice is given by ĉm and the determinants of all
subsequent lattices are strictly smaller. Every vector bi in the lattice is at least
as long as the shortest non-zero vector in the lattice. Thus for each i we have
|bi|2 ≥ 1

2M
. Combining this yields

|bi|2 ≤ 2
(m+n+2M)(m+n−1)

2 ĉ2m ≤ 2
(m+n+2M)(m+n−1)

2

for every vector used as input for the LLL-step after the first iteration.

So we have

(42) |bi|2 < max
{
m+ n , 2

(m+n+2M)(m+n−1)
2

}
= 2

(m+n+2M)(m+n−1)
2

for any basis vector that is used as input for an LLL-step in the ILLL-algorithm.

Proposition 7 shows that for a given basis b1, . . . , bm+n for Zm+n with F ∈ R,
F ≥ 2 such that |bi|2 ≤ F for 1 ≤ i ≤ m + n the number of arithmetic operations
needed to find a reduced basis from this input is O((m + n)4 logF ). For matrices
with entries in Q we need to clear denominators before applying this proposition.
Thus for a basis with basis vectors |bi|2 ≤ F and rational entries that can all be
written as fractions with denominator 2M the number of arithmetic operations is
O((m+ n)4 log(22MF )).

Combining this with (42) and the number of iterations yields the theorem. �

4.2. Approximation results from the rational algorithm. Assume that the
input matrix A (with entries aij =

pij
2M
∈ Q) is an approximation of an n×m-matrix

A (with entries αij ∈ R), found by putting aij =
d2Mαije

2M
. In this subsection we

derive the approximation results guaranteed by the rational iterated algorithm for
the αij ∈ R.

According to (12) and (13) the LLL-algorithm applied with ĉ instead of c guarantees
to find an m-tuple (q1, . . . , qm) such that

q = max
j
|qj | ≤ 2

(m+n−1)(m+n)
4m ε

−n
m ,

and

max
i
‖q1ai1 + · · ·+ qmaim‖ ≤ 2

m+n−1
4

((
2−

m+n−1
4 ε

)m+n
m

+
1

2M

) m
m+n

≤ ε+ 2
(m+n−1)(m+n)−4Mm

4(m+n) ;

the last inequality follows from (x+ y)α ≤ xα + yα if α < 1 and x, y > 0.

For the αij we find that

max
i
‖q1αi1 + · · ·+ qmαim‖ ≤ max

i
‖q1ai1 + · · ·+ qmaim‖+mq2−M

≤ ε+ 2
m+n−1

4 − Mm
m+n +mε

−n
m 2

(m+n−1)(m+n)
4m −M .

In the introduction to Section 4 we have chosen M large enough to guarantee that
the error introduced by rationalizing the entries is negligible.

We show that the difference between ĉ(k) and c(k) is bounded by 2
2M

.
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Lemma 43. For each integer k ≥ 0,

c(k) ≤ ĉ(k) < c(k) +
1

2M

k∑
i=0

2−
i(m+n)
m < c(k) +

2

2M
.

Proof. We use induction. For k = 0 we have ĉ(0) =
dc(0)2Me

2M
and trivially

c(0) ≤ ĉ(0) < c(0) +
1

2M
.

Assume that c(k − 1) ≤ ĉ(k − 1) < c(k − 1) +
1

2M

k−1∑
i=0

2−
i(m+n)
m and consider ĉ(k).

From the definition of ĉ(k) and the induction assumption it follows that

ĉ(k) =

⌈
ĉ(k − 1) 2−

m+n
m 2M

⌉
2M

≥ ĉ(k − 1)

2
m+n
m

≥ c(k − 1)

2
m+n
m

= c(k)

and

ĉ(k) =

⌈
ĉ(k − 1) 2−

m+n
m 2M

⌉
2M

<
ĉ(k − 1)

2
m+n
m

+
1

2M

<
c(k − 1) + 1

2M

∑k−1
i=0 2−

i(m+n)
m

2
m+n
m

+
1

2M

= c(k) +
1

2M

k∑
i=0

2−
i(m+n)
m .

Finally note that

k∑
i=0

2−
i(m+n)
m < 2 for all k. �

One can derive analogues of Theorem 24, Lemma 26 and Theorem 36 for the polyno-
mial version of the ILLL-algorithm by carefully adjusting for the introduced error.
We do not give the details, since in practice this error is negligible.

5. Experimental data

In this section we present some experimental data from the rational ILLL-algorithm.
In our experiments we choose the dimensions m and n and iteration speed d, so
ε = 1

d . We fill the m× n matrix A with random numbers in the interval [0, 1] and
repeat the entire ILLL-algorithm for a large number of these random matrices to
find our results. First we look at the distribution of the approximation quality.
Then we look at the growth of the denominators q found by the algorithm.

5.1. The distribution of the approximation qualities. For one-dimensional
continued fractions the approximation coefficients Θk are defined as

Θk = q2k

∣∣∣∣a− pk
qk

∣∣∣∣ ,
where pk/qk is the kth convergent of a.
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For the multi-dimensional case we define Θk in a similar way

(44) Θk = q(k)
m
n max

i
‖q1(k) ai1 + · · ·+ qm(k) aim‖.

The one-dimensional case m = n = 1. We compare the distribution of the Θk’s
found by the ILLL-algorithm for m = n = 1 and various values of d with the
distribution of the Θk’s as produced by the continued fraction algorithm with the
best approximation properties. For this optimal continued fraction algorithm it
was shown in [2] that for almost all a

lim
N→∞

1

N
# {1 ≤ k ≤ N : Θk ≤ z} = F (z),

where

F (z) =



z

logG
, 0 ≤ z ≤ 1√

5
,

√
1− 4z2 + log(G 1−

√
1−4z2
2z )

logG
, 1√

5
≤ z ≤ 1

2 ,

1, 1
2 ≤ z ≤ 1,

with G =
√
5+1
2 .

The optimal continued fraction algorithm finds rational approximations of which
the denominators grow with maximal rate, and it finds all approximations with
Θk <

1
2 ; for all this, see [1, 2, 3].

The following figures display distribution functions for Θk, that is, we show the
fraction of Θk’s found up to the value given on the horizontal axis.

We plot the distribution of the Θk’s found by the ILLL-algorithm for m = n = 1
and d = 2 in Figure 1. The ILLL-algorithm might find the same approximation
more than once. We see in Figure 1 that for d = 2 the distribution function
differs depending on whether we leave in the duplicates or sort them out. With the
duplicate approximations removed the distribution of Θk strongly resembles F (z)
of the optimal continued fraction. The duplicates that the ILLL-algorithm finds
are usually good approximations: if they are much better than necessary they will
also be an admissible solution in the next few iterations.

For larger d we do not find so many duplicates, because the quality has to improve
much more in every iteration; also see Figure 2 for an example with d = 64.

From now on we remove duplicates from our results.

5.2. The multi-dimensional case. In this section we show some results for the
distribution of the Θk’s found by the ILLL-algorithm. For fixed m and n there also
appears to be a limit distribution for Θk as d grows. See Figure 4 for an example
with m = 3 and n = 2, and compare this with Figure 3. In this section we fix
d = 512.

In Figure 5 we show some distributions for cases where either m or n is 1.
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Figure 1. The distribution function for Θk from ILLL with
m = n = 1 and d = 2, with and without the duplicate approxi-
mations, compared to the distribution function of Θk for optimal
continued fractions.
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Figure 2. The distribution function for Θk from ILLL with
m = n = 1 and d = 64, with and without the duplicate approx-
imations, compared to the distribution function of Θk for optimal
continued fractions.
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Figure 3. The distribution function for Θk from ILLL (with du-
plicates removed) with m = n = 1 and various values of d.

In Figure 6 we show some distributions for cases where m = n.

Remark 45. Very rarely the ILLL-algorithm returns an approximation with Θk > 1.
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Figure 4. The distribution function for Θk from ILLL with m = 3
and n = 2 for d = 2, 8, 128 and 512.
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Figure 5. The distribution for Θk from ILLL when either m = 1
or n = 1.
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Figure 6. The distribution of Θk from ILLL when m = n.

5.3. The denominators q. For regular continued fractions, the denominators
grow exponentially fast, to be more precise, for almost all x we have that

lim
k→∞

q
1/k
k = e

π2

12 log 2 ,

see Section 3.5 of [6].
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Figure 7. Histograms of e
m log q(k)

k n for various values of m,n and
d. In these experiments we used qmax = 1040 and repeated the
ILLL-algorithm

⌊
2000
k′

⌋
times, with k′ from Lemma 22.

For optimal continued fractions the constant π2

12 log 2 is replaced by π2

12 logG with

G =
√
5+1
2 . For multi-dimensional continued fraction algorithms little is known

about the distribution of the denominators qj . Lagarias defined in [11] the notion
of a best simultaneous Diophantine approximation and showed that for the ordered
denominators 1 = q1 < q2 < . . . of best approximations for a1, . . . , an it holds that

lim
k→∞

inf q
1/k
k ≥ 1 +

1

2n+1
.

We look at the growth of the denominators q = maxj |qj | that are found by the
ILLL-algorithm. Dirichlet’s Theorem 2 suggests that if q grows exponentially with a
rate of m/n, then infinitely many approximations with Dirichlet coefficient smaller
than 1 can be found. In the iterated LLL-algorithm it is guaranteed by (16) that

q(k) is smaller than a constant times d
kn
m . Our experiments indicate that q(k)

is about d
kn
m , or equivalently that e

m log qk
k n is about d; see Figure 7 which gives a

histogram of solutions that satisfy e
m log qk
k n = x.
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