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Motivations

D. Bernstein, P. Birkner, T. Lange, Starfish on Strike.

This improvement is not merely a matter of luck: in particular,
the interesting curve −x2 + y2 = 1− (77

36)
4x2y2, with torsion

group Z/2Z× Z/4Z, easily outperforms the other 999 curves.

A. Kruppa, Speeding up Integer Multiplication and Factorization.

...the choice σ = 11, which surprisingly leads to a higher average
exponent of 2 in the group order.

D. Bernstein, P. Birkner, T. Lange, C. Peters, ECM using Edwards curves.

We performed an analogous computation using Edwards curves
with torsion group Z/12Z and found an even closer match to 11

3
and 5

3 [for the average exponents of 2 and 3]. For Suyama curves
with torsion group Z/6Z the averages were only 10

3 and 5
3 , except

for a few unusual curves such as σ = 11.
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Goals

Having theoretical tools to study the torsion properties of every elliptic
curve.
Being able to compare the theoretical torsion properties of two given
elliptic curves and explaining the behaviour of exceptionally good
curves.
Finding good families of elliptic curves for the Elliptic Curve Method
(ECM) for integer factorization.
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Forms of Elliptic Curves and Subfamilies
In this talk, elliptic curves will mainly be in one of these two forms:

Twisted Edwards curves: for a, d ∈ Q such that ad(a − d) 6= 0,

ax2 + y2 = 1+ dx2y2

Montgomery curves: for A,B ∈ Q such that B(A2 − 4) 6= 0,

By2 = x3 + Ax2 + x

Among these curves, we will focus on three subfamilies:
Suyama family: rational parametrization of Montgomery curves with a
3-torsion point. The parameter is called σ.
“a = −1” twisted Edwards curves with rational torsion Z/6Z: it a
translation of Suyama family with the additional condition a = −1.
“a = −1” twisted Edwards curves with rational torsion Z/2Z× Z/4Z:
these curves are exactly the ones with d = −e4 and a = −1.
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Plan

1 Torsion properties of elliptic curves
Probability and torsion subgroup
Probability, cardinality and average valuation

2 Application
Twisted Edwards curves with rational torsion Z/2Z× Z/4Z
Montgomery curves with Suyama parametrization
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Some notations

Let E be an elliptic curve over Q, K be a field, and let m be a positive
integer.

Definition
E (K )[m] is the group of m-torsion points of E defined over K .
E (Q)[m] is often denoted by E [m].
Q(E [m]) is the smallest extension of Q containing all the m-torsion of
E .

Properties
Q(E [m])/Q is a Galois extension
There exists an injective morphism, denoted by ρm, from
Gal(Q(E [m])/Q) to GL2(Z/mZ).

ρm is unique up to a choice of generators of E [m].
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Probability and Torsion Subgroup

Definition

P(A(p)) = lim
B→∞

#{p ≤ B prime such that A is true}
#{p ≤ B prime}

Theorem (Part 1)
Let E be an elliptic curve over Q and m ≥ 2 be an integer. Put
K = Q(E [m]). Let T be a subgroup of Z/mZ× Z/mZ. Then,

P(E (Fp)[m] ' T ) =
#{g ∈ ρm(Gal(K/Q)) | Fix(g) ' T}

#Gal(K/Q)
.

Proof: use Chebotarev’s theorem.
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Example 1
E1 : y2 = x3 + 5x + 7 E2 : y2 = x3 − 11x + 14

E1 E2

#GL2(Z/3Z) 48
#Gal(Q(E [3])/Q) 48 16

P(E (Fp)[3] ' Z/3Z× Z/3Z) Th. 1
48 ≈ 0.02083 1

16 = 0.06250
Exp. 0.02082 0.06245

P(E (Fp)[3] ' Z/3Z) Th. 20
48 ≈ 0.4167 4

16 = 0.2500
Exp 0.4165 0.2501

#GL2(Z/5Z) 480
#Gal(Q(E [5])/Q) 480 32

P(E (Fp)[5] ' Z/5Z× Z/5Z) Th. 1
480 ≈ 0.002083 1

32 = 0.03125
Exp. 0.002091 0.03123

P(E (Fp)[5] ' Z/5Z) Th. 114
480 = 0.2375 10

32 = 0.3125
Exp. 0.2373 0.3125

Comparison of the theoretical values (Th.) of previous Corollary to the
experimental results for all primes below 225 (Exp.).
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Probability and Torsion Subgroup

Theorem (Part 2)
Previously: E is an elliptic curve over Q and m ≥ 2 is an integer. T is a
subgroup of Z/mZ× Z/mZ. K = Q(E [m]).
Let a and n be coprime positive integers, let ζn be a primitive nth root of
unity. Put Ga = {σ ∈ Gal(K (ζn)/Q) | σ(ζn) = ζa

n}. Then:

P(E (Fp)[m] ' T | p ≡ a mod n) =
#{σ ∈ Ga | Fix(ρm(σ|K )) ' T}

#Ga
.

Remark: If [K (ζn) : Q(ζn)] = [K : Q], then,

P(E (Fp)[m] ' T | p ≡ a mod n) = P(E (Fp)[m] ' T ).

Note that for n ∈ {3, 4} the condition is equivalent to ζn 6∈ K .
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Example 2
σ = 10 σ = 11

#GL2(Z/4Z) 96
#Gal(Q(E [4])/Q) 16 8
P(E (Fp)[4] ' Z/4Z) 1

2
1
2

P(E (Fp)[4] ' Z/2Z× Z/2Z) 1
8 0

P(E (Fp)[4] ' Z/2Z× Z/4Z) 5
16

3
8

P(E (Fp)[4] ' Z/4Z× Z/4Z) 1
16

1
8

P(E (Fp)[4] ' Z/4Z | p ≡ 3 mod 4) 1
2

1
2

P(E (Fp)[4] ' Z/2Z× Z/4Z | p ≡ 3 mod 4) 1
2

1
2

P(E (Fp)[4] ' Z/4Z | p ≡ 1 mod 4) 1
2

1
2

P(E (Fp)[4] ' Z/2Z× Z/2Z | p ≡ 1 mod 4) 1
4 0

P(E (Fp)[4] ' Z/2Z× Z/4Z | p ≡ 1 mod 4) 1
8

1
4

P(E (Fp)[4] ' Z/4Z× Z/4Z | p ≡ 1 mod 4) 1
8

1
4

When checked against experimental values (with all primes below 225) the
relative difference never exceeds 0.2%.

10 / 21



Probability, Cardinality and Average Valuation

Let π be a prime, E an elliptic curve over Q.

Definition
Let i , j , k be non-negative integers such that i ≤ j . Define:

pπ,k(i , j) = P(E (Fp)[π
k ] ' Z/πiZ× Z/πjZ).

Theorem
Let n be a positive integer such that everything is "generic" for the
πi -torsion, for i > n.
Then, for any k ≥ 1, P(πk | #E (Fp)) can be expressed as polynomials in
pπ,j(i , j), for 0 ≤ i ≤ j ≤ n.
The average valuation of π can also be expressed as a polynomial in
pπ,j(i , j), for 0 ≤ i ≤ j ≤ n,

Cf. article for detailed hypothesis and exact formulae.
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Example 3

E1 : y2 = x3 + 5x + 7 E2 : y2 = x3 − 11x + 14
E1 E2

Average valuation of 2
n 1 5∗

Th. 14
9 ≈ 1.556 1351

384 ≈ 3.518
Exp. 1.555 3.499

Average valuation of 3
n 1 2
Th. 87

128 ≈ 0.680 199
384 ≈ 0.518

Exp. 0.679 0.516

Average valuation of 5
n 1 1
Th. 695

2304 ≈ 0.302 355
768 ≈ 0.462

Exp. 0.301 0.469
Comparison of the theoretical values (Th.) of previous Theorem to the

experimental results for all primes below 225 (Exp.).

∗320 hours of computation with Magma
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Example 4
σ = 10 σ = 11

n 2 2
P(23 | #E (Fp))

5
8

3
4

P(23 | #E (Fp)) for p ≡ 1 mod 4 1
2

3
4

P(23 | #E (Fp)) for p ≡ 3 mod 4 3
4

3
4

Average valuation of 2
Th. 10

3 ≈ 3.333 11
3 ≈ 3.667

Exp. 3.332 3.669
Average valuation of 2 Th. 19

6 ≈ 3.167 23
6 ≈ 3.833

for p ≡ 1 mod 4 Exp. 3.164 3.835
Average valuation of 2 Th. 7

2 = 3.5 7
2 = 3.5

for p ≡ 3 mod 4 Exp. 3.500 3.503
n 1 1

Average valuation of 3
Th. 27

16 ≈ 1.688 27
16 ≈ 1.688

Exp. 1.687 1.687

Comparison between the two Suyama curves with σ = 10 and σ = 11.
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Plan

1 Torsion properties of elliptic curves
Probability and torsion subgroup
Probability, cardinality and average valuation

2 Application
Twisted Edwards curves with rational torsion Z/2Z× Z/4Z
Montgomery curves with Suyama parametrization
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Division Polynomial and Galois Group

Definition
Let E : y2 = x3 + ax + b be an elliptic curve over Q and m ≥ 2 an integer.
The m-division polynomial Pm is defined as the monic polynomial whose
roots are the x-coordinates of all the m-torsion affine points. Pnew

m is
defined as the monic polynomial whose roots are the x-coordinates of the
affine points of order exactly m.

The division polynomial Pm is used to compute Q(E [m]) and so is
linked with the computation of the divisibility probabilities.
Adding some equations in order to split a division polynomial, thus
modifying the Galois group, may improve the divisibility probabilities.
The next example will illustrate this method.
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Twisted Edwards Curves with Torsion Z/2Z× Z/4Z

Pnew
8 = (x16 + · · · )(x4 + · · · )(x4 + · · · ) twisted Edwards curves

= P8,0P8,1P8,2(x4 + · · · )(x4 + · · · ) d = −e4

e = “generic” g2 2g2+2g+1
2g+1

g2

2
g− 1

g
2

degree of factors of P8,0 4 4 4 2, 2 2, 2
degree of factors of P8,1 4 4 4 4 2, 2
degree of factors of P8,2 8 4, 4 4, 4 8 8
average valuation of 2 14

3
29
6

29
6

29
6

16
3

for p = 3 mod 4 4 4 4 4 5
for p = 1 mod 4 16

3
17
3

17
3

17
3

17
3

These four families cover all the good curves with Z/2Z× Z/4Z-torsion
found in “Starfish on strike” †, except two curves. The “interesting curve”
with e = 77

36 belongs to the best subfamily (rightmost column).
†D. Bernstein, P. Birkner, T. Lange, Starfish on Strike. Table 3.1.
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Twisted Edward Curves: new parametrization

Only an elliptic parametrization was known for twisted Edwards curves
with rational Z/2Z× Z/4Z-torsion and a rational non-torsion point.
Using ideas from Brier and Clavier ‡, we found a parametrization
which does not involve a generating curve.
This rational parametrization allowed us to impose additional
conditions on the parameter e.
For e = g2, the parameter e is given by an elliptic curve of rank 1 over
Q. For the three others families, the parameter e is given by an elliptic
curve of rank 0 over Q.

‡E. Brier, C. Clavier, New families of ECM curves for Cunningham numbers.
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Suyama-11 Subfamily

Suyama-11 is the set of Suyama curves which verify: ∃c ∈ Q such
that A+ 2 = −Bc2. The Suyama curve with σ = 11 belongs to this
subfamily. This new equation does not affect division polynomials but
modifies directly the 4-torsion Galois group.
The Suyama curve with σ = 9

4 is also special among Suyama curves
and can be extended to a family, called Suyama-94 . Suyama-94 curves
have the same division polynomials as Suyama curves but have a
different 8-torsion Galois group.
Both families can be parametrized by an elliptic curve of rank 1 over
Q.
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Suyama-11 and Twisted Edwards Curves with torsion Z/6Z

In “Starfish on strike”, the authors point out the good torsion
properties of the “a = −1” twisted Edwards curve family with rational
Z/6Z-torsion.
The equality a = −1 for twisted Edwards curves is the same as the
equality A+ 2 = −B for Montgomery curves. So every twisted
Edwards curve with torsion Z/6Z is birationnaly equivalent to a curve
of the Suyama-11 family.
So previous examples for σ = 11 also explain the good behaviour of
the twisted Edwards curves with torsion Z/6Z.
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Conclusion

The use of Galois theory allows us to have a theoretical point of view
on torsion properties of elliptic curves.
The new techniques suggested by the theoretical study helped us to
find infinite families of curves having good torsion properties.

Some questions which were not addressed in our work:
What can we say about the independence of the m- and m′-torsion
probabilities for coprime integers m and m′?
Is there a model predicting the success probability of ECM from the
probabilities that we were able to compute?
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Thank you for your attention.
Any questions?
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