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Abstract. The Coleman integral is a p-adic line integral. Double Coleman
integrals on elliptic curves appear in Kim’s nonabelian Chabauty method, the

first numerical examples of which were given by the author, Kedlaya, and Kim

[3]. This paper describes the algorithms used to produce those examples, as
well as techniques to compute higher iterated integrals on hyperelliptic curves,

building on previous joint work with Bradshaw and Kedlaya [2].

1. Introduction

In a series of papers in the 1980s, Coleman gave a p-adic theory of integration on
the projective line [6], then on curves and abelian varieties [7, 8]. This integration
theory relies on locally defined antiderivatives that are extended analytically by the
principle of Frobenius equivariance. In joint work with Bradshaw and Kedlaya [2],
we made this construction explicit and gave algorithms to compute single Coleman
integrals for hyperelliptic curves.

Having algorithms to compute Coleman integrals allows one to compute p-adic
regulators in K-theory [6, 8], carry out the method of Chabauty-Coleman for finding
rational points on higher genus curves [11], and utilize Kim’s nonabelian analogue
of the Chabauty method [10].

Kim’s method, in the case of rank 1 elliptic curves, allows one to find integral
points via the computation of double Coleman integrals. Indeed, Coleman’s theory
of integration is not limited to single integrals; it gives rise to an entire class of
locally analytic functions, the Coleman functions, on which antidifferentiation is
well-defined. In other words, one can define iterated p-adic integrals [4, 6]∫ Q

P

ξn · · · ξ1

which behave formally like iterated path integrals∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

fn(tn) · · · f1(t1) dtn · · · dt1.

Let us fix some notation. Let C be a genus g hyperelliptic curve over an unram-
ified extension K of Qp having good reduction. Let k = Fq denote its residue field,
where q = pm. We will assume that C is given by a model of the form y2 = f(x),
where f is a monic separable polynomial with deg f = 2g + 1.

Our methods for computing iterated integrals are similar in spirit to those de-
tailed in [2]. We begin with algorithms for tiny iterated integrals, use Frobenius
equivariance to write down a linear system yielding the values of integrals between
points in different residue disks, and, if needed, use basic properties of integration to
correct endpoints. We begin with some basic properties of iterated path integrals.
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2. Iterated path integrals

We follow the convention of Kim [10] and define our integrals as follows:∫ Q

P

ξ1ξ2 · · · ξn−1ξn :=

∫ Q

P

ξ1(R1)

∫ R1

P

ξ2(R2) · · ·
∫ Rn−2

P

ξn−1(Rn−1)

∫ Rn−1

P

ξn,

for a collection of dummy parameters R1, . . . , Rn−1 and 1-forms ξ1, . . . , ξn.
We begin by recalling some key formal properties satisfied by iterated path in-

tegrals [5].

Proposition 2.1. Let ξ1, . . . , ξn be 1-forms, holomorphic at points P,Q on C.
Then the following are true:

(1)
∫ P
P
ξ1ξ2 · · · ξn = 0,

(2)
∑

all permutations σ

∫ Q
P
ωσ(i1)ωσ(i2) · · ·ωσ(in) =

∏n
j=1

∫ Q
P
ωij ,

(3)
∫ Q
P
ωi1 · · ·ωin = (−1)n

∫ P
Q
ωin · · ·ωi1 .

As an easy corollary of Proposition 2.1(2), we have

Corollary 2.2. For a 1-form ωi and points P,Q as before,∫ Q

P

ωiωi · · ·ωi =
1

n!

(∫ Q

P

ωi

)n
.

When possible, we will use this to write an iterated integral in terms of a single
integral.

3. p-adic cohomology

We briefly recall some p-adic cohomology from [9], necessary for formulating the
integration algorithms.

Let C ′ be the affine curve obtained by deleting the Weierstrass points from C,
and let A = K[x, y, z]/(y2 − f(x), yz − 1) be the coordinate ring of C ′. Let A†

denote the Monsky-Washnitzer weak completion of A; it is the ring consisting of
infinite sums of the form{ ∞∑

i=−∞

Bi(x)

yi
, Bi(x) ∈ K[x],degBi ≤ 2g

}
,

further subject to the condition that vp(Bi(x)) grows faster than a linear function
of i as i→ ±∞. We make a ring out of these using the relation y2 = f(x).

These functions are holomorphic on the space over which we integrate, so we
consider odd 1-forms written as

ω = g(x, y)
dx

2y
, g(x, y) ∈ A†.

Any such differential can be written as

(3.1) ω = df + c0ω0 + · · ·+ c2g−1ω2g−1,

with f ∈ A†, ci ∈ K, and

ωi = xi
dx

2y
(i = 0, . . . , 2g − 1).

Namely, the set of differentials {ωi}2g−1i=0 forms a basis of the odd part of the de
Rham cohomology of A†, which we denote as H1

dR(C ′)−.
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To compute the p-power Frobenius action φ∗ on H1
dR(C ′)−, one does the follow-

ing:

• Let φK denote the unique automorphism lifting Frobenius from Fq to K.
Extend φK to A† by setting

φ(x) = xp

φ(y) = yp
(

1 +
φ(f)(xp)− f(x)p

f(x)p

)1/2

= yp
∞∑
i=0

(
1/2

i

)
(φ(f)(xp)− f(x)p)i

y2pi
,

and
• use the relations

y2 = f(x)

d(xiyj) = (2ixi−1yj+1 + jxif ′(x)yj−1)
dx

2y

to reduce large powers of x and large (in absolute value) powers of y to
write φ∗(ω) in the form (3.1).

This reduction process is known as Kedlaya’s algorithm [9], and we will repeatedly
use this algorithm to reduce iterated integrals involving ω ∈ A† dx2y to iterated

integrals in terms of basis elements ωi.

4. Integrals: lemmas

Recall that we use Kedlaya’s algorithm to compute single Coleman integrals as
follows:

Algorithm 4.1 (Coleman integration in non-Weierstrass disks [2]).

Input: The basis differentials (ωi)
2g−1
i=0 , points P,Q ∈ C(Cp) in non-Weierstrass

residue disks, and a positive integer m such that the residue fields of P,Q are
contained in Fpm .

Output: The integrals
(∫ Q

P
ωi

)2g−1
i=0

.

(1) Calculate the action of the m-th power of Frobenius on each basis element
(see Remark 4.2):

(φm)∗ωi = dhi +

2g−1∑
j=0

Mijωj .

(2) By change of variables, we obtain

(4.1)

2g−1∑
j=0

(M − I)ij

∫ Q

P

ωj = hi(P )− hi(Q)−
∫ φm(P )

P

ωi −
∫ Q

φm(Q)

ωi

(the fundamental linear system). Since the eigenvalues of the matrix M
are algebraic integers of C-norm pm/2 6= 1 (see [9, §2]), the matrix M − I
is invertible, and we may solve (4.1) to obtain the integrals

∫ Q
P
ωi.
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Remark 4.2. To compute the action of φm, first carry out Kedlaya’s algorithm to
write

φ∗ωi = dgi +

2g−1∑
j=0

Bijωj .

If we view h, g as column vectors and M,B as matrices, induction on m shows that

h = φm−1(g) +Bφm−2(g) + · · ·+BφK(B) · · ·φm−2K (B)g

M = BφK(B) · · ·φm−1K (B).

Note, however, that when points P,Q ∈ C(Cp) are in the same residue disk, the
“tiny” Coleman integral between them can be computed using a local parametriza-
tion, just as in the case of a real-valued line integral. This is also true when the
integrals are iterated (see Section 5).

However, to compute general iterated integrals, we will need to employ the ana-
logue of “additivity in endpoints” to link integrals between different residue disks.
First, let us consider the case where we are breaking up the path by one point.

Lemma 4.3. Let P, P ′, Q be points on C such that a path is to be taken from P
to Q via P ′. Let ξ1, . . . , ξn be a collection of 1-forms holomorphic at the points
P, P ′, Q. Then the following statement holds:∫ Q

P

ξ1 · · · ξn =

n∑
i=0

∫ Q

P ′
ξ1 · · · ξi

∫ P ′

P

ξi+1 · · · ξn.

Proof. We proceed by induction. The case n = 1 is clear. Let us suppose the
statement holds for n = k. Then we have that∫ Q

P

ξ1 · · · ξk+1 =

(∫ Q

P

ξ1 · · · ξk

)
(R)

∫ R

P

ξk+1

=

(
k∑
i=0

∫ Q

P ′
ξ1 · · · ξi

∫ P ′

P

ξi+1 · · · ξk

)
(R)

∫ R

P

ξk+1

=

(∫ P ′

P

ξ1 · · · ξk

)
(R)

∫ R

P

ξk+1(4.2)

+

(∫ Q

P ′
ξ1

)(∫ P ′

P

ξ2 · · · ξk

)
(R)

∫ R

P

ξk+1(4.3)

· · ·+

(∫ Q

P ′
ξ1 · · · ξk−1

∫ P ′

P

ξk

)
(R)

∫ R

P

ξk+1(4.4)

+

(∫ Q

P ′
ξ1 · · · ξk

)
(R)

∫ R

P

ξk+1.(4.5)

Observe that this last iterated integral (4.5) can be rewritten as(∫ Q

P ′
ξ1 · · · ξk

)
(R)

(∫ P ′

P

ξk+1 +

∫ R

P ′
ξk+1

)
,
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and that further, the terms from (4.2) through (4.4) give us

k−1∑
i=0

∫ Q

P ′
ξ1 · · · ξi

∫ P ′

P

ξi+1 · · · ξk+1,

Thus we have∫ Q

P

ξ1 · · · ξk+1 =

k−1∑
i=0

∫ Q

P ′
ξ1 · · · ξi

∫ P ′

P

ξi+1 · · · ξk+1

+

(∫ Q

P ′
ξ1 · · · ξk

)(∫ P ′

P

ξk+1

)
+

∫ Q

P ′
ξ1 · · · ξk+1

=

k+1∑
i=0

∫ Q

P ′
ξ1 · · · ξi

∫ P ′

P

ξi+1 · · · ξk+1,

as desired. �

Applying Lemma 4.3 twice, we obtain the following, which will be used to link
integrals between different residue disks:

Lemma 4.4 (Link lemma). Let points P, P ′, Q′, Q be on C such that a path is to be
taken from P to P ′ to Q′ to Q. Let ξ1, . . . , ξn be a collection of 1-forms holomorphic
at the points P, P ′, Q,Q′. Then we have∫ Q

P

ξ1 · · · ξn =

n∑
i=0

∫ Q

Q′
ξ1 · · · ξi

 n∑
j=i

∫ Q′

P ′
ξi+1 · · · ξj

∫ P ′

P

ξj+1 · · · ξn

 .

Below we record aspecific case of the link lemma, which we shall use throughout
this paper.

Example 4.5 (Link lemma for double integrals). Suppose we have two differentials
ξ0, ξ1. Then we have∫ Q

P

ξ0ξ1 =

∫ P ′

P

ξ0ξ1 +

∫ Q′

P ′
ξ0ξ1 +

∫ Q

Q′
ξ0ξ1 +

∫ P ′

P

ξ1

∫ Q

P ′
ξ0 +

∫ Q′

P ′
ξ1

∫ Q

Q′
ξ0.

5. Tiny iterated integrals

We begin with an algorithm to compute tiny iterated integrals.

Algorithm 5.1 (Tiny iterated integrals).
Input: Points P,Q ∈ C(Cp) in the same residue disk (neither equal to the point
at infinity) and differentials ξ1, . . . , ξn without poles in the disk of P .

Output: The integral
∫ Q
P
ξ1ξ2 · · · ξn.

(1) Compute a parametrization (x(t), y(t)) at P in terms of a local coordinate
t.

(2) For each k, write ξk(x, y) in terms of t: ξk(t) := ξk(x(t), y(t)).
(3) Let In+1(t) := 1.
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(4) Compute, for k = n, . . . , 2, in descending order,

Ik(t) =

∫ Rk−1

P

ξkIk+1

=

∫ t(Rk−1)

0

ξk(u)Ik+1(u),

with Rk−1 in the disc of P .
(5) Upon computing I2(t), we arrive at the desired integral:∫ Q

P

ξ1ξ2 · · · ξn = I1(t) =

∫ t(Q)

0

ξ1(u)I2(u).

We show how we carry out Algorithm 5.1 for double integrals on an elliptic curve.

Example 5.2 (A tiny double integral). Let C be the elliptic curve y2 = x(x −
1)(x + 9), let p = 7, and consider the points P = (9, 36), Q = φ(P ), and R =

(a+ x(P ),
√
f(a+ x(P ))) so that R is in the same disk as P and Q. Furthermore,

let ω0 = dx
2y , ω1 = xdx

2y . We compute the double integral
∫ Q
P
ω0ω1.

First compute the local coordinates at P :

x(t) = 9 + t+O(t20)

y(t) = 36 +
21

4
t+

119

1152
t2 − 65

55296
t3 +

2219

95551488
t4 − 7

509607936
t5 +O(t6).

Then setting I2 :=
∫
xdx2y , and making it a definite integral, we have

I2|RP =

∫ R

P

x
dx

2y

=

∫ a

0

x(t)
dx(t)

2y(t)

=
1

8
a− 5

2304
a2 +

91

995328
a3 − 1121

191102976
a4 +

22129

45864714240
a5

− 360185

7925422620672
a6 +

36737231

7988826001637376
a7 +O(a8),

from which we arrive at

I =

∫ x(Q)−x(P )

0

I2(a)
dx(R(a))

2y(R(a))

= 4 · 72 + 5 · 73 + 2 · 75 + 4 · 76 + 2 · 77 +O(78).

6. Iterated integrals: linear system

As in the case of computing single integrals, to compute general iterated Coleman
integrals, we use Kedlaya’s algorithm to calculate the action of Frobenius on de
Rham cohomology. This gives us a linear system that allows us to solve for all
(2g)n n-fold iterated integrals on basis differentials.

Theorem 6.1. Let P,Q ∈ C(Cp) be non-Weierstrass points such that the residue
fields of P,Q are contained in Fpm . Let M be the matrix of the action of the m-th
power of Frobenius on the basis differentials ω0, . . . , ω2g−1. For constants ci0,...,in−1
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computable in terms of (n− 1)-fold iterated integrals and n-fold tiny iterated inte-
grals, the n-fold iterated Coleman integrals on basis differentials between P,Q can
be computed via a linear system of the form

...∫ Q
P
ωi0 · · ·ωin−1

...

 = (I(2g)n×(2g)n − (M t)⊗n)−1


...

ci0···in−1

...

 .

Proof. By the Link lemma (Lemma 4.4), we can reduce to the case where both P
and Q are Teichmüller points (points fixed by some power of φ). Then we have∫ Q

P

ωii · · ·ωin =

∫ φm(Q)

φm(P )

ωii · · ·ωin

=

∫ Q

P

(φm)∗(ωii · · ·ωin)

=

∫ Q

P

(φm)∗(ωii) · · · (φm)∗(ωin).(6.1)

Recall that given ω0, . . . , ω2g−1 a basis for H1
dR(C ′), we have

(φm)∗ωi` = dfi` +

2g−1∑
j=0

Mi`jωj .

Substituting this expression in for each factor of (6.1) and expanding yields the
linear system. �

To illustrate our methods, in the next section, we present a more explicit version
of this theorem, accompanied by algorithms, in the case of double integrals. We
show how these are used in Kim’s nonabelian Chabauty method in Section 8.

7. Explicit double integrals

7.1. The linear system for double integrals between Teichmüller points.
In this subsection, we make explicit one aspect of Theorem 6.1: we give an algorithm
to compute double integrals between Teichmüller points.

Algorithm 7.1 (Double Coleman integration between Teichmüller points).

Input: The basis differentials (ωi)
2g−1
i=0 , Teichmüller points P,Q ∈ C(Cp) in non-

Weierstrass residue disks, and a positive integer m such that the residue fields of
P,Q are contained in Fpm .

Output: The double integrals
(∫ Q

P
ωiωj

)2g−1
i,j=0

.

(1) Calculate the action of the m-th power of Frobenius on each basis element:

(φm)∗ωi = dfi +
∑2g−1
j=0 Mijωj .

(2) Use Algorithm 4.1 to compute the single Coleman integrals
∫ Q
P
ωj on all

basis differentials.
(3) Use Step 2 and linearity to recover the other single Coleman integrals:∫ Q

P
dfifk,

∫ Q
P

∑2g−1
j=0 Mijωjfk for each i, k.
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(4) Use the results of the above two steps to write down, for each i, k, the
constant

cik =

∫ Q

P

dfi(R)(fk(R))− fk(P )(fi(Q)− fi(P )) +

∫ Q

P

2g−1∑
j=0

Mijωj(R)(fk(R)− fk(P ))

+ fi(Q)

∫ Q

P

2g−1∑
j=0

Mkjωj −
∫ Q

P

fi(R)(

2g−1∑
j=0

Mkjωj(R)).

(5) Recover the double integrals (see Remark 7.2 below) via the linear system
∫ Q
P
ω0ω0∫ Q

P
ω0ω1

...∫ Q
P
ω2g−1ω2g−1

 = (I4g2×4g2 − (M t)⊗2)−1


c00
c01
...

c2g−1,2g−1

 .

Remark 7.2. We obtain the linear system in the following manner. Since P,Q are
Teichmüller, we have

(7.1)

∫ Q

P

ωiωk =

∫ φm(Q)

φm(P )

ωiωk =

∫ Q

P

(φm)∗(ωiωk).

We begin by expanding the right side of (7.1).
Recall that given ω0, . . . , ω2g−1 a basis for H1

dR(C ′), we have

(φm)∗ωi = dfi +

2g−1∑
j=0

Mijωj .

Thus we have∫ Q

P

(φm)∗(ωiωk) =

∫ Q

P

(φm)∗(ωi)(φ
m)∗(ωk)

=

∫ Q

P

(dfi +

2g−1∑
j=0

Mijωj)(dfk +

2g−1∑
j=0

Mkjωj)

=

∫ Q

P

dfidfk + (

2g−1∑
j=0

Mijωj)dfk + dfi(

2g−1∑
j=0

Mkjωj) + (

2g−1∑
j=0

Mijωj)(

2g−1∑
j=0

Mkjωj)

We expand the first three quantities separately. First, we have∫ Q

P

dfidfk =

∫ Q

P

dfi(R)

∫ R

P

dfk

=

∫ Q

P

dfi(R)(fk(R)− fk(P ))

=

∫ Q

P

dfi(R)(fk(R))− fk(P )

∫ Q

P

dfi(R)

=

∫ Q

P

dfi(R)(fk(R))− fk(P )(fi(Q)− fi(P )).
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Next, we have∫ Q

P

(

2g−1∑
j=0

Mijωj)dfk =

∫ Q

P

2g−1∑
j=0

Mijωj(R)

∫ R

P

dfk

=

∫ Q

P

2g−1∑
j=0

Mijωj(R)(fk(R)− fk(P )).

The third term (via integration by parts) is∫ Q

P

dfi(

2g−1∑
j=0

Mkjωj) =

∫ Q

P

dfi(R)

∫ R

P

(

2g−1∑
j=0

Mkjωj)

=

fi(R)

∫ R

P

(

2g−1∑
j=0

Mkjωj)

 |R=Q
R=P −

∫ Q

P

fi(R)(

2g−1∑
j=0

Mkjωj(R))

= fi(Q)

∫ Q

P

2g−1∑
j=0

Mkjωj −
∫ Q

P

fi(R)(

2g−1∑
j=0

Mkjωj(R)).

Denote the sum of these terms by cik; in other words,

cik =

∫ Q

P

dfi(R)(fk(R))− fk(P )(fi(Q)− fi(P )) +

∫ Q

P

2g−1∑
j=0

Mijωj(R)(fk(R)− fk(P ))

+ fi(Q)

∫ Q

P

2g−1∑
j=0

Mkjωj −
∫ Q

P

fi(R)(

2g−1∑
j=0

Mkjωj(R)).

Then rearranging terms, our linear system reads
∫ Q
P
ω0ω0∫ Q

P
ω0ω1

...∫ Q
P
ω2g−1ω2g−1

 = (I4g2×4g2 − (M t)⊗2)−1


c00
c01
...

c2g−1,2g−1

 .

7.2. Linking double integrals. Let P ′ and Q′ be in the disks of P and Q, re-
spectively. Using the Link lemma for double integrals (Example 4.5), we may link
double integrals between different residue disks:
(7.2)∫ Q

P

ωiωk =

∫ P ′

P

ωiωk +

∫ Q′

P ′
ωiωk +

∫ Q

Q′
ωiωk +

∫ P ′

P

ωk

∫ Q

P ′
ωi +

∫ Q′

P ′
ωk

∫ Q

Q′
ωi.

Algorithm 7.3 (Double Coleman integration using intermediary Teichmüller points).

Input: The basis differentials (ωi)
2g−1
i=0 , points P,Q ∈ C(Cp) in non-Weierstrass

residue disks.

Output: The double integrals
(∫ Q

P
ωiωj

)2g−1
i,j=0

.

(1) Compute Teichmüller points P ′, Q′ in the disks of P,Q, respectively.
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(2) Use Algorithm 4.1 to compute the single integrals
∫ Q
P
ωi,
∫ P
P ′
ωi,
∫ Q′
Q

ωi for

all i.
(3) Use Algorithm 5.1 to compute the tiny double integrals

∫ P
P ′
ωiωk,

∫ Q
Q′
ωiωk.

(4) Use Algorithm 7.1 to compute the double integrals {
∫ Q′
P ′

ωiωj}2g−1i,j=0.

(5) Correct endpoints using

∫ Q

P

ωiωk =

∫ P ′

P

ωiωk +

∫ Q′

P ′
ωiωk +

∫ Q

Q′
ωiωk +

∫ P ′

P

ωk

∫ Q

P ′
ωi +

∫ Q′

P ′
ωk

∫ Q

Q′
ωi.

7.3. Without Teichmüller points. Alternatively, instead of finding Teichmüller
points and correcting endpoints, we can directly compute double integrals using a
slightly different linear system. Indeed, using the Link lemma for double integrals,
we take φ(P ) and φ(Q) to be the points in the disks of P and Q, respectively, which
gives

∫ Q

P
ωiωk =

∫ φ(P )

P
ωiωk +

∫ φ(Q)

φ(P )
ωiωk +

∫ Q

φ(Q)
ωiωk +

∫ φ(P )

P
ωk

∫ Q

φ(P )
ωi +

∫ φ(Q)

φ(P )
ωk

∫ Q

φ(Q)
ωi

(7.3)

To write down a linear system without Teichmüller points, we begin as before,
with

(7.4)

∫ φ(Q)

φ(P )

ωiωk =

∫ Q

P

φ∗(ωiωk) = cik +

∫ Q

P

2g−1∑
j=0

Aijωj

2g−1∑
j=0

Akjωj

 .

Putting together (7.3) and (7.4), we get
(7.5)

...∫ Q
P
ωiωk
...

 = (I4g2×4g2−(M t)⊗2)−1



...

cik −
∫ P
φ(P )

ωiωk −
(∫ Q

P
ωi

)(∫ P
φ(P )

ωk

)
−
(∫ φ(Q)

Q
ωi

)(∫ φ(Q)

φ(P )
ωk

)
+
∫ Q
φ(Q)

ωiωk
...

 .

This gives us the following alternative to Algorithm 7.1:

Algorithm 7.4 (Double Coleman integration).

Input: The basis differentials (ωi)
2g−1
i=0 , points P,Q ∈ C(Qp) in non-Weierstrass

residue disks or in Weierstrass disks in the region of convergence.

Output: The double integrals
(∫ Q

P
ωiωj

)2g−1
i,j=0

.

(1) Use Algorithm 4.1 to compute the single integrals
∫ Q
P
ωi,
∫ φ(Q)

φ(P )
ωi for all i.

(2) Use Algorithm 5.1 to compute
∫ P
φ(P )

ωiωk,
∫ Q
φ(Q)

ωiωk for all i, k

(3) As in Step 4 of Algorithm 7.1, compute the constants cik for all i, k.



ITERATED COLEMAN INTEGRATION FOR HYPERELLIPTIC CURVES 11

(4) Recover the double integrals using the linear system


...∫ Q

P
ωiωk
...

 = (I4g2×4g2−(M t)⊗2)−1



...

cik −
∫ P
φ(P )

ωiωk −
(∫ Q

P
ωi

)(∫ P
φ(P )

ωk

)
−
(∫ φ(Q)

Q
ωi

)(∫ φ(Q)

φ(P )
ωk

)
+
∫ Q
φ(Q)

ωiωk
...


Example 7.5. Let C be the genus 2 curve y2 = x5 − x4 + x3 + x2 − 2x + 1 and
let P = (1,−1), Q = (−1,−1) and p = 7. We compute double integrals on basis
differentials: ∫ Q

P
ω0ω0 = 2 · 72 + 73 + 4 · 74 +O(75)∫ Q

P
ω0ω1 = 72 + 5 · 73 + 3 · 74 +O(75)∫ Q

P
ω0ω2 = 4 · 7 + 5 · 72 + 73 +O(74)∫ Q

P
ω0ω3 = 7 + 5 · 72 + 3 · 74 +O(75)∫ Q

P
ω1ω0 = 72 + 6 · 73 + 5 · 74 +O(75)∫ Q

P
ω1ω1 = 4 · 72 + 3 · 73 +O(75)∫ Q

P
ω1ω2 = 5 · 7 + 6 · 72 + 2 · 73 + 4 · 74 +O(75)∫ Q

P
ω1ω3 = 2 + 3 · 7 + 72 + 4 · 73 +O(74)∫ Q

P
ω2ω0 = 72 + 4 · 73 +O(74)∫ Q

P
ω2ω1 = 4 · 7 + 6 · 72 + 4 · 73 + 5 · 74 +O(75)∫ Q

P
ω2ω2 = 2 + 5 · 7 + 3 · 72 +O(73)∫ Q

P
ω2ω3 = 5 + 2 · 7 + 3 · 72 +O(73)∫ Q

P
ω3ω0 = 3 · 7 + 2 · 72 + 5 · 73 + 5 · 74 +O(75)∫ Q

P
ω3ω1 = 5 + 5 · 7 + 72 + 6 · 73 +O(74)∫ Q

P
ω3ω2 = 6 + 7 + 5 · 72 +O(73)∫ Q

P
ω3ω3 = 2 + 6 · 7 + 5 · 72 +O(73)



12 JENNIFER S. BALAKRISHNAN

Example 7.6. Using the previous example, we verify the Fubini identity∫ Q

P

ωjωi +

∫ Q

P

ωiωj =

(∫ Q

P

ωi

)(∫ Q

P

ωj

)
.

We have ∫ Q

P

ω0 = 5 · 7 + 2 · 72 + 5 · 73 + 74 + 4 · 75 +O(76)∫ Q

P

ω1 = 6 · 7 + 6 · 72 + 2 · 73 + 4 · 74 + 3 · 75 +O(76)∫ Q

P

ω2 = 5 + 5 · 73 + 6 · 74 + 2 · 75 +O(76)∫ Q

P

ω3 = 5 + 3 · 7 + 4 · 72 + 3 · 73 + 6 · 74 + 2 · 75 +O(76).

We see, for example,∫ Q

P

ω0ω1 +

∫ Q

P

ω1ω0 = 2 · 72 + 4 · 73 + 2 · 74 +O(75) =

(∫ Q

P

ω0

)(∫ Q

P

ω1

)
∫ Q

P

ω2ω3 +

∫ Q

P

ω3ω2 = 4 + 4 · 7 + 72 +O(73) =

(∫ Q

P

ω2

)(∫ Q

P

ω3

)
.

7.4. Weierstrass points. Suppose one of P or Q is a finite Weierstrass point.
Then directly using the linear system as above fails, since the fi have essential
singularities at finite Weierstrass points. We remedy this as follows:

Proposition 7.7. Let Q be a non-Weierstrass point, P a finite Weierstrass point,
and S be a point in the residue disk of P , near the boundary. Then the integral
from P to Q can be computed as a sum of integrals:∫ Q

P

ωiωk =

∫ S

P

ωiωk +

∫ Q

S

ωiωk +

∫ S

P

ωk

∫ Q

S

ωi.

Proof. This follows from Lemma 4.3 in the case of n = 2, where P ′ = S. �

To compute tiny iterated integrals in a Weierstrass disk, we slightly modify
Algorithm 5.1:

Algorithm 7.8 (Tiny iterated integral in a Weierstrass disk).
Input: P a Weierstrass point, d the degree of totally ramified extension, ωi, ωj
basis differentials
Output: The integral∫ S

P

ωiωj =

∫ S

P

ωi(R)

∫ R

P

ωj =

∫ t=1

t=0

ωi(R)

∫ u=t

u=0

ωj .

(1) Compute local coordinates (x(u), u) at P .
(2) Let a = p1/d. Rescale coordinates so that y := au, x := x(au).
(3) Compute I2(u) =

∫
xj dx2y as a power series in u.

(4) Compute the appropriate definite integral using the step above:∫ S

R

xj
dx

2y
=

∫ t

0

x(au)
adu

u
= I2(t)
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(where R = (x(t), t)). Call this definite integral (now a power series in t)
I2.

(5) Now since R = (x(t), t), we have
∫ S
P
ωiωj =

∫ 1

0
x(t)iI2

dx(t)
2t .

Suppose P is a finite Weierstrass point. While one could compute the integral∫ Q
P
ωiωj directly using Algorithm 7.4 for all of the tiny double integrals (and Algo-

rithm 7.8 for the other double integrals), in practice, that approach is expensive,
as it requires the computation of several intermediate integrals with Frobenius of
points that are defined over ramified extensions. This, in turn, makes the requisite
degree d extension for convergence quite large.

Instead, the key idea is to compute a local parametrization at the finite Weier-
strass point P and to use this to compute the indefinite integral

∫ ∗
P
ωi. Then to

compute integrals involving “boundary points,” one can simply evaluate this indef-
inite integral at the appropriate points, instead of directly computing parametriza-
tions, and thus integrals, over a totally ramified extension of Qp. This idea is also
used to evaluate double integrals involving boundary points.

Algorithm 7.9 (Intermediary integrals for double integrals with a Weierstrass
endpoint).
Input: P finite Weierstrass point, Q non-Weierstrass point, d the degree of totally
ramified extension, n the precision of Qp, basis differentials ωi, ωj .

Output: Necessary things for the eventual computation of
∫ Q
P
ωiωj .

(1) Compute (x(t), t) local coordinates at P to precision nd.
(2) Let S = (x(a), a), where a = p1/d.

(3) Compute as a power series in t, I2(t) =
∫
x(t)i dx(t)y(t) .

(4) Compute the definite integral
∫ S
P
ωi = I2(a).

(5) For all i < j, compute the definite integral
∫ S
P
ωiωj via Algorithm 5.1. Keep

the intermediary indefinite integral.

(6) For all i = j, use the fact that
∫ S
P
ωiωj = 1

2

(∫ S
P
ωi

)2
to compute the double

integral in terms of the single integral.

(7) For all i > j, use the fact that
∫ S
P
ωiωj = −

∫ S
P
ωjωi +

∫ S
P
ωi
∫ S
P
ωj to

compute
∫ S
P
ωiωj (instead of directly computing it as a double integral).

(8) Compute
∫ φ(S)
S

ωi =
∫ φ(S)
P

ωi −
∫ S
P
ωi by the indefinite integral in Step 3.

Use this to deduce
∫ φ(S)
S

ωiωj for i = j.

(9) Use the indefinite integral in Step 5 to get
∫ φ(S)
S

ωiωj for i < j.

(10) Repeat the trick in Step 7 to get
∫ φ(S)
S

ωiωj for i > j.

(11) Compute
∫ φ(Q)

Q
ωi and use it to deduce

∫ φ(Q)

Q
ωiωj for i = j.

(12) Compute
∫ φ(Q)

Q
ωiωj for i < j.

(13) Repeat the trick in Step 7 to get
∫ φ(Q)

Q
ωiωj for i < j.

(14) Use
∫ Q
S
ωi =

∫ Q
P
ωi −

∫ S
P
ωi to get

∫ Q
S
ωi.

Algorithm 7.10 (Double integrals from a Weierstrass endpoint).
Input: P finite Weierstrass point, Q non-Weierstrass point, ωi, ωj basis differen-
tials.
Output: The double integrals

∫ Q
P
ωiωj .



14 JENNIFER S. BALAKRISHNAN

(1) Compute all of the integrals as in Algorithm 7.9.

(2) Compute double integrals
∫ Q
S
ωiωj using the terms in Step 1 as appropriate

in Algorithm 7.4. (See Remark 7.11 for an additional improvement to this
step)

(3) Use additivity to recover the double integrals
∫ Q
P
ωiωj =

∫ S
P
ωiωj+

∫ Q
S
ωiωj+∫ S

P
ωi
∫ Q
S
ωj .

Remark 7.11. Note that in the case of g = 1, the linear system only yields one
double integral not obtainable through single integrals. Indeed, for 0 ≤ i, j ≤ 1,

we have
∫ Q
S
ωiωi = 1

2

(∫ Q
S
ωi

)2
and

∫ Q
S
ωiωj = −

∫ Q
S
ωjωi +

∫ Q
S
ωi
∫ Q
S
ωj . So it

suffices to compute
∫ Q
S
ω0ω1. Thus, rather than computing all of the constants

c00, c01, c10, c11 and their correction factors (see (7.5)), if we pre-compute the two
double integrals that are expressible in terms of single integrals, as well as the

product of single integrals that relates
∫ Q
S
ω1ω0 to

∫ Q
S
ω0ω1, it suffices to compute

c01 (and its correction factor) to solve for the other three constants and
∫ Q
S
ω0ω1.

In other words, the linear system in Algorithm 7.4 tells us that

(I4×4 − (M t)⊗2)


...∫ Q

P
ωiωk
...

 =



...

cik −
∫ P
φ(P )

ωiωk −
(∫ Q

P
ωi

)(∫ P
φ(P )

ωk

)
−
(∫ φ(Q)

Q
ωi

)(∫ φ(Q)

φ(P )
ωk

)
+
∫ Q
φ(Q)

ωiωk
...

 ,

which we write as

A


i00
v01

s01 − v01
i11

 =


x00
`01
x10
x11

 ,

where the vector on the left consists of integrals (with i00 =
∫ Q
S
ω0ω0, i11 =∫ Q

S
ω1ω1, s01 =

∫ Q
S
ω0

∫ Q
S
ω1 all computed), and the vector on the right consists

of constants (with `01 computed). So we solve for x00, x10, x11, v01, since knowing

v01 =
∫ Q
S
ω0ω1 gives us the complete set of double integrals on basis differentials:
x00
x10
x11
v01

 =


1 0 0 −(a01 − a01)
0 0 0 −(a11 − a12)
0 1 0 −(a21 − a22)
0 0 1 −(a31 − a32)


−1A


i00
0
c01
i11

−


0
`01
0
0

 ,


where A = (aij). While this only gives a constant speed-up in terms of complexity,
in practice, this helps when S is defined over a highly ramified extension of Qp.

As numerical checks, one may use the following corollaries of Proposition 7.7.

Corollary 7.12. For P,Q Weierstrass points and S a third point, we have addi-

tivity in endpoints:
∫ Q
P
ωiωj +

∫ S
Q
ωiωj =

∫ S
P
ωiωj .

Corollary 7.13. For P,Q Weierstrass points, we have
∫ Q
P
ωiωj +

∫ Q
P
ωjωi = 0.
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It is worth noting that in general, unlike in the case of a single Coleman integral,
for P and Q both Weierstrass points, unless i = k, the double Coleman integral∫ Q
P
ωiωk is not necessarily 0. However, in the case of i = k, the integral can be

computed as
∫ Q
P
ωiωi = 1

2

(∫ Q
P
ωi

)2
= 0.

Example 7.14. Consider the curve y2 = x(x− 1)(x+ 9), over Q7, and the points
P1 = (1, 0), P2 = (0, 0), and Q = (−1, 4). We have

∫ Q
P1
ω0ω0∫ Q

P1
ω0ω1∫ Q

P1
ω1ω0∫ Q

P1
ω1ω1

 =


2 · 72 + 5 · 73 + 4 · 74 + 3 · 75 +O(76)
6 · 7 + 5 · 72 + 4 · 73 + 6 · 74 +O(76)
2 · 72 + 3 · 73 + 3 · 74 + 75 +O(76)

1 + 5 · 7 + 5 · 73 + 4 · 74 + 4 · 75 +O(76)


and 

∫ Q
P2
ω0ω0∫ Q

P2
ω0ω1∫ Q

P2
ω1ω0∫ Q

P2
ω1ω1

 =


2 · 72 + 5 · 73 + 4 · 74 + 3 · 75 +O(76)

2 · 72 + 73 + 6 · 74 + 5 · 75 +O(76)
6 · 7 + 5 · 72 + 6 · 73 + 3 · 74 + 3 · 75 +O(76)

1 + 5 · 7 + 5 · 73 + 4 · 74 + 4 · 75 +O(76)

 ,

from which we see that
∫ P2

P1
ω0ω1 6= 0 and likewise

∫ P2

P1
ω1ω0 6= 0.

8. Kim’s nonabelian Chabauty method

We now present the motivation for all of the algorithms thus far. Let C/Z be the
minimal regular model of an elliptic curve C/Q of analytic rank 1 with Tamagawa
numbers all 1. Let X = C − {∞} and ω0 = dx

2y , ω1 = xdx
2y . Taking a tangential

basepoint b at ∞ (or letting b be an integral 2-torsion point), we have the analytic
functions

logω0
(z) =

∫ z

b

ω0, D2(z) =

∫ z

b

ω0ω1.

With this setup, we have

Theorem 8.1 ([3, 10]). Suppose P is a point of infinite order in C(Z). Then
X (Z) ⊂ C(Zp) is in the zero set of

f(z) := (logω0
(P ))2D2(z)− (logω0

(z))2D2(P ).

Corollary 8.2 ([3, 10]). The expression

(8.1)
D2(P )

(logω0
(P ))2

is independent of the point P of infinite order in C(Z).

Example 8.3. We revisit Example 1 in [3]. Let E be the rank 1 elliptic curve y2 =
x3 − 1323x + 3942, with minimal model E having Cremona label ‘65a1’. Consider
the following points on E which are integral on E : b = (3, 0), P = (39, 108), Q =
(−33,−108), R = (147, 1728). Using Algorithm 7.10, we compute the following
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integrals:∫ P

b

ω0ω1 = 4 · 11 + 4 · 112 + 7 · 113 + 9 · 114 + 5 · 116 +O(117)∫ P

b

ω0 = 4 · 11 + 7 · 112 + 9 · 113 + 3 · 114 + 5 · 115 + 7 · 116 +O(117)∫ Q

b

ω0ω1 = 4 · 11 + 4 · 112 + 7 · 113 + 9 · 114 + 5 · 116 +O(117)∫ Q

b

ω0 = 7 · 11 + 3 · 112 + 113 + 7 · 114 + 5 · 115 + 3 · 116 +O(117)∫ R

b

ω0ω1 = 5 · 11 + 6 · 112 + 7 · 113 + 5 · 114 + 3 · 115 + 9 · 116 +O(117)∫ R

b

ω0 = 3 · 11 + 7 · 112 + 2 · 113 + 3 · 114 + 7 · 116 +O(117),

and we see that the ratio in Corollary 8.2 is constant on integral points:

D2(P )

(logω0
(P ))2

=
D2(Q)

(logω0
(Q))2

=
D2(R)

(logω0
(R))2

= 3·11−1+6+2·11+10·112+3·113+5·114+O(115).

However, for S = (103, 980), which is not integral on E , we see that∫ S

b

ω0ω1 = 3 · 11 + 10 · 112 + 4 · 113 + 10 · 114 + 7 · 115 + 10 · 116 +O(117)∫ S

b

ω0 = 11 + 7 · 113 + 5 · 115 +O(117)

D2(S)

(logω0
(S))2

= 3 · 11−1 + 10 + 6 · 11 + 9 · 112 + 8 · 113 + 6 · 114 +O(115).

Example 8.4. We give a variation on Example 4 in [3]. Let E be the rank 1
elliptic curve y2 = x3 − 16x + 16, with minimal model E having Cremona label
‘37a1’. Letting P,Q be two fixed integral points on E, we can use the Link lemma
to rewrite Theorem 8.1 so that the relevant double integral is no longer from a
tangential basepoint. Indeed, integral points z occur in the zero set of(∫ z

b

ω0

)2

−

(∫ P

b

ω0

)2
 ∫ QP ω0ω1 +

∫ Q
P
ω0

∫ P
b
ω1

(
∫ Q
b
ω0)2 − (

∫ P
b
ω0)2

−

(∫ z

P

ω0ω1 +

∫ z

P

ω0

∫ P

b

ω1

)
Slightly modifying Algorithm 7.4 to take as endpoint a parameter z (see [1, §7.2.2]
for more details), we can recover the integral points

{(0,±4), (4,±4), (−4,±4), (8,±20), (24,±116)}.
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eds.), Lecture Notes in Computer Science, vol. 6197, Springer, 2010, pp. 16–31.

3. J. S. Balakrishnan, K. S. Kedlaya, and M. Kim, Appendix and erratum to “Massey products

for elliptic curves of rank 1”, J. Amer. Math. Soc. 24 (2011), no. 1, 281–291.
4. A. Besser, Coleman integration using the Tannakian formalism, Math. Ann. 322 (2002),

19–48.
5. K. T. Chen, Algebras of iterated path integrals and fundamental groups, Trans. Amer. Math.

Soc. 156 (1971), 359–379.

6. R. F. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent. Math. 69 (1982),
no. 2, 171–208.

7. , Torsion points on curves and p-adic abelian integrals, Ann. of Math. (2) 121 (1985),

no. 1, 111–168.
8. R. F. Coleman and E. de Shalit, p-adic regulators on curves and special values of p-adic

L-functions, Invent. Math. 93 (1988), no. 2, 239–266.

9. K. S. Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology,
J. Ramanujan Math. Soc. 16 (2001), 323–338, erratum ibid. 18 (2003), 417–418.

10. M. Kim, Massey products for elliptic curves of rank 1, J. Amer. Math. Soc. 23 (2010), 725–

747.
11. W. McCallum and B. Poonen, The method of Chabauty and Coleman, preprint (2010).


