5. Suggested answer:

Q5. Prop the intersection of two normal subgroups is a normal subgroup.
pf: Suppose, $H_{1}, H_{2} \subseteq G$ are normal subgroup let $x \in H_{1} \cap H_{2}$
$\therefore x \in H_{1}$ and $x \in H_{2}$
\therefore let $g \in G$,
$g x g^{-1} \in H_{1}$ and $g x g^{-1} \in H_{2}$
$\therefore g \times g^{-1} \in H_{1} \wedge H_{2}$
$\therefore \quad H_{1} \cap H_{2}$ is a normal subgroup
8. Suggested answer:

Q8. To prove that G / H is cyclic, we need to show that
$\exists g H \in G / H$, where $g H$ is the generator of G / H.
Let G be a cyclic group. Let H be some normal subgroup of G.
Let $g \in G$ be a generator of G.
Let $k H \in G / H, k \in G$. Since g is generator of G, then $k=g^{n}$.

$$
(g H)^{n}=(g H) \ldots(g H)=(g \ldots g) H=\left(g^{n}\right) H=k H \text {, so } k H \in\langle g H\rangle
$$

Therefore gH is a generator of $6 / \mathrm{H}$ so $6 / \mathrm{H}$ is cyclic.
12. Suggested answer:
12. G has ane subgroup of odor h, prow His normal in G.
$||1|=n$
We know $\mathrm{gHg}_{\mathrm{g}}{ }^{-1}$ is a subdure of $l \quad \forall j \in b$
And $\left|g H_{j}-1\right|=|H|=u$
So $\left|g H_{g}{ }^{-1}\right|=k$
And H is a neral subgroup of 6 .

