Name:
Math 103B SP23 Midterm 2
May 17, 2023 Student ID:

Unless otherwise specified, you have to provide justification to all of your answers.

1. (4 points) Compute the gcd of $f(x)=2 x^{4}-x^{3}+3 x^{2}-x+2$ and $g(x)=x^{4}-x^{2}+2 x-1$ in $\mathbb{Q}[x]$.

Solution:

$$
\begin{aligned}
f(x) & =g(x) \cdot 2+\left(-x^{3}+5 x^{2}-5 x+4\right) \\
g(x) & =\left(-x^{3}+5 x^{2}-5 x+4\right)(-x-5)+\left(19 x^{2}-19 x+19\right) \\
-x^{3}+5 x^{2}-5 x+4 & =\left(19 x^{2}-19 x+19\right)\left(-\frac{1}{19} x+\frac{4}{19}\right) .
\end{aligned}
$$

Gcd needs to be monic. Thus $\operatorname{gcd}(f(x), g(x))=x^{2}-x+1$.
2. (8 points) For each of the following, is the polynomial irreducible in the corresponding ring? Justify your answer.
(a) (2 points) $x^{5}-7$ in $\mathbb{Q}[x]$.

Solution: It is irreducible, since it satisfies the Eisenstein criterion for $p=7$.
(b) (3 points) $x^{4}+2 x^{2}+1$ in $\mathbb{F}_{3}[x]$.

Solution: It is not irreducible, since $x^{4}+2 x^{2}+1=\left(x^{2}+1\right)^{2}$.
(c) (3 points) $2 x^{4}-x^{3}-4 x+2$ in $\mathbb{Q}[x]$.

Solution: It is not irreducible, since $x=\frac{1}{2}$ is a solution. Note that since the polynomial has integer coefficients, a rational number $\frac{a}{b}$ in reduced form (i.e. $\operatorname{gcd}(a, b)=1)$ is a root of the polynomial would imply that a divides the constant term, and b divides the leading coefficient. Thus the only possible candidates for rational root are $\pm 1, \pm 2$ and $\pm \frac{1}{2}$.
3. (8 points) For each of the following statement, explain why it is incorrect. In all except Q3d, it is enough to give a counterexample.
(a) Let R be an integral domain. If $x \in R$ is irreducible, then x is prime.

Solution: In $R=\mathbb{Z}[\sqrt{-5}]$, the element 2 is irreducible but not prime.
(b) Let R be an integral domain. If R is a UFD, then R is a PID.

Solution: $\mathbb{Z}[x]$ is a UFD but not a PID.
(c) Let R be a commutative ring with 1. A polynomial $f(x)$ of degree n in $R[x]$ has at most n roots (counting multiplicity).

Solution: The polynomial $2 x$ in $(\mathbb{Z} / 6)[x]$ is of degree 1 , but has 2 roots, namely 0,3 .
(d) Let F be a field and $\alpha \in F$. The evaluation map eva ${ }_{\alpha}: \mathbb{F}(x) \rightarrow \mathbb{F}$ given by $\operatorname{eva}_{\alpha}(f(x))=f(\alpha)$ is a ring homomorphism. (This is never a ring homomorphism, and you need to explain why.)

Solution: This is not well-defined. In particular, $\operatorname{eva}_{\alpha}\left(\frac{1}{x-\alpha}\right)$ is not well-defined.
4. (a) (2 points) Prove that \mathbb{C} is an algebraic extension of \mathbb{R}.

Solution: $\mathbb{C}=\mathbb{R}[i]$, and i is a root of the polynomial $x^{2}+1$.
(b) (2 points) Explain why \mathbb{R} is not an algebraic extension of \mathbb{Q}.

Solution: There exists elements in \mathbb{R} that are transcendental over \mathbb{Q}, for instance e and π.
5. (a) (3 points) Show that the polynomial $x^{2}+1$ is irreducible in $\mathbb{F}_{3}[x]$.

Solution: $x^{2}+1$ has no root in \mathbb{F}_{3}. Since $x^{2}+1$ is of degree 2 and has no root, it is irreducible.
(b) (2 points) Prove that the ideal $\left(x^{2}+1\right)$ is prime in $\mathbb{F}_{3}[x]$.

Solution:

Proof. Since \mathbb{F}_{3} is a field, $\mathbb{F}_{3}[x]$ is a PID. Thus all irreducible elements are prime, and therefore the ideal $\left(x^{2}+1\right)$ is prime.
(c) (2 points) List all elements of $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$.

Solution: With division algorithm, all polynomials $f(x) \in \mathbb{F}_{3}[x]$ is congruent to their remainders modulo $x^{2}+1$. Thus we can represent all elements of $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ by polynomials of degree at most 1 , i.e. $0,1,2, x, x+1, x+$ $2,2 x, 2 x+1,2 x+2$.
(d) (2 points) Prove that the ring $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ is a field.

Solution:

Proof. Since $\left(x^{2}+1\right)$ is prime, the quotient $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ is an integral domain. Since it is finite, it is a field (by Wedderburn's Theorem).

