		Name:	
Math 103B SP23 Midterm 2	May 17, 2023	Student ID:	

Unless otherwise specified, you have to provide justification to all of your answers.

1. (4 points) Compute the gcd of $f(x) = 2x^4 - x^3 + 3x^2 - x + 2$ and $g(x) = x^4 - x^2 + 2x - 1$ in $\mathbb{Q}[x]$.

Solution:

$$f(x) = g(x) \cdot 2 + (-x^3 + 5x^2 - 5x + 4)$$

$$g(x) = (-x^3 + 5x^2 - 5x + 4)(-x - 5) + (19x^2 - 19x + 19)$$

$$-x^3 + 5x^2 - 5x + 4 = (19x^2 - 19x + 19)(-\frac{1}{19}x + \frac{4}{19}).$$

Gcd needs to be monic. Thus $gcd(f(x), g(x)) = x^2 - x + 1$.

- 2. (8 points) For each of the following, is the polynomial irreducible in the corresponding ring? Justify your answer.
 - (a) (2 points) $x^5 7$ in $\mathbb{Q}[x]$.

Solution: It is irreducible, since it satisfies the Eisenstein criterion for p = 7.

(b) (3 points) $x^4 + 2x^2 + 1$ in $\mathbb{F}_3[x]$.

Solution: It is not irreducible, since $x^4 + 2x^2 + 1 = (x^2 + 1)^2$.

(c) (3 points) $2x^4 - x^3 - 4x + 2$ in $\mathbb{Q}[x]$.

Solution: It is not irreducible, since $x = \frac{1}{2}$ is a solution. Note that since the polynomial has integer coefficients, a rational number $\frac{a}{b}$ in reduced form (i.e. gcd(a, b) = 1) is a root of the polynomial would imply that *a* divides the constant term, and *b* divides the leading coefficient. Thus the only possible candidates for rational root are $\pm 1, \pm 2$ and $\pm \frac{1}{2}$.

- 3. (8 points) For each of the following statement, explain why it is incorrect. In all except Q3d, it is enough to give a counterexample.
 - (a) Let R be an integral domain. If $x \in R$ is irreducible, then x is prime.

Solution: In $R = \mathbb{Z}[\sqrt{-5}]$, the element 2 is irreducible but not prime.

(b) Let R be an integral domain. If R is a UFD, then R is a PID.

Solution: $\mathbb{Z}[x]$ is a UFD but not a PID.

(c) Let R be a commutative ring with 1. A polynomial f(x) of degree n in R[x] has at most n roots (counting multiplicity).

Solution: The polynomial 2x in $(\mathbb{Z}/6)[x]$ is of degree 1, but has 2 roots, namely 0,3.

(d) Let F be a field and $\alpha \in F$. The evaluation map $\operatorname{eva}_{\alpha} : \mathbb{F}(x) \to \mathbb{F}$ given by $\operatorname{eva}_{\alpha}(f(x)) = f(\alpha)$ is a ring homomorphism. (This is never a ring homomorphism, and you need to explain why.)

Solution: This is not well-defined. In particular, $eva_{\alpha}(\frac{1}{x-\alpha})$ is not well-defined.

4. (a) (2 points) Prove that \mathbb{C} is an algebraic extension of \mathbb{R} .

Solution: $\mathbb{C} = \mathbb{R}[i]$, and *i* is a root of the polynomial $x^2 + 1$.

(b) (2 points) Explain why $\mathbb R$ is not an algebraic extension of $\mathbb Q.$

Solution: There exists elements in \mathbb{R} that are transcendental over \mathbb{Q} , for instance e and π .

5. (a) (3 points) Show that the polynomial $x^2 + 1$ is irreducible in $\mathbb{F}_3[x]$.

Solution: $x^2 + 1$ has no root in \mathbb{F}_3 . Since $x^2 + 1$ is of degree 2 and has no root, it is irreducible.

(b) (2 points) Prove that the ideal $(x^2 + 1)$ is prime in $\mathbb{F}_3[x]$.

Solution:

Proof. Since \mathbb{F}_3 is a field, $\mathbb{F}_3[x]$ is a PID. Thus all irreducible elements are prime, and therefore the ideal $(x^2 + 1)$ is prime.

(c) (2 points) List all elements of $\mathbb{F}_3[x]/(x^2+1)$.

Solution: With division algorithm, all polynomials $f(x) \in \mathbb{F}_3[x]$ is congruent to their remainders modulo $x^2 + 1$. Thus we can represent all elements of $\mathbb{F}_3[x]/(x^2 + 1)$ by polynomials of degree at most 1, i.e. 0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2.

(d) (2 points) Prove that the ring $\mathbb{F}_3[x]/(x^2+1)$ is a field.

Solution:

Proof. Since (x^2+1) is prime, the quotient $\mathbb{F}_3[x]/(x^2+1)$ is an integral domain. Since it is finite, it is a field (by Wedderburn's Theorem).