Name:	

Math 103B SP23 Midterm 1

Apr 26, 2023

 Student ID:

Unless otherwise specified, you have to provide justification to all of your answers.

1. Let $G = \mathbb{Z}/6$, $X = \{A, B, C, D, E\}$, and G acts on X by

$$1 \cdot A = B, \ 1 \cdot B = C, \ 1 \cdot C = A, \ 1 \cdot D = E, \ 1 \cdot E = D.$$

(a) (3 points) Find $2 \cdot B$ and $3 \cdot D$. Show your calculation.

Solution: $2 \cdot B = (1+1) \cdot B = 1 \cdot (1 \cdot B) = 1 \cdot C = A$. $3 \cdot D = (2+1) \cdot D = 2 \cdot (1 \cdot D) = 2 \cdot E = 1 \cdot (1 \cdot E) = 1 \cdot D = E$.

(b) (2 points) Find \mathcal{O}_E , the orbit of E.

Solution: From (a), we can see that $\mathcal{O}_E = \{D, E\}$.

(c) (3 points) Find G_A , the stabilizer group of A.

Solution: From (a),

 $3 \cdot A = 2 \cdot B = A,$

so $3 \in G_A$. A subgroup of $G = \mathbb{Z}/6$ containing 3 must be either $\{0,3\}$ or the entire $\mathbb{Z}/6$. Since $1 \cdot A = B \neq A$, $1 \notin G_A$. Therefore, $G_A = \{0,3\}$. Remark: From (a), we can see that $\mathcal{O}_A = \{1,2,3\}$. Thus $|G_A| = 2$ by the orbit-stabilizer theorem. This can be used to assist the calculation of G_A as well. 2. (4 points) Solve the system of congruence

$$x \equiv 5 \pmod{6}$$
$$x \equiv 3 \pmod{7}$$
$$x \equiv 2 \pmod{11}.$$

Show your calculation. Your answer should be $x \equiv ?? \pmod{462}$ (here $462 = 6 \cdot 7 \cdot 11$).

Solution: We start with the largest modulo, i.e. 11. With 2 (mod 11), we have 2, 2+11 = 13, 13+11 = 24. Now 24 is the first number in this list that is also 3 mod 7. We then add $7 \cdot 11 = 77$ to the numbers: 24, 24+77 = 101. 101 happens to be also 5 (mod 6), so the answer to the system is $x \equiv 101 \pmod{462}$.

3. Consider the homomorphism

$$\phi : \mathbb{R}[x] \to \mathbb{R}^2$$
$$\phi(f) = (f(1), f(2)).$$

(a) (2 points) Prove that ϕ is surjective.

Solution:

Proof. Let $(a,b) \in \mathbb{R}^2$. Then the line passing through (1,a) and (2,b) is a polynomial with f(1) = a and f(2) = b. In particular, the line is given by f(x) = (b-a)x + (2a-b).

(b) (3 points) Using this homomorphism, prove that $\mathbb{R}[x]/(x^2 - 3x + 2)$ is isomorphic to \mathbb{R}^2 .

Solution:

Proof. The kernel of this function is all polynomials f(x) such that f(1) = 0and f(2) = 0. From f(1) = 0, we know x = 1 is a root of f(x), and thus (x - 1)is a factor of f(x). Similarly, (x - 2) is a factor of f(x). Thus (x - 1)(x - 2)is a factor of f(x), so $f(x) \in I$. On the other hand, if f(x) is divisible by $x^2 - 3x + 2$, then f(1) = f(2) = 0. Therefore, the kernel of ϕ is I. By the first isomorphism theorem, the quotient $\mathbb{R}[x]/I$ is isomorphic to the image of ϕ . Since ϕ is surjective, we have that $\mathbb{R}[x]/I \simeq \mathbb{R}^2$.

- 4. Let R be a commutative ring with 1.
 - (a) (3 points) Prove that if x is a nilpotent element, then 1 + x is a unit. Hint:

$$x^{n} - 1 = (x + 1)(x^{n-1} - x^{n-2} + \dots + (-1)^{n-1}).$$

Solution:

Proof. Since x is nilpotent, there exists a positive integer n such that $x^n = 0$. Now,

$$(1+x)(1-x+x^2-\dots+(-1)^{n-1}x^{n-1}) = 1-x^n = 1-0 = 1.$$

Thus (1+x) is a unit.

(b) (3 points) Prove that if $e \in R$ is an idempotent, then 1 - e is also an idempotent.

Solution:

Proof. Let e be an idempotent. Thus $e^2 = e$ by definition. Thus $(1 - e)^2 = 1 - 2e + e^2 = 1 - 2e + e = 1 - e$, so 1 - e is also an idempotent. \Box

(c) (3 points) Consider $R = \mathbb{R}[x, y]$. Prove that (x) is a prime ideal but not a maximal ideal.

Solution:

Proof. The quotient $\mathbb{R}[x, y]/(x)$ is clearly isomorphic to $\mathbb{R}[y]$, which is an integral domain but not a field. Therefore, (x) is a prime ideal but not a maximal ideal.

5. (a) (4 points) Prove that $\mathbb{Z}[\sqrt{-2}]$ is not isomorphic to $\mathbb{Z}[\sqrt{-3}]$.

Solution:

Proof. If $\phi : \mathbb{Z}[\sqrt{-2}] \to \mathbb{Z}[\sqrt{-3}]$ is an isomorphism, then $\phi(1) = 1$ since ϕ is surjective. Now $-2 = \phi(-2) = \phi(\sqrt{-2}\sqrt{-2}) = (\phi(\sqrt{-2})^2)$, but there is no square root of -2 in $\mathbb{Z}[\sqrt{-3}]$.

(b) (2 points) Prove or disprove: $\mathbb{R}[\sqrt{-2}]$ is isomorphic to $\mathbb{R}[\sqrt{-3}]$.

Solution:

Proof. These are both equal to \mathbb{C} , so they are isomorphic. Remark: for an explicit isomorphism, one can use $f(x+y\sqrt{-2}) = x+(y\sqrt{\frac{2}{3}})\sqrt{-3}$. In terms of complex numbers, we simply have the identity map f(z) = z. \Box