Name:

Unless otherwise specified, you have to provide justification to all of your answers.

1. Let $G=\mathbb{Z} / 6, X=\{A, B, C, D, E\}$, and G acts on X by

$$
1 \cdot A=B, 1 \cdot B=C, 1 \cdot C=A, 1 \cdot D=E, 1 \cdot E=D
$$

(a) (3 points) Find $2 \cdot B$ and $3 \cdot D$. Show your calculation.

Solution: $2 \cdot B=(1+1) \cdot B=1 \cdot(1 \cdot B)=1 \cdot C=A$.
$3 \cdot D=(2+1) \cdot D=2 \cdot(1 \cdot D)=2 \cdot E=1 \cdot(1 \cdot E)=1 \cdot D=E$.
(b) (2 points) Find \mathcal{O}_{E}, the orbit of E.

Solution: From (a), we can see that $\mathcal{O}_{E}=\{D, E\}$.
(c) (3 points) Find G_{A}, the stabilizer group of A.

Solution: From (a),

$$
3 \cdot A=2 \cdot B=A
$$

so $3 \in G_{A}$. A subgroup of $G=\mathbb{Z} / 6$ containing 3 must be either $\{0,3\}$ or the entire $\mathbb{Z} / 6$. Since $1 \cdot A=B \neq A, 1 \notin G_{A}$. Therefore, $G_{A}=\{0,3\}$.
Remark: From (a), we can see that $\mathcal{O}_{A}=\{1,2,3\}$. Thus $\left|G_{A}\right|=2$ by the orbit-stabilizer theorem. This can be used to assist the calculation of G_{A} as well.
2. (4 points) Solve the system of congruence

$$
\begin{array}{ll}
x \equiv 5 & (\bmod 6) \\
x \equiv 3 & (\bmod 7) \\
x \equiv 2 & (\bmod 11) .
\end{array}
$$

Show your calculation. Your answer should be $x \equiv$?? ($\bmod 462$) (here $462=6 \cdot 7 \cdot 11$).

Solution: We start with the largest modulo, i.e. 11 . With $2(\bmod 11)$, we have 2 , $2+11=13,13+11=24$. Now 24 is the first number in this list that is also $3 \bmod 7$. We then add $7 \cdot 11=77$ to the numbers: $24,24+77=101.101$ happens to be also $5(\bmod 6)$, so the answer to the system is $x \equiv 101(\bmod 462)$.
3. Consider the homomorphism

$$
\begin{aligned}
\phi: \mathbb{R}[x] & \rightarrow \mathbb{R}^{2} \\
\phi(f) & =(f(1), f(2)) .
\end{aligned}
$$

(a) (2 points) Prove that ϕ is surjective.

Solution:

Proof. Let $(a, b) \in \mathbb{R}^{2}$. Then the line passing through $(1, a)$ and $(2, b)$ is a polynomial with $f(1)=a$ and $f(2)=b$. In particular, the line is given by $f(x)=(b-a) x+(2 a-b)$.
(b) (3 points) Using this homomorphism, prove that $\mathbb{R}[x] /\left(x^{2}-3 x+2\right)$ is isomorphic to \mathbb{R}^{2}.

Solution:

Proof. The kernel of this function is all polynomials $f(x)$ such that $f(1)=0$ and $f(2)=0$. From $f(1)=0$, we know $x=1$ is a root of $f(x)$, and thus $(x-1)$ is a factor of $f(x)$. Similarly, $(x-2)$ is a factor of $f(x)$. Thus $(x-1)(x-2)$ is a factor of $f(x)$, so $f(x) \in I$. On the other hand, if $f(x)$ is divisible by $x^{2}-3 x+2$, then $f(1)=f(2)=0$. Therefore, the kernel of ϕ is I. By the first isomorphism theorem, the quotient $\mathbb{R}[x] / I$ is isomorphic to the image of ϕ. Since ϕ is surjective, we have that $\mathbb{R}[x] / I \simeq \mathbb{R}^{2}$.
4. Let R be a commutative ring with 1 .
(a) (3 points) Prove that if x is a nilpotent element, then $1+x$ is a unit. Hint:

$$
x^{n}-1=(x+1)\left(x^{n-1}-x^{n-2}+\cdots+(-1)^{n-1}\right) .
$$

Solution:

Proof. Since x is nilpotent, there exists a positive integer n such that $x^{n}=0$. Now,

$$
(1+x)\left(1-x+x^{2}-\cdots+(-1)^{n-1} x^{n-1}\right)=1-x^{n}=1-0=1
$$

Thus $(1+x)$ is a unit.
(b) (3 points) Prove that if $e \in R$ is an idempotent, then $1-e$ is also an idempotent.

Solution:

Proof. Let e be an idempotent. Thus $e^{2}=e$ by definition. Thus $(1-e)^{2}=$ $1-2 e+e^{2}=1-2 e+e=1-e$, so $1-e$ is also an idempotent.
(c) (3 points) Consider $R=\mathbb{R}[x, y]$. Prove that (x) is a prime ideal but not a maximal ideal.

Solution:

Proof. The quotient $\mathbb{R}[x, y] /(x)$ is clearly isomorphic to $\mathbb{R}[y]$, which is an integral domain but not a field. Therefore, (x) is a prime ideal but not a maximal ideal.
5. (a) (4 points) Prove that $\mathbb{Z}[\sqrt{-2}]$ is not isomorphic to $\mathbb{Z}[\sqrt{-3}]$.

Solution:

Proof. If $\phi: \mathbb{Z}[\sqrt{-2}] \rightarrow \mathbb{Z}[\sqrt{-3}]$ is an isomorphism, then $\phi(1)=1$ since ϕ is surjective. Now $-2=\phi(-2)=\phi(\sqrt{-2} \sqrt{-2})=\left(\phi(\sqrt{-2})^{2}\right.$, but there is no square root of -2 in $\mathbb{Z}[\sqrt{-3}]$.
(b) (2 points) Prove or disprove: $\mathbb{R}[\sqrt{-2}]$ is isomorphic to $\mathbb{R}[\sqrt{-3}]$.

Solution:

Proof. These are both equal to \mathbb{C}, so they are isomorphic.
Remark: for an explicit isomorphism, one can use $f(x+y \sqrt{-2})=x+\left(y \sqrt{\frac{2}{3}}\right) \sqrt{-3}$.
In terms of complex numbers, we simply have the identity map $f(z)=z$.

