Q20:
20.

Proposition 7. For every n there exists an irreducible polynomial of degree n in $\mathbb{F}_{p}[x]$.

Proof. Suppose we fix some arbitrary n.
We know there exists some finite field extension $\mathbb{F}_{p^{n}} / \mathbb{F}_{p}$.
Note that $Q 19$ gave us that $\mathbb{F}_{p^{n}}=\mathbb{F}_{p}(\alpha)$ for some $\alpha \in \mathbb{F}_{p^{n}}$.
Furthermore, $Q 2$ gave us that $\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right]=n$ and thus $\left[\mathbb{F}_{p}(\alpha): \mathbb{F}_{p}\right]=n$.
Hence, we know that the degree of α over \mathbb{F}_{p} is n.
By definition, the minimal polynomial $f(x) \in \mathbb{F}_{p}[x]$ for α is degree n. Furthermore, we know that minimal polynomials are irreducible.
Therefore, for arbitrary n, we have found an irreducible polynomial of degree n in $\mathbb{F}_{p}[x]$.

Q21:

21.

Proposition 8. The Frobenius map $\Phi: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ given by $\Phi: \alpha \mapsto \alpha^{p}$ is an automorphism of order n.

Proof. Observe $\Phi: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ and thus is by definition an automorphism if it is an isomorphism.
We will first show that Φ is a homomorphism.
Preserves Addition:
Suppose $x, y \in \mathbb{F}_{p^{n}}$.
Note for Freshman's Dream that $\mathbb{F}_{p^{n}}$ has characteristic p.
Then, we have

$$
\begin{aligned}
\Phi(x+y) & =(x+y)^{p} \\
& =x^{p}+y^{p}(\text { by Freshman's Dream Theorem) } \\
& =\Phi(x)+\Phi(y)
\end{aligned}
$$

and thus Φ preserves addition.

Preserves Multiplication:

Suppose $x, y \in \mathbb{F}_{p^{n}}$.

$$
\begin{aligned}
\Phi(x y) & =(x y)^{p} \\
& =x^{p} y^{p} \text { (as multiplication is commutative) } \\
& =\Phi(x) \Phi(y)
\end{aligned}
$$

and thus Φ preserves multiplication.
To show that Φ is bijective, it suffices to show that Φ is invertible.
If Φ has order n, then Φ must be invertible as then $\Phi^{n-1}=\Phi^{-1}$.
To show Φ^{n} is the identity automorphism, suppose we take some $x \in \mathbb{F}_{p^{n}}$. We want to show $\Phi^{n}(x)=x$.
Evidently $\Phi^{n}(x)=x^{p^{n}}$.
However, we know that $\left|\mathbb{F}_{p^{n}}^{\times}\right|=p^{n}-1$ as every element but 0 is a unit, and hence the order of x divides $p^{n}-1$.
This gives us that $x^{p^{n}-1}=1$.
Hence $x^{p^{n}-1} x=x$ and therefore $x^{p^{n}}=x$.
We have successfully shown that $\Phi^{n}(x)=x$ for arbitrary x, and therefore Φ^{n} is the identity automorphism.
Hence, we have that the order of Φ divides n.
Suppose for contradiction that $|\Phi|<n$ and let $k=|\Phi|$.
Then Φ^{k} is the identity automorphism and by definition for all $x \in \mathbb{F}_{p^{n}}$ we have $x^{p^{k}}=x$, which implies $x^{p^{k}}-x=0$.
However $x^{p^{k}}-x$ is a degree p^{k} polynomial, and thus having p^{n} roots with $k<n$ is a contradiction.
Therefore, we know that Φ has order n, by our previous argument Φ is bijective, and thus Φ is an automorphism on $\mathbb{F}_{p^{n}}$.

Q23:

Thus, the order of $E \cap F$ is p^{k} where $k=\operatorname{gad}(r, s)$.
23.

Proposition 9. Let E and F be subfields of $\mathbb{F}_{p^{n}}$. If $|E|=p^{r}$ and $|F|=p^{s}$, then the order of $E \cap F$ is $p^{\operatorname{gcd}(r, s)}$.

Proof. Suppose E, F are subfield of $\mathbb{F}_{p^{n}}$ such that $|E|=p^{r}$ and $|F|=p^{s}$. As $E \cap F$ is a subfield of E, it must be true that $E \cap F=\mathbb{F}_{p^{k}}$ for some k such that $k \mid r$ by Theorem 22.7.
Similarly, as $E \cap F$ is a subfield of F, it must be true that $k \mid s$.
Then $k \mid r$ and $k \mid s$ implies $k \mid \operatorname{gcd}(r, s)$.
As $E \cap F$ is by definition the largest possible shared subfield between E and F, this implies $k=\operatorname{gcd}(r, s)$ and therefore $|E \cap F|=p^{\operatorname{gcd}(r, s)}$.

