20.

Proposition 7. For every n there exists an irreducible polynomial of degree n in $\mathbb{F}_p[x]$.

Proof. Suppose we fix some arbitrary n. We know there exists some finite field extension $\mathbb{F}_{p^n}/\mathbb{F}_p$. Note that Q19 gave us that $\mathbb{F}_{p^n}=\mathbb{F}_p(\alpha)$ for some $\alpha\in\mathbb{F}_{p^n}$. Furthermore, Q2 gave us that $[\mathbb{F}_{p^n}:\mathbb{F}_p]=n$ and thus $[\mathbb{F}_p(\alpha):\mathbb{F}_p]=n$. Hence, we know that the degree of α over \mathbb{F}_p is n. By definition, the minimal polynomial $f(x)\in\mathbb{F}_p[x]$ for α is degree n. Furthermore, we know that minimal polynomials are irreducible. Therefore, for arbitrary n, we have found an irreducible polynomial of degree n in $\mathbb{F}_p[x]$.

21.

Proposition 8. The **Frobenius map** $\Phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ given by $\Phi : \alpha \mapsto \alpha^p$ is an automorphism of order n.

Proof. Observe $\Phi : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ and thus is by definition an automorphism if it is an isomorphism.

We will first show that Φ is a homomorphism.

Preserves Addition:

Suppose $x, y \in \mathbb{F}_{p^n}$.

Note for Freshman's Dream that \mathbb{F}_{p^n} has characteristic p.

Then, we have

$$\Phi(x+y) = (x+y)^p$$
= $x^p + y^p$ (by Freshman's Dream Theorem)
= $\Phi(x) + \Phi(y)$

and thus Φ preserves addition.

Preserves Multiplication:

Suppose $x, y \in \mathbb{F}_{p^n}$.

$$\Phi(xy) = (xy)^p$$
= $x^p y^p$ (as multiplication is commutative)
= $\Phi(x)\Phi(y)$

and thus Φ preserves multiplication.

To show that Φ is bijective, it suffices to show that Φ is invertible.

If Φ has order n, then Φ must be invertible as then $\Phi^{n-1} = \Phi^{-1}$.

To show Φ^n is the identity automorphism, suppose we take some $x \in \mathbb{F}_{p^n}$.

We want to show $\Phi^n(x) = x$.

Evidently $\Phi^n(x) = x^{p^n}$.

However, we know that $|\mathbb{F}_{p^n}^{\times}| = p^n - 1$ as every element but 0 is a unit, and hence the order of x divides $p^n - 1$.

This gives us that $x^{p^n-1} = 1$.

Hence $x^{p^n-1}x = x$ and therefore $x^{p^n} = x$.

We have successfully shown that $\Phi^n(x) = x$ for arbitrary x, and therefore Φ^n is the identity automorphism.

Hence, we have that the order of Φ divides n.

Suppose for contradiction that $|\Phi| < n$ and let $k = |\Phi|$.

Then Φ^k is the identity automorphism and by definition for all $x \in \mathbb{F}_{p^n}$ we have $x^{p^k} = x$, which implies $x^{p^k} - x = 0$.

However $x^{p^k} - x$ is a degree p^k polynomial, and thus having p^n roots with k < n is a contradiction.

Therefore, we know that Φ has order n, by our previous argument Φ is bijective, and thus Φ is an automorphism on \mathbb{F}_{p^n} .

Q23.							
Since E	and F	are fields	, En	Fisal	so a fie	dd.	
Suppos	e a, b E	ENF. the	en a, b	€E,F	and so	a-b, -	B E E, F
an	d a-b,	geEnF.					
		a subfield		•	. Fano	1 so 1E	UEI= DK
Where	k γ ,	kls and	1 k/n.	1 . 06	and (ris)	0 - 0 %)	1
We claim	k=gcd	(cr, s) N	le know to	hat GF(ε GF (p')	and
		λ F (p ^s),				. and so	
		Since klr				1	
17(03) T	re crown	of Enfi	3 Y W	ieje R -	gur (175)	<u>'</u>	

23.

Proposition 9. Let E and F be subfields of \mathbb{F}_{p^n} . If $|E| = p^r$ and $|F| = p^s$, then the order of $E \cap F$ is $p^{\gcd(r,s)}$.

Proof. Suppose E, F are subfields of \mathbb{F}_{p^n} such that $|E| = p^r$ and $|F| = p^s$. As $E \cap F$ is a subfield of E, it must be true that $E \cap F = \mathbb{F}_{p^k}$ for some k such that $k \mid r$ by Theorem 22.7.

Similarly, as $E \cap F$ is a subfield of F, it must be true that $k \mid s$.

Then $k \mid r$ and $k \mid s$ implies $k \mid \gcd(r, s)$.

As $E \cap F$ is by definition the largest possible shared subfield between E and F, this implies $k = \gcd(r, s)$ and therefore $|E \cap F| = p^{\gcd(r, s)}$.