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Proposition 3. Let E be the algebraic closure of a field F'. Then every
polynomial p(x) in F|z| splits in E.

Proof. Suppose p(z) € F|z].

We will proceed with proof by induction on deg p(z).

Base case:

If deg p(x) = 1, then we have by definition that p(z) is itself a linear factor
in E[z] (as F C E), and therefore p(z) splits in E.

Inductive hypothesis:

Suppose polynomials of degree n split in E.

Suppose degp(z) =n + 1.

We know that p(x) has some root « in an extension field E’ of F.

Then we may observe that « is by definition algebraic over F' and thus
a € FE as F contains all the elements algebraic over F.

Hence p(z) has a root in E and thus p(z) = (z — a)g(x) with g(z) € E[z].
Observe by the additivity of degree over multiplication that deg g(x) = n.
By the inductive hypothesis we have that g(x) splits in £, and thus we
have shown that p(z) splits in E.
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Proposition 7. Let E be a field extension of F' and o € E. Determine
[F(c) : F(a®)].

Proof. First observe that f(z) = 2® — a® € F(a?)[x] has a root at z = a.
As the minimal polynomial for o over F'(a) by definition is the polynomial
with a as a root of minimal degree, it follows that the minimal polynomial
for o over F(a®) has degree at most 3, and therefore

1 <[F(a): F(a®)] <3

To show that this is indeed the tightest bound we can give, it suffices to
provide examples of F' and a with degree of extension 1,2, and 3.

Example 1:

Let ' =Q and a = 1.

Obviously then o® = « and thus F(a) = F(a?), or [F(a) : F(a?)] = 1.
Example 2:

Let FF = (Q and o = (3, the third root of unity.

We know ®3(x) is the minimal polynomial of (5 over Q and has degree 2.
Furthermore ((3)* = 1, so Q(((3)®) = Q.

Hence [F(a) : F(a®)] = 2.

Example 3:

Let F =Q and a = /2.

Note Eisenstein’s Criterion with p = 2 gives us that f(z) = 2* — 2 is
irreducible, and thus f(x) is a degree 3 minimal polynomial of ¥/2 over Q.

Furthermore (V/2)3 = 2, so Q((v/2)3) = Q, and thus [F(a) : F(o?)] = 3.

We have thus shown that the tightest bound is 1 < [F(«a) : F(a®)] <3. O



