12) a) For $d \in D$, where D is a UFD, to be a greatest common divisor of a and b, $d \mid a$, $d \mid b$, and if $e \mid a$, $e \mid b$, then $e \mid d$ as well. Suppose that d and d' are both greatest common divisors, then $d \mid d'$ and $d' \mid d$, such that ds = d' and d't = d. It follows that d'ts = d', or ts = 1, where t and s are units within s. Since the two divisors must divide one another, they must differ up to units in s, and are thus associates.

Qua
ca) Proposition: If D is a PID and a and b are both nonzero elements
of D, then there exists a unique greatest common divisor of a
and bup to associates.
Proof: Since D is a PID, there exists deD s.t. (d)=(a,b).
Then since a E(d), b E(d), dla and dlb.
Suppose c ∈ D s.t. cla and clb. Then a ∈ cc) and
$b \in (c)$. So $(a,b) \subseteq (c)$, $(d) \subseteq (c)$. Thus, $c \mid d$ and
d=gcd(a, b).
Suppose d'is also god (a, b). Then d'la and d'lb. Thus.
d'I d and dId'. Then there exists e, f & D s.t. d'e = d
and $df = d'$. $(df)e = 1 \cdot d$, so $d(fe - 1) = 0$ and $fe = 1$. Therefore,
d and d' ove associates
Thus, there exists a unique greatest common divisor of a and b p
to associates.

b) Let D be a PID and a and b be nonzero elements of D. Prove that there exist elements s and t in D such that gcd(a, b) = as + bt.

Proof: Consider the ideal $(a,b) \subset D$. Since D is a PID, there must exist a $d \in D$ such that (a,b) = (d). Then, there must exist $s,t \in D$ such that d = as + bt. Because (a,b) = (d), we can say that $d \mid a$ and $d \mid b$. If there exists another element $c \in D$ such that $c \mid a$ and $c \mid b$, there must exist $m, n \in D$ such that a = cm and b = cn. Plugging in these equations into d = as + bt, we get d = cms + cnt = c(ms + nt), so c must divide d. Thus, $d = \gcd(a, b)$.

Q17:

Q17. Proposit	tion. Subdomain of a UFD may not be a UFD.
Proof:	We can prove by giving a counter example.
	We know that any field is a UFD. Since t is a field, t is a UFD
	Then ZIF5] & C is a subdomain of C.
	$\mathbb{Z}[\sqrt{-5}]$ is not UFD because $6=2\times3=(1+\sqrt{-5})(1-\sqrt{-5})$.
	Thus, subdomain of a UFD may not be a UFD.

17.

Proposition 10. Not every subdomain of a UFD is also a UFD.

Proof. It suffices to provide a counterexample.

By the previous HW, we proved that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

However, $\mathbb{Z}[\sqrt{-5}]$ is a subring of \mathbb{C} .

Namely, it is a subdomain as all subrings with 1 of an integral domain are integral domains and $1 = 1 + 0\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ and \mathbb{C} is an integral domain as it is a field.

Furthermore, as \mathbb{C} is a field, it is also a PID and therefore a UFD.

Hence $\mathbb{Z}[\sqrt{-5}]$ is a subdomain of a UFD but is not a UFD.

- 2. Find a basis for each of the following field extensions + what is the degree of extension?
 - a) $\mathbb{Q}(\sqrt{3}, \sqrt{6})$ over \mathbb{Q}

Elements in $\mathbb{Q}(\sqrt{3}, \sqrt{6})$ look like $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ where $a, b, c, d \in \mathbb{Q}$. A basis for this field extension is $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$, and the degree of extension is 4.

c) $\mathbb{Q}(\sqrt{2},i)$ over \mathbb{Q}

Elements in $\mathbb{Q}(\sqrt{2}, i)$ look like $a + b\sqrt{2} + ci + d\sqrt{2}i$ where $a, b, c, d \in \mathbb{Q}$. A basis for this field extension is $\{1, \sqrt{2}, i, \sqrt{2}i\}$, and the degree of extension is 4.

f) $\mathbb{Q}(\sqrt{8})$ over $\mathbb{Q}(\sqrt{2})$

Since $\sqrt{8} = 2\sqrt{2}$, we can say that $\mathbb{Q}(\sqrt{8}) = \mathbb{Q}(\sqrt{2})$. A basis for this field extension is $\{1\}$, and the degree of extension is 1.

h) $\mathbb{Q}(\sqrt{2} + \sqrt{5})$ over $\mathbb{Q}(\sqrt{5})$

We know that $\mathbb{Q}(\sqrt{2} + \sqrt{5}) \subset \mathbb{Q}(\sqrt{2}, \sqrt{5})$, but also $\frac{1}{\sqrt{2} + \sqrt{5}} = \frac{\sqrt{2} - \sqrt{5}}{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{5})$ so both $\sqrt{2}$ and $\sqrt{5} \in \mathbb{Q}(\sqrt{2} + \sqrt{5})$. So we can say that $\mathbb{Q}(\sqrt{2} + \sqrt{5}) = \mathbb{Q}(\sqrt{2}, \sqrt{5})$. A basis for this field extension is $\{1, \sqrt{2}\}$, and the degree of extension is 2.

i) $\mathbb{Q}(\sqrt{2}, \sqrt{6} + \sqrt{10})$ over $\mathbb{Q}(\sqrt{3} + \sqrt{5})$

Since $\sqrt{2}(\sqrt{3} + \sqrt{5}) = \sqrt{6} + \sqrt{10}$, we can say that $\mathbb{Q}(\sqrt{2}, \sqrt{6} + \sqrt{10}) = \mathbb{Q}(\sqrt{2}(\sqrt{3} + \sqrt{5}))$. A basis for this field extension is $\{1, \sqrt{2}\}$, and the degree of extension is 2.