
 
Commutativity Theorems page 1 John J Wavrik 

Commutativity Theorems 
Examples in Search of Algorithms 

John J Wavrik 
Department of Mathematics 

University of California - San Diego 
 

dedicated to the memory of John Hunter 

Introduction 
      Commutativity theorems are part of the study of polynomial identities in non-
commutative rings. They are theorems which assert that, under certain conditions, the ring at 
hand must be commutative. The proofs of theorems of this sort in their general form require 
the structure theory for non-commutative rings. Instances of these theorems have a strongly 
computational flavor. They provide interesting test examples for algorithms which use re-
write rules and reduction theory for polynomial rings in non-commuting variables.  This pa-
per presents several examples of commutativity theorems with solutions. The solutions were 
obtained using a reduction process for non-commutative polynomials with integer coeffi-
cients. The reduction process blends a treatment of integer coefficients due to Buchberger 
with handling of non-commutative polynomials due to Mora. Some comparisons are made 
between automated solutions and solutions “by hand”.   

Background 
     Z<x1,..,xn>  will denote the ring of polynomials over the integers in non-commuting vari-
ables x1,..,xn .  Let R be a ring (not necessarily unital, not necessarily commutative).  We say 
that f∈ Z<x1,..,xn> is a polynomial identity on R if  f(a1,..,an) = 0 ∀ ai∈ R. R is called a PI ring 
if it satisfies a non-trivial polynomial identity.  Commutative rings, for example, all satisfy 
the polynomial identity  xy-yx.  The ring of 2 × 2 matrices over a field satisfies the identity 
[[x,y]2,z]  where [x,y] = xy-yx.  

      Herstein [Her] discusses a collection of results designated Commutativity Theorems. 
These theorems provide conditions on a ring R which can be shown to imply that R is com-
mutative. An example is a Theorem of Jacobson: 

Let R be a ring  for which ∀ a∈ R ∃  integer n(a)>1 with an(a)=a, 
 then R is commutative. 

     Proofs of these theorems in general form use structure theory for non-commutative rings. 
Instances of these general theorems can be examined from a computational point of view. In 
this paper we will look at some commutativity theorems both as an application of reduction 
processes to automated theorem proving, and as a source of test examples for this type of 
machinery. 
     Many of the commutativity theorems discussed in [Her] assert that if R satisfies a certain 
polynomial identity then R is commutative. The set of polynomial identities on R, IR ⊂   
Z<x1,..,xn> , is a two sided ideal. In addition to the use of ideal operations, we may obtain 
new polynomial identities by making substitutions ti = gi(x1,..,xn) for the variables in a 
known identity f(t1,..,tm). The matter is to show that the identity xy-yx is a consequence of 



 
Commutativity Theorems page 2 John J Wavrik 

the hypothesis identities: that it can be obtained by a succession of substitutions and ideal 
operations. 

Simple Examples 
The simplest example is often found as an exercise in undergraduate textbooks in abstract 
algebra [e.g.  Her2]: 

Theorem 1:  If a2 = a ∀ a∈ R then R is commutative. 

   proof: Assume a2 - a = 0  ∀ a∈ R. 
  We have 0 = (x + y)2 - (x + y) = x2 + xy + yx + y2  - (x + y) 
                                                                       =   xy + yx 
            so  xy = -yx  ∀  x,y ∈  R 
                         Also  a = (a)2 = (-a)2 = -a 
                         So  xy = yx  

Here are more sophisticated examples: 
                
Theorem 2:  If R is a ring with 1 for which  (ab)2 = a2b2 ∀ a,b∈ R then R is commutative. 

      proof: We make substitutions in abab - aabb: 

a=x, b=y  xyxy - xxyy 
a=1+x, b=y  xyxy - xxyy + yxy - xyy =  yxy - xyy 
a=x, b=1+y  xyxy - xxyy + xyx - xxy  = xyx - xxy 
a=1+x, b=1+y xyxy - xxyy + yxy - xyy + xyx - xxy + yx - xy  = yx - xy 

Theorem 3:  If R is a ring with no nilpotents for which  (ab)2 = a2b2 ∀ a,b∈ R then R is com-
mutative. 

     proof:  We again make substitutions in abab - aabb to obtain a sequence of identities: 

(1) a=x, b=y  xyxy - xxyy 
(2) a=x+y, b=x  -yyxx + yxyx - xyxx + xxyx 
(3) a=x+y, b=y  yyxy - yxyy + xyxy - xxyy 
(4) a=x, b=x+y  xyxy + xyxx - xxyy - xxyx 
(5) a=y, b=x+y  -yyxy - yyxx + yxyy + yxyx 

Each of these identities is now reduced by others (we will discuss this in more detail later)  
The original set of identities reduces to: 

(6) -xyxx + xxyx = (1) - (4) 
(7) - yyxx + yxyx = (2) - (6) 
(8)  yyxy  - yxyy = (3) - (1) 
(9)  xyxy  - xxyy = (4) + (6) 

(5) reduces to 0:   (5) = -(3) + (2) + (4) 

Now let f = xy - yx.  We find that f3 = -y(9)x - y(6)y + x(8)x + x(7)y.  Thus (xy-yx)3 =0.  
Since R has no nilpotent elements we have xy-yx = 0, so R is commutative.  



 
Commutativity Theorems page 3 John J Wavrik 

Note that the identity (ab)2 = a2b2 alone, without additional conditions, does not guarantee 
commutativity.  The ring, R, of strictly upper triangular matrices in M3(Q) is a counter-
example. 

Theorem 4:  Let R be a ring with 1 for which 2x = 0 ⇒  x=0. If (ab)2 = (ba)2 ∀ a,b∈ R then R 
is commutative. 

     proof:  Let F(a,b) = abab - baba. 
  Then  F(1+x,1+y) - F(1+x,y) - F(x,1+y) + F(x,y) = -2 yx + 2 xy 

Harder Examples with machine solutions 
     The previous proofs are easily done by hand. They show a typical strategy used to solve 
these problems:  (1) preliminary simple substitutions are made in the initial identities; (2) 
new identities are used for mutual reduction (simplification) to obtain a basis for a subideal 
of IR; (3) the process is continued until xy-yx can be deduced. 

For machine computation, the choice of starting substitutions is made by hand. A critical 
pairs reduction process is applied (like that used to compute Gröbner Bases) to produce a 
new basis from the starting identities. 

In the following theorems we give the initial identities and a set of substitutions that was 
found to lead to a proof.  The algorithm for computing an R-Basis is applied. The identity 
xy-yx is either a member of the R-Basis or commutativity is obtained by a final step which 
will be described.  

Theorem 5:  Let R be a ring with no nilpotents for which  (ab)2 = (ba)2 ∀ a,b∈ R.  
Show that R is commutative. 

     proof:         Let F(a,b) = abab - baba 
The Basis Procedure is started with F(x,y), F(y+x,x), F(y+x,y), F(-y+x,x), 
F(-y+x,y), F(yx,yy), F(xy,xx), F(xx,yy), F(yx,xy), F(xx+x,y), F(yy+y,x). 
An R-Basis is produced with 15 elements (all consequences of 
baba=abab): 

R[1] = x2y2x2y2x - x5y4 
R[2] = yx3 - xyx2 +  x2yx - x3y 
R[3] =  - yx2y2x2y +  xy2x2y2x 
R[4] = y2x2y2x2 - x2y2x2y2 
R[5] =  - x3y2x +  x4y2 
R[6] = yx2y3 - x2y4 
R[7] = yxyx - xyxy 
R[8] = y3x - y2xy +  yxy2 - xy3 
R[9] = yxy2x - xy2xy 
R[10] =  - yx2yx +  xyx2y 
R[11] =  - yx2y2xy - x2yxy3 +  2x3y4 
R[12] = 2x2yxy3 - 2x3y4 
R[13] = xyx2y2 - x2y2xy 
R[14] =  - 2x3yxy2 +  2x4y3 
R[15] = x2y2xy2 - x3y4 



 
Commutativity Theorems page 4 John J Wavrik 

  The polynomial  (xy-yx)5 reduces to zero in 89 reduction steps. Since we have 
assumed that R has no nilpotent elements, we have xy-yx = 0. 

Theorem 6:  Let R be a ring in which  a3 = a ∀ a∈ R.  Show that R is commutative 

proof:   Let F(a) = aaa-a.  Notice that (2a)3 = 2a so that 6a is a consequence of 
the identity. The following are used to initiate the R-Basis procedure: 
6x, 6y, F(x), F(y), F(y+x), F(-y+x), F(xx+x), F(yy+y), F(-yx+xy). 

 In this case the procedure produces a finite R-Basis which includes the identity 
xy - yx: 

R[1] = 6 x 
R[2] = 6 y 
R[3] = x3  - x 
R[4] = yx  - xy 
R[5] = - 3 y2  - 3 y 
R[6] = - y3  + y 
R[7] = - 3 x2  - 3 x 

     In this case we obtain the Gröbner bases for the x and y variables together with the com-
mutativity relation. 

Theorem 7:  Let R be a ring in which  a4 = a ∀ a∈ R.  Show that R is commutative 

proof:   Let F(a) = aaaa-a.  Notice that -a = (-a)4 = a4 = a so that 2a is a conse-
quence of the identity. As a result we can either use the R-Basis algo-
rithm or Mora’s algorithm over the field Z2. Both yield the same re-
sults and behave similarly. We also use the lemma below to deduce 
the relation a3b-ba3. The following are used to initiate the R-Basis 
procedure:  2x, 2y, F(x), F(y), F(y+x), F(yx+x), F(xy+y), F(xy), F(yx), 
F(xy+x), F(yx+y), yyyx-xyyy, -yxxx+xxxy. 

 A finite R-Basis is produced: 

R[1] = - yx3  - x3 y 
R[2] = - yx2 y - x2 y2  - yxy - yx2  - xy2  - xyx 
R[3] = - xyx2  - x3 y - yxy - yx2  - xy2  - x2 y - yx - xy 
R[4] = - yxy2  - xy3  - xyx - x2 y 
R[5] = - (yx)2 - x2 y2  
R[6] = - y2 x - yx2  - xy2  - x2 y - yx - xy 
R[7] = - y4  - y 
R[8] = - (xy)2 - x2 y2  - yx - xy 
R[9] = - x4  - x 
R[10] = - x2 yx - x3 y - yxy - xy2  
R[11] = 2y 
R[12] = 2x 

     With respect to this basis, (xy-yx)4 - (xy-yx) = F(xy-yx) reduces to xy-yx in 118 reduction 
steps (it can be written as a sum, having 118 terms, in the polynomials above).



 
Commutativity Theorems page 5 John J Wavrik 

Lemma:  If an = a ∀ a∈ R (n > 1)  then  an-1b - ban-1 ∀ a,b∈ R 

        proof:   Notice first that if zw = 0 for some z,w then also wz = 0 because wz = 
(wz)n = wzwz...wz = 0.  Now a(an-1b - b) = 0, so we have (an-1b - b)a = 
an-1ba - ba = 0. Thus an-1ban-1 = ban-1.  Similarly from (ban-1 - b)a = 0 we 
deduce an-1ban-1 = an-1b. 

        In terms of the size of the input and the size of the resulting R-Basis, this would not 
seem to be much more difficult than the a3-a case.  In fact, both computationally and by hand 
a4-a is a considerably harder problem. The Basis computation in the case of cubes takes a 
matter of minutes (on a Pentium 135 Mh machine). The corresponding computation for 
fourth powers takes several hours.  In the case of cubes, there were 404 critical pairs gener-
ated (398 of which reduced to zero). The longest intermediate polynomial had 6 terms and 
the largest number of factors for any term (length of largest word) was 5.  In the case of 
fourth powers there were 2307 critical pairs generated (2278 reduced to zero). The longest 
intermediate polynomial had 46 terms and the largest word size was 10. 

         Notice that the relation xy-yx does not appear in the R-Basis -- it was obtained by re-
ducing F(xy-yx).  Presumably it would appear in the basis if this relation were added ini-
tially.  When this was tried, the reduction algorithm was still running after two days. 

Theorem 8:  Let R be a ring which  a2 = a ∈  Z(R) ∀ a∈ R (where Z(R) is the center of R).  
Show that R is commutative 

        proof:   Let F(a,b) = (aa-a)b-b(aa-a).  We start with F(x,y), F(y,x), F(y+x,x), 
F(y+x,y).  The relation xy-yx is instantly obtained as the sole member 
of the R-Basis. In fact -yx + xy = F(y+x,y)-F(x,y)+F(y,x) so it is ob-
tained when the starting basis is interreduced. 

Theorem 9:  Let R be a ring which  a3 = a ∈  Z(R) ∀ a∈ R (where Z(R) is the center of R).  
Show that R is commutative 

        proof:   Let F(a,b) = (aaa-a)b-b(aaa-a).  We start with F(-yx+xy,x), F(-yx+xy,y), 
F(-xy+x,x), F(-xy+x,y), F(-yx+x,x), F(-yx+x,y), F(-xy+y,x), 
F(-xy+y,y), F(-yx+y,x), F(-yx+y,y), F(yx,x), F(yx,y), F(xy,x), F(xy,y), 
F(-y+x,x), F(-y+x,y), F(y+x,x), F(y+x,y), F(y,x), F(y,y), F(x,x), F(x,y). 
The resulting R-Base is: 

R[1] =  2 yx  - 2 xy 
R[2] = - yx2yx  - x2yxy  + 2 x3y2  - yx2y  + x2y2 - yx  + xy 
R[3] = - yx3  + x3y  - yx  + xy 
R[4] = - x3yx  + x4y  - yx2  - xyx  + 2 x2y - yx  + xy 
R[5] = - xyx2  - x2yx  + 2 x3y  - yx2  + x2y 
R[6] = - y2x  - yx2  + xy2  + x2y  - yx + xy 
R[7] = - yx2y2  + x2y3  - yxy  + xy2  - yx + xy 
R[8] = - yxy2  - yx2y  + xy3  + x2y2  - yxy - yx2  + xy2  + x2y  - yx  + xy 
R[9] = - (yx)2  - (xy)2  + 2 x2y2 

Notice that xy - yx is not in this basis, although 2xy - 2yx is.  The 
polynomial F(x2-y2,x) - F(x2-y2,y) reduces to xy - yx and so the theo-
rem is proved. 



 
Commutativity Theorems page 6 John J Wavrik 

      As in the case of a4-a, we obtain a proof by reducing additional ideal elements after com-
puting an R-Basis. In the current proof, the polynomials F(-yy+xx,x) and F(-yy+xx,y) were 
reduced by this basis to obtain the result. It is possible to compute an R-Basis with these two 
polynomials added to the starting set. When this is done the R-basis reduces to xy-yx but the 
time required for the computation increases dramatically. The above computation took about 
17 minutes, produced only 9 new polynomials, the longest of which has 34 terms.  When the 
starting basis is augmented with F(-yy+xx,x) and F(-yy+xx,y) the computation takes over a 
day, 23 new polynomials are produced, the longest having 77 terms. It has been found that 
adding more elements to a starting basis can dramatically increase the computation time.  As 
a rule of thumb, the starting basis should be kept as small as possible.  

R-Basis Algorithm 
         The algorithm used for computing R-Bases was obtained by modifying Mora’s algo-
rithm [Mora] (for polynomials in non-commuting variables with coefficients in a field). Our 
treatment of the integer coefficients follows the algorithm given by Buchberger [Buch] for 
the case of commuting variables. 

We place a total ordering, !,  on the integers so that  0 ! -1 ! 1 !  -2 !  2 ...  We define the 
quotient in the Euclidean division process so that the remainder is smallest in this ordering.  

Definition 1:  If  a, b ∈  Z  let 
  Q(a,b) = 0 if b = 0  and  
                       Q(a,b) = q for which r = a - bq is smallest in the ordering !  

In any particular computer implementation, integer division is either floored or symmetric. 
Q(a,b) can be defined in terms of whatever quotient is provided by the language implementa-
tion.  Let q be the (implementation dependent) value given by a / b.  If a and b have the same 
sign then Q(a,b) will either be q or q-1.  If a and b have opposite signs then Q(a,b) will be q 
or q+1. 

 Definition 2:  (Buchberger) Let  a, b ∈  Z .  The least common reducible of a and b, denoted 
LCR(a,b), is the smallest integer n (in the ordering  !)  so that Q(n,a) and 
Q(n,b) are non-zero. 

  
Let L be the function which maps 0,1,2,3,... to 0,-1,1,-2,2,..  We have L(a)=a/2 if a is even 
and = -(a+1)/2 if a is odd. The numbers x so that Q(x,a)=0 are those which are less than L(a) 
in the ordering !.  Thus LCR(a,b) = max(L(a),L(b)) where the maximum is taken using !. 

     In the ring Z<x1,..,xn> we use the graded lexicographic ordering on the words in the vari-
ables (monomials) with the ordering x1 < x2 < .. < xn.   This ordering combined with the or-
dering ! produces a well-ordering on the terms of polynomials:  αX < βY if  either X < Y in 
the graded lexicographic ordering of the monomials or if X = Y and α ! β.  We will always 
assume that polynomials are written so that all terms with the same monomial are added to-
gether. Thus every non-zero polynomial, f, has a unique term of highest order. 

Definition 3:   If f ≠0 we let LT(f) denote the term of highest order. LC(f) will denote the 
coefficient and LM(f) the monomial part of LT(f). 



 
Commutativity Theorems page 7 John J Wavrik 

Definition 4: We say that the word Y divides the word X (written Y | X ) if there are 
words S and T so that  X = S⋅Y⋅T. 

 Definition 5: Let  f,g,p ∈  Z<x1,..,xn>.  We say that f is reducible to g modulo p, and 
we write f gp →  if g is obtained by reducing a term of f.  This 

means that there is a term αX of f so that LM(p) | X, and  g = f - γSpT 
where X = S⋅LM(p)⋅T and where γ = Q(α,LC(p)) ≠ 0. 

This is what Becker and Weispfenning [Beck] refer to as E-Reduction. Notice that reduction 
may not eliminate the term αX, but it does replace it by terms which are lower in order.  As 
a result, reduction is Noetherian. 

Examples: f gp →  
 f p g 
1 5y 2y -y 
2 yyy + xyx 2x + 1 yyy - xyx - yx 
3 yyy + xyx 2x + 1 yyy - xyx - xy 
4 yyy - xyx 2x + 1 yyy - xyx 

 
         Notice that example 2 gives a non-trivial reduction because Q(1,2) = 1 while example 
4 produces a trivial reduction since Q(-1,2) = 0.  The two possibilities given in examples 2 
and 3 arise from the two positions in which LM(p) occurs in the second term. Our algo-
rithms have been implemented to search the terms of f in descending order and, within a 
term, to look for a factor starting from the left. Thus our software produces example 2 as the 
result of a one step reduction of f by p. 

Definition 6:  Let P be a set of polynomials. 
f gP →  will mean f gp →  for some p∈ P.  

     For computational purposes we will usually apply reduction repeatedly until we obtain an 
irreducible normal form. Since reduction always replaces a term in f by terms of smaller or-
der, repeated reduction always leads to a polynomial which is irreducible (no further non-
trivial reductions can be applied). The set P will usually be understood from the context. 
Thus in the descriptions of algorithms, we will write f → g  to indicate that g is obtained by 
a sequence of reductions from f .  We will write g = NForm(f,P) if f → g and g is irreducible 
(with respect to the given set P). In general NForm(f,P) is not unique but an algorithm for 
calculating it yields a deterministic (implementation-dependent) result. 

     In the classical theory, given polynomials f1 and f2 we form a critical pair (p1,p2) by re-
ducing some monomial X by f1 and f2.  We then add p1-p2 to the basis under construction if 
it is non-zero. If the polynomial variables commute and the coefficients lie in a field, the 
monomial part of X is the least common multiple of LM(f1) and LM(f2) and the coefficient 
of X may be taken to be 1.  If the variables commute and the coefficients are integers, 
Buchburger chooses the coefficient for X to be the smallest integer which has non-zero quo-
tients upon division by both LC(f1) and LC(f2).  If the variables do not commute, there is no 
unique least common multiple of monomials. Mora shows how to choose several candidates 
for the monomial part of X based on the concept of “matches”.  In the algorithm discussed 
here, the monomial part of X is chosen for each match (following Mora’s Algorithm) and the 



 
Commutativity Theorems page 8 John J Wavrik 

coefficient is chosen as the “least common reducible” (following Buchberger’s algorithm for 
commuting variables). 

Definition 7:  (Mora) Let M1 and M2 be words in the polynomial variables. A (non-trivial) 
match for (M1,M2) is a 4-tuple of words (L1,L2,R1,R2) which satisfy one of 
the following conditions: 

(1) L1 = R1 = 1,  M1 = L2M2R2 
(2) L2 = R2 = 1,  M2 = L1M1R1 
(3) L1 = R2 = 1, L2 ≠ 1, R1 ≠ 1,  there is a W ≠ 1 with M1 = L2W, M2 = WR1 
(4) L2 = R1 = 1, L1 ≠ 1, R2 ≠ 1,  there is a W ≠ 1 with M1 = WR2, M2 = L1W 

Mora has shown that it is sufficient to use non-trivial matches in his algorithm for 
computing Gröbner bases for non-commutative polynomials with coefficients in a 
field.  For integer coefficients, Pritchard [Prit] has pointed out that non-trivial over-
laps are not enough (see discussion below).  We will therefore also allow the trivial 
match: 

(5) L1 = R2 = 1, L2 = M1, R1= M2 

     These conditions make X = L1M1R1 = L2M2R2 a common multiple of M1 and M2 which 
is minimal in some sense.  For a non-trivial match to exists either one of the two words is a 
sub-word of the other, or there is a non-trivial overlap of the start of one word with the end 
of the other.  Here are some examples of matches: 
 

M1 M2 L1 R1 L2 R2  
x y 1 y x 1 (5) 

xyxx xxyx x 1 1 x (4) 
xyxx xxyx xxy 1 1 yxx (4) 
xyxx xxyx 1 yx xy 1 (3) 
xyxx xxyx 1 xyx xyx 1 (3) 
xyxx xxyx 1 xxyx xyxx 1 (5) 
xx xx x 1 1 x (4) 
xx xx 1 x x 1 (3) 
xyx y 1 1 x x (1) 

 
Let m = (f1,f2, L1,L2,R1,R2) where (L1,L2,R1,R2) is a match for (LM(f1),LM(f2)). 
Set X = L1LM(f1)R1 = L2LM(f2)R2 and α = LCR(LC(f1),LC(f2)). We notice that αX can be 
reduced by f1 and f2. 

Definition 8:   We define CritPair(m) = (p1,p2) as the pair of reductions of αX by f1 and f2. 
Specifically  pi = αX - Q(α,LC(fi))LifiRi 

  
Procedure 1:  Interreduce 

Input:  A finite set, G, of polynomials 
Output:  An interreduced set, F, generating the same ideal 

Changed?  := true;  F := G



 
Commutativity Theorems page 9 John J Wavrik 

 
WHILE  Changed?  DO 

Changed? := false;  G := F;  F := ∅  
WHILE  not Empty(G)  DO 
        Select g ∈  G 
        G := G - {g} 
        f  :=  NForm(g, F∪ G) 
        IF  f ≠ g THEN  Changed? := true 
        IF  f ≠ 0 THEN  F := F∪ {f} 

Procedure 2:  R-Basis Algorithm 
Input:  A finite set, G, of polynomials 
Output:  (If the algorithm terminates) an R-Basis for the ideal generated by G. 

H := G 
WHILE  not Empty(H)   DO 
            B := { (f1,f2,l1,r1,l2,r2) |  f1∈  G, f2 ∈  H; 
       (l1,r1,l2,r2) a match for (LM(f1),LM(f2)) } 
 H := ∅  
            WHILE   not Empty(B)      DO 
            select  m ∈  B;     B :=  B - {m} 
            (p1,p2) := CritPair(m) 
             p1 := NForm(p1,G∪ H);  p2 := NForm(p2, G∪ H) 
                        f := p1 - p2 
             IF   f ≠ 0  THEN   H := H∪ {f} 
 G := G∪ H 
G := Interreduce(G) 
  

     Since R-Bases can be infinite in the non-commutative setting, this algorithm follows the 
Mora algorithm [Mora] in making sure that every match is ultimately processed: matches are 
not formed with newly generated polynomials (saved in list H) until the B-list is empty. Any 
newly generated polynomial is reduced by the current basis. In this version of the algorithm, 
however, previous basis elements are not reduced by the newly generated ones until the in-
terreduction step at the end. This is done to make sure that the information in the B-list still 
correctly corresponds to the state when it was generated. 

Performance Modifications 
     In this section we make some observations based on profiling the behavior of these pro-
cedures when used for the examples given above.  As in the case of coefficients in a field, 
the non-commutative version of the basis algorithm need not terminate in general. In all of 
our examples, however, the algorithm did terminate leaving a finite basis. Our examples ex-
hibited “intermediate expressions swell”: polynomials often appeared in the midst of compu-
tation having a large number of terms -- only to be subsequently reduced to smaller polyno-
mials. On average, the number of steps needed to reduce a polynomial to normal form ap-
pears to be much larger than what we have typically seen when using coefficients in a field. 

      The procedure actually used for the examples has one modification from the version pre-
sented above: we applied interreduction after each new basis element is generated. This ap-



 
Commutativity Theorems page 10 John J Wavrik 

peared to shorten the execution time by decreasing the size of intermediate polynomials and 
eliminating some earlier polynomials.  Since the bases for these examples proved to be fi-
nite, we did not attempt to modify the B-list after interreduction -- but instead we started the 
procedure again at the top. Note that this should not be done in cases where the R-basis is 
infinite:  it may result in some matches not being processed.  

Is an R-Basis a Gröbner Basis? 
     Mora [Mora] proved that for the case of non-commutative polynomials with coefficients 
in a field, it is enough to consider non-trivial matches to obtain a Gröbner Basis. Pritchard 
[Prit] observes that non-trivial matches may not be sufficient to produce a Gröbner Basis in 
the case of integer coefficients. Here are a simplified versions of Pritchard’s example: 

     Let f1 = 2x - a, f2 = 2y - b  where we assume graded lexicographic ordering with the let-
ters a,b,c,.... in increasing order.   Neither of these polynomials can be reduced with respect 
to the other. There are no non-trivial matches of the leading monomials. If the Basis algo-
rithm uses only non-trivial matches it would terminate leaving {f1,f2} as the basis.  However  
f1y - xf2 = xb - ay is in the ideal and is irreducible with respect to this basis.  The problem is 
that x and y cannot be reduced by the leading terms 2x and 2y as would be the case in a field 
of characteristic ≠ 2. 

     This particular example can be handled by allowing the trivial match in the R-Basis pro-
cedure. The R-Basis is f1 = 2x-a, f2 = 2y-b, f3 = -xa-ax+a2, f4 = -xb-ay+ab, f5 = -ya-bx+ba, f6 
= -yb-by+b2.  If is not clear if {f1,..,f6} is a Gröbner Basis, but it does appear to reduce poly-
nomials of the form f1Ty - xTf2 where T is a term in x,y,a,b. 

       For f1 = 9x-a, f2 = 15y-b we obtain an infinite R-basis which does seem to reduce tested 
polynomials of the form 5f1Ty - 3xTf2.  Pritchard’s example is f1 = 9xww-u, f2 = 15zyy-v. In 
this case we also obtain an infinite R-Basis. There are, however, some instances of h = 
3xwwTf2 - 5f1Tzyy which appear not to be reduced to zero (at least not by the truncation of 
this basis which we tested). 

       We do know that some of our R-bases are in fact Gröbner Bases because they reduce the 
situation to either the commutative case (in which case Buchberger’s work applies) or to co-
efficients over a field (in which case Mora’s work applies). The R-Basis procedure does, in 
fact,  provide a condition for ideal membership sufficient for the examples we considered. 
For these examples the addition of a trivial match (case (5)) was also found unnecessary. 

In Search of Algorithms 
        The context of polynomial rings with non-commuting variables problems provide diffi-
culties which do not arise in the commutative case. The ideal membership problem is related 
to the “word problem” and is therefore undecidable in general. Gröbner Bases can be infi-
nite. Nevertheless, the use of the machinery of reduction and rewrite rules in the non-
commutative case can be useful.  In [Wav] and [HWS] we show how even infinite Gröbner 
Bases can be useful in the automatic simplification of some of the complex matrix and op-
erator expressions which arise in engineering mathematics. In this paper we have show how 
this technology, using polynomials with integer coefficients, can be useful in the study of 
polynomial identities in non-commutative rings. It should be noted that the use of integer 
coefficients is essential for this work.   



 
Commutativity Theorems page 11 John J Wavrik 

        The speed of the R-Basis algorithm appears to depend on many factors such as the or-
der in which basis polynomials are used in reduction; and when and how to reduce existing 
basis polynomials by newly generated ones. The R-Basis procedure in its current form was 
observed to produce a very large proportion of critical pairs which reduce to zero. There is a 
need, therefore, for more efficient versions of algorithms which manipulate polynomials 
with integer coefficients. 

       The ideal of consequences of an identity requires the production of a potentially infinite 
collection of polynomials by making substitutions for the variables in the initial identity.  In 
our proofs a finite set of starting substitutions were chosen ad hoc. Substitutions were used 
which seemed to be used in “hand” proofs or which trial runs showed might simplify some 
of the basis elements which were appearing. As noted when discussing the proofs, it is not a 
good strategy to add an overabundance of starting polynomials. There is a need for heuristics 
to automate the selection of starting substitutions for problems of this type. 

    Machine proofs using rewrite rules differ from “hand” proofs even though both the ma-
chine and human are performing essentially the same type of manipulations and using the 
same set of rules. For automated computation with reduction rules, each rule is given a 
“handed-ness” by the choice of ordering. Thus, for example, a human has the flexibility of 
applying a rule like y2x = xy2 in whichever direction seems appropriate to the goal. By con-
trast, the automated procedures will (given the ordering used in this paper) only use y2x → 
xy2. The mathematician can also choose where, within a term, to apply a rule. In the auto-
mated computation this choice is part of the implementation design (in our implementation a 
rule is applied in the first position where it is applicable, scanning left to right). A human can 
choose to only manipulate expressions which are relevant to the goal. The machine computa-
tion may automatically process a large number of expressions that are not really needed for 
the proof. There is a need for algorithms which allow the computer to use these tools more 
effectively and efficiently.  

     To illustrate the difference between machine and human proofs, here is the most elegant 
proof  I have seen of the a4 = a theorem.  It should be compared with the proof of Theorem 7 
above (which took several hours of machine computation and processed several thousand 
critical pairs): 

Theorem:    If R is a ring so that a4 = a ∀ a∈ R, then  R is commutative 
      proof:  (due to John Hunter and David Ferguson) 

           1.   If  xy = 0  then  yx = xy  because yx = (yx)4 = 0 
 2.   Cubes are in the center 
  y(y3x-x) = 0  so, by (1),  (y3x-x)y = 0 
  thus  y3xy = xy  and y3xy3 = xy3 
  Similarly,  (xy3-x)y = 0 so yxy3 = yx   
  and y3xy3 = y3x.  Thus we find that xy3 = y3x 
 3.   a = -a   because a = a4 = (-a)4 = -a 
 4.   (a+a2)n = a+a2    (we will use this for n=3) 
  (a+a2)2 = a2 + 2a3 + a = a+a2  by (3) 
  the general result is by induction 
 5.   (a+b2) + (a+b2)2 is a cube by (4) 
  so  a[(a+b2) + (a+b2)2] = [(a+b2) + (a+b2)2]a  using (2) 
  expand  ab2 + a2b2 + ab = b2a + b2a2 + ba 



 
Commutativity Theorems page 12 John J Wavrik 

  or (a+a2)b2 + ab = b2(a+a2) +ba 
  However a+a2 is a cube, so it commutes with b2. 
 Thus  ab = ba 

      In contrast to the automated proof, the number of algebraic steps is far less and the size 
of “intermediate” polynomials much smaller. This proof depends, however, on making some 
observations (using the fact that cubes are in the center and making clever note of certain 
expressions which are cubes). 
Footnote:   John Hunter became interested in this problem while an undergraduate student 

and his first proof was a dozen pages long. He sent this shorter proof to me about 
6 years later when he was an Assistant Professor [Hunt]. He said that he had 
worked on the problem from time to time and that this was the latest in a se-
quence of successively shorter proofs. The processing time for this proof was, 
therefore, fairly long. 

References 
[Beck]  Gröbner Bases: A Computational Approach to Commutative Algebra 
  by Thomas Becker and Volker Weispfenning,  Springer-Verlag 1993 

[Buch]  Gröbner Bases: an Algorithmic Method in Polynomial Ideal Theory 
  by B. Buchberger, Recent Trends in Multidimensional System Theory, 
  Reidel 1985, pp. 184-232 

[Her]  Noncommutative Rings,  by I. N. Herstein.  Carus Mathematical Monographs 
  Number 15,  Amer Math Society 1968 

[Her2]  Topics in Algebra  2nd Ed,  by I. N. Herstein,  Xerox 1975  

[Hunt]  A new proof for a4=a, by J. Hunter and D. Ferguson 
  private communication, 1982 

[HWS]  Computer Simplification of Formulas in Linear Systems Theory,  
  by J. W. Helton, M. Stankus and J. J. Wavrik, 
  IEEE Transactions on Automatic Control   43 (1998) pp. 302-314 

[Mora]  Groebner Bases for Non-Commutative Polynomial Rings, by F. Mora, 
   Lecture Notes in Computer Science number 229 (1986) pp. 353-362 

[Prit]  The Ideal Membership Problem in Non-Commutative Polynomial Rings, 
  by F. Leon Pritchard, J Symbolic Computation  22 (1996) pp. 27-48 

[Wav]  Rewrite Rules and Simplification of Matrix Expressions, by J. J. Wavrik 
  Computer Science Journal of Moldova  4 (1996),  pp. 360-398 

 
John J Wavrik     jjwavrik@ucsd.edu 
Department of Mathematics - 0112  http://math.ucsd.edu/~jwavrik 
Univ. of California - San Diego 
La Jolla, CA  92093-0112 

 


	Commutativity Theorems
	Examples in Search of Algorithms
	Introduction
	Background
	Simple Examples
	Harder Examples with machine solutions
	R-Basis Algorithm
	In Search of Algorithms

	References

