
Forth Dimensions XIX.6 19

An Extensible User Interface
Almost all the Forth applications I write for research work

in mathematics have one or two dozen top-level commands. I
use these systems in interactive sessions: data is entered, some
commands are invoked, the results are examined, then further
commands are issued. New commands may be temporarily
introduced during a session; as the research project evolves,
new features may also be added permanently. Thus, Forth is
used to provide a computing environment which is interac-
tive and an underlying system which is flexible. The research
system is extended and modified as it is used.

The present article is the outgrowth of work to prepare
Forth systems for use by others. I am interested in showing
my research work to other mathematicians and in integrat-
ing computer use with some of the pure mathematics courses
I teach. In both cases, very few members of my intended au-
dience know anything about computer programming, and
essentially none know Forth. My earliest attempts to show
my work to others involved providing supplementary writ-
ten material on Forth. This would allow my applications to
be used in essentially the same way I used them (see FORML
90). This approach was successful with some instructional
material used in a course in which I was teaching Forth. In
general, however, it assumes that people are willing to learn
the basics of a computer language in order to use an applica-
tion (or even to find out if the application interests them).
Very few people are willing to do this. I, therefore, wanted to
find a simple way to add a user interface to existing applica-
tions. There were several criteria for such an interface:
1. It should be easy to use.
2. It should be easy to add to an existing application

(without requiring the application to be specially
written).

3. It should be easy to extend as the underlying applica-
tion is extended.

4. It should allow the user to invoke all the top-level
commands.

5. It should have an integrated help system.

An interface which satisfies these criteria is described in
this article. It is a commands-completion interface: The user
sees a list of commands. He types enough letters to identify
a command uniquely, and the rest of the command name is
completed for him and executes the command. The user is
prompted for any input needed to carry out the command.
Typing the command INFO and then another command will
provide descriptive information about the command (rather
than executing it). The enclosed source code also shows an
alternative: type the command name preceded by a ques-
tion mark.

This interface has solved several problems. For instruc-

tional programs, it has provided students an easy way to in-
teract with an application. They can learn to use it very
quickly. It allows mathematical applications to be used when
there is no time to teach programming. It allows me to modify
and extend an application and interface without recompiling
the code of the system. (I turn software over to the computer
center at the start of a course and do not have access to it
thereafter.) I can also produce optional modules which ex-
tend the interface as well as the application.

This interface may also be useful to others to allow Forth
work to be shown outside the Forth community. Forth appli-
cations usually do not run “standalone.” To run an applica-
tion, a Forth system is needed. This fact puts Forth at a disad-
vantage with respect to compiled languages. Anyone who
wishes to show their Forth applications to those outside the
Forth community must usually supply a Forth system with
the application or force potential users to obtain one on their
own. In some cases, this means they must mess with adapt-
ing source code to another version of Forth. The user inter-
face provides an alternative: Elizabeth Rather informs me that
Forth, Inc. and other vendors of commercial Forth systems
allow their systems to be supplied without fee or license with
turnkey applications. A Forth application with this user in-
terface can be “turnkeyed” (i.e., headers removed, one top-
level word, and the application saved as an executable). A
Forth application can, therefore, be supplied in a trouble-free,
load-and-run form just like applications written in compiled
languages.

Example
Figure One presents an example showing the interface

used for an instructional application in Group Theory. The
application computes information about groups of order up
to 32 (see FORML 90). In these examples, the user’s input is
underlined.

Implementation
The menu names of commands are stored in a binary tree

together with the execution token of the Forth word needed
to carry out the command. When the user types a character,
the tree is searched. If a unique entry is found, the command
is completed. If no match is found, the system beeps and
removes the erroneous letter. If several matches are found,
the system waits for further letters.

New commands are added by >CMD <menu_name>
<Forth_word>. The Forth word must prompt the user for
information needed to carry out the command. The group
table for group 8, for example, is obtained in the underlying
Forth system by “8 Table”. A new word, %Table, is created
which contains the help information, prompts for input of a

John J. Wavrik • San Diego, California
 jjwavrik@ucsd.edu

John Wavrik is a professor of mathematics at UCSD, working in ab-
stract algebra and related fields. In the early 1980s he learned about
Forth, and has been using it since then for his research work.

20 Forth Dimensions XIX.6

Figure One. Example use of interface.

 CENTER CENTRALIZER CHART CONJ-CLS
 COSETS EVALUATE EXAMPLES GENERATE
 GROUP HELP INFO ISOMORPHISM
 LEFT NORMALIZER ORDERS PERMGRPS
 POWERS QUIT RESULT RIGHT
 SEARCH STOP SUBGROUPS TABLE
 X

G1>> CHART Order of Groups (1-32 or 0) Number 12
 20 21 22* 23* 24*
 There are 5 Groups of order 12
 2 abelian and 3 non-abelian

G1>> CHART Order of Groups (1-32 or 0) Number 6
 7 8*
 There are 2 Groups of order 6
 1 abelian and 1 non-abelian

G1>> TABLE for group number 8

 _A_B_C_D_E_F_
A |A B C D E F
B |B C A F D E
C |C A B E F D
D |D E F A B C
E |E F D C A B
F |F D E B C A

G8>> INFO
 This will provide information about the next
 command you use. INFO and X do the same thing
 but X is quicker to use.

G8>> EVALUATE
 This is used to evaluate an expression in the current
 group. An expression is a collection of group elements
 and inverses which is evaluated left to right. An
 apostrophe following a letter is used to indicate the
 inverse of the letter. Thus BC'D will give the product
 of B followed by the inverse of C followed by D

group number, and executes the underlying Table word. A
command is added to the menu by >CMD TABLE %Table.
(The commands in the tree are not part of the dictionary, so
there is no problem if they have the same name as in the
underlying Forth application.) See the source listing for in-
formation about the “help” and input words.

: %Table
 Help:
This prints a table for the group requested
(and makes that the current group). Elements
are represented by letters A to Z and the symbols
[\] ^ _ and `
 Help;
Input" for group number \Get-Num " CR Table ;
>CMD TABLE %Table

Forth Dimensions XIX.6 21

G8>> EVALUATE (use ' for inverse) bd= F
G8>> EVALUATE (use ' for inverse) db= E

This system has a sub-menu of commands for permutations:

G8>> PERMGRPS
 CREATE ELEMENTS HELP INFO
 INSTALL MAIN MULTIPLY QUIT
 X

 PERM>> ?CREATE
 This will determine the subgroup of Sn generated by
 a given set of permutations (given as a product of
 cycles). You must put in n (for Sn) and then the
 generators using numbers 1..n for example
 (1 2)(3 4 5). The program will only compute groups
 up to order 51. If the resulting group has order 32
 or less, you can install the table as one of the groups
 1-5.

PERM>> CREATE
Subgroup of Sn -- what is n? Number 4
 Put in generators as product of cycles.
 End with a blank line
Generator (1 2)(3 4)
Generator (1 2 3 4)
Generator
Group is of order 8
A () B (2 4) C (1 2)(3 4)
D (1 2 3 4) E (1 3) F (1 3)(2 4)
G (1 4 3 2) H (1 4)(2 3)

Source Code Listing

Supplements to ANS-Forth

 1. The words Comment: and Comment; can be defined in a similar
 way to Help: and Help; below.
 2. AT (same as AT-XY) and AT? are used to set and find cursor
 position.
 3. UPC (ch -- ch’) converts a character to upper case
 UPPER (addr cnt --) converts a string in place
 4. DEFER and IS are used for vectored execution
 5. (.”) is the literal string handler put in place by .”
 6. NUMBER? (addr len -- d flag)
 flag is TRUE if number was properly converted
 d is the double number obtained
 7. The following are common:
 : 3DUP 2 PICK 2 PICK 2 PICK ;
 : -ROT ROT ROT ;
 : NOT0= ;
 : >= < NOT ;
 : CELL 1 CELLS ;
 : BEEP 7 EMIT ;
 : OFFFALSE SWAP ! ;
 : ON TRUE SWAP ! ;

22 Forth Dimensions XIX.6

Source Code

\ **** Command Completion Interface ****
\ John J Wavrik Dept of Math
\ Univ of Calif - San Diego

 30 CONSTANT Max#Cmds
 16 CONSTANT CmdSize \ make a multiple of bytes/cell
 0 VALUE #Cmds
CmdSize CELL + CONSTANT EntrySize

comment:
 A user is presented with a list of commands and needs only
 to type enough letters to identify the command uniquely.

 New commands are introduced by >CMD <listname> <executable>
 where <listname> is the name made available to the user and
 <executable> is a Forth word to be executed. (Typically the
 executable is a Group package Forth command which has been
 supplemented by queries for input).

 The listwords are stored alphabetically in a binary tree
 to enable partial words to be easily found. Each node
 has a name (the list word) which is a string (maxsize SZ),
 and three addresses (cells): the CFA of the executable,
 and the address of left and right subtrees.
comment;

\ **** Binary Search Tree for Strings ****

\ Counted String Operations

: $! ($ addr --) OVER C@ 1+ MOVE ; \ no test for fit
: $. ($ --) COUNT TYPE SPACE ;
: $Compare ($1 $2 -- -1 | 0 | 1)
 \ -1 = $1 is before $2
 \ 0 = $1 equal to $2
 \ 1 = $1 is after $2
 >R COUNT R> COUNT COMPARE ;

: $< $Compare 0< ;
: $= $Compare 0= ;
: NCompare ($1 $2 n -- -1 | 0 | 1)
 \ compare first n characters
 \ must pad strings with blanks if n is big
 ROT 1+ ROT 1+ ROT (addr1 addr2 n)
 TUCK COMPARE ;

 Max#Cmds CONSTANT #Nodes
 CmdSize CONSTANT SZ \ maximum string size for names
 SZ 3 CELLS + CONSTANT NodeSZ \ size of node in bytes
 0 VALUE FreeNode \ address of free node variable
 VARIABLE Len-Name \ length of longest name

 : $!! ($ addr --)
 OVER COUNT Len-Name @ MAX Len-Name ! DROP
 $! ;

 CREATE 'Tree1 #Nodes NodeSZ * ALLOT
 VARIABLE FreeNode1
 CREATE 'Tree2 #Nodes NodeSZ * ALLOT
 VARIABLE FreeNode2

Forth Dimensions XIX.6 23

comment:
 In this application there is a main menu (using Tree1)
 and a submenu (using Tree2) activated by a command on
 the main menu. The same idea can be used to allow multiple
 submenus.
comment;

 'Tree1 VALUE Tree \ can extend to several trees

 : Tree.Init Tree #Nodes NodeSZ * ERASE
 Tree FreeNode ! 1 Len-Name ! ;

\ All operations refer to the "current tree".
\ The address of the root of the current tree is
\ given by Tree. The address of the last filled
\ node is given by FreeNode

 : Tree1 'Tree1 TO Tree FreeNode1 TO FreeNode ;
 : Tree2 'Tree2 TO Tree FreeNode2 TO FreeNode ;
 Tree2 Tree.Init
 Tree1 Tree.Init

 : NewNode (-- addr) NodeSZ FreeNode +!
 FreeNode @ DUP NodeSZ ERASE ;
 \ there is no error trap here if the tree is full

 : Left (n_addr -- l_addr) SZ + @ ;
 : Right (n_addr -- r_addr) SZ + 1 CELLS + @ ;
 : Exec (n_addr --) SZ + 2 CELLS + @ EXECUTE ;
 : Left! (x n_addr --) SZ + ! ;
 : Right! (x n_addr --) SZ + 1 CELLS + ! ;
 : Exec! (e_addr n_addr --) SZ + 2 CELLS + ! ;
 : Name! ($ n_addr --) DUP SZ BLANK $!! ;
 : Leaf? (n_addr -- flag)
 DUP Right 0= SWAP Left 0= AND ;
comment:
 Notice that we assume (and use) the fact that the name
 of a node is stored at the address of the node -- while
 pointers are stored at offsets from this name address.

 Notice also that storing a name (by Name!) pads the
 name with blanks -- to allow use of NCompare
comment;

DEFER (>Tree) \ this allows recursive definition for
 \ storing a new name in the tree
 : Go-Left ($ n_addr --) DUP Left
 IF Left (>Tree) ELSE
 SWAP NewNode TUCK Name!
 SWAP Left! THEN ;
 : Go-Right ($ n_addr --) DUP Right
 IF Right (>Tree) ELSE
 SWAP NewNode TUCK Name!
 SWAP Right! THEN ;
 : (>Tree)-AUX ($ n_addr --)
 DUP C@ 0= IF Name! ELSE
 2DUP $Compare
 DUP -1 = IF DROP Go-Left ELSE
 1 = IF Go-Right ELSE
 (0 = IF) 2DROP THEN THEN THEN ;
 ' (>Tree)-AUX IS (>Tree)

24 Forth Dimensions XIX.6

\ Put a new name in the tree -- eventually the execution
\ address will be stored also. Note that this does not
\ store duplicate names.
 : >Tree ($ --) Tree (>Tree) ;
\ Given a string $, count n, and node address n_addr
\ Find a node in the subtree with root at n_addr so
\ that the name matches the string up to n characters

: (NFind) ($ n n_addr -- n'_addr t | f) DUP 0=
 IF DROP 2DROP FALSE ELSE
 3DUP SWAP NCompare
 DUP -1 = IF DROP Left RECURSE ELSE
 1 = IF Right RECURSE ELSE
 >R 2DROP R> TRUE THEN THEN THEN ;
: NFind? ($ n n_addr -- t | f)
 (NFind) DUP IF SWAP DROP THEN ;
\ See if a string matches the first n characters of
\ some node in the tree. Indicate if multiple match
: NFind ($ n -- n_addr -1 | n_addr 1 | f)
 \ -1 = more than one match
 2DUP Tree (NFind) ($ n addr t | $ n f)
 IF >R 2DUP R@ Left NFind? -ROT
 R@ Right NFind? OR
 R> SWAP IF -1 ELSE 1 THEN
 ELSE 2DROP 0 THEN ;

 : Node.L (node --) ?DUP IF 2 SPACES COUNT DROP
 Len-Name @ TYPE
 THEN ;

 : CR_4 (cnt -- cnt') ?DUP 0= IF CR 4 THEN 1- ;

 : (Print-Nodes) (cnt tree -- cnt') ?DUP
 IF DUP Leaf? NOT
 IF TUCK Left RECURSE
 OVER Node.L CR_4
 SWAP Right RECURSE
 ELSE Node.L CR_4 THEN
 THEN ;

 : Print-Nodes CR 3 Tree (Print-Nodes) DROP ;

\ **** Keyboard Input Routines ****

VARIABLE Tfound VARIABLE TAddr
 8 CONSTANT BS 7 CONSTANT BELL 27 CONSTANT ESC 127 CONSTANT DEL

\ ClrKey
\ If the user types in more characters than needed
\ to complete a command, this clears the extra characters
\ from the keyboard buffer.

 : ClrKey BEGIN KEY? WHILE KEY DROP REPEAT 30 MS ;

\ Del-In Do-ESC
\ The following are actions to be taken by BS or DEL
\ and ESC. n is the number of characters so far in the
\ input word. c is an arbitrary character (it is dropped
\ but included for compatibility with other action words)

 : Del-In (n c -- 0 | n-1)
 DROP DUP IF 1- BS EMIT SPACE BS
 ELSE BELL THEN EMIT ;

Forth Dimensions XIX.6 25

 : Do-ESC (n c --)
 DROP TFound ON TAddr OFF
 DUP 0 ?DO 0 Del-In LOOP
 ." *** cancelled *** " CR ;

 : Check-Tree (a n char -- a n+1) \ sets tfound
 3DUP EMIT + C! 1+ (a n+1)
 OVER 1- ($) OVER NFind
 DUP 1 = (unique) IF DROP TFound ON TAddr ! ELSE
 0= (none) IF BELL EMIT BS Del-In ELSE
 (several) TFound OFF DROP THEN THEN ;

\ Notice that characters from keyboard are uppercased

VARIABLE Help? VARIABLE FirstChar

 : TExpect SZ PAD 1+ \ get characters until found in tree
 0 (len adr 0) TFound OFF TAddr OFF FirstChar ON
 BEGIN 2 PICK OVER - (len adr #so-far #left)
 0<> TFound @ 0= AND

 WHILE KEY UPC (len addr #so-far char)
 DUP [CHAR] ? = FirstChar @ AND
 IF EMIT Help? ON ELSE
 DUP BS = IF Del-In ELSE
 DUP DEL = IF Del-In ELSE
 DUP ESC = IF Do-ESC ELSE
 DUP BL > IF Check-Tree ELSE
 DROP THEN THEN THEN THEN THEN
 FirstChar OFF
 REPEAT DUP 0 ?DO BS EMIT LOOP 2DROP DROP
 ClrKey
 TFound @ IF TAddr @ $. 2 SPACES THEN
 TFound @ 0= ABORT" character count exceeded " ;

: CExpect (--)
 TExpect TAddr @
 ?DUP IF Exec THEN ;

\ **** Command Completion Module ****

\ Notice that command names are uppercased

: >CMD (-- ;;; follow by <name><action>)
 #Cmds Max#Cmds >=
 IF ." Command list is full " CR BEEP
 ELSE BL WORD DUP COUNT UPPER
 DUP >Tree
 DUP C@ NFind 1 =
 IF ' SWAP Exec! ELSE
 TRUE ABORT" Error in insertion " THEN
 THEN ;

\ ***** a Help System for Command Words *****

: Make, (delimiter --)
 \ Defining word for words that compile input
 \ string up to delimiter.
 CREATE ,
 DOES> @ PARSE HERE >R DUP C, DUP ALLOT
 R> 1+ SWAP MOVE 0 C, ALIGN ;

 0 Make, ,0 \ compile entire line as counted string
 CHAR " Make, ," \ compile up to a quote

26 Forth Dimensions XIX.6

 CHAR \ Make, ,\ \ compile up to a backslash

comment:
 The words Help: and Help; are used to bracket text
 which describes what a command does and/or how it is
 used. This text is put at the start of a definition.
 If the user presses X or type INFO before a command,
 this information is displayed instead of having the
 command action carried out. Help: and Help; should
 be at the start of new lines with the descriptive
 text on lines between (just as "comment:" and "comment;"
 are used to bracket the current paragraph).
comment;

: HelpX 0 Help? ! ;

: Help: (-<text> Help;>-) \ the word Help; must start
 \ a new line
 POSTPONE Help? POSTPONE @ POSTPONE IF
 BEGIN >IN @ BL WORD DUP COUNT UPPER
 COUNT S" HELP;" COMPARE 0=
 IF DROP TRUE
 ELSE >IN ! POSTPONE (.") POSTPONE CR
 REFILL 0=
 THEN
 UNTIL
 POSTPONE HelpX
 POSTPONE CR POSTPONE EXIT POSTPONE THEN ; IMMEDIATE

: %INFO CR
 ." This will provide information about the next" CR
 ." command you use. INFO and X do the same thing" CR
 ." but X is quicker to use." CR
 -1 help? ! ;

\ **** Main Loop ****

: %END
 CR
 ." This will end the command interface (but not the" cr
 ." groups program). You can resume use of the commands" cr
 ." interface by typing 'commands'." cr cr
 ." *** Exit the program by typing `bye` *** " cr
 DROP
 TRUE ABORT" ++++++++++++++++++++++++++++++++++++ " ;

: %Help
 Help:
 This prints a list of all current commands
 Help;
 CR Print-Nodes CR ;

\ Commands
\ This is the top level word used to start
\ the interface

: Commands FALSE %Help
 BEGIN
 CR ." >> "
 ['] CExpect CATCH DROP DUP
 UNTIL DROP ;

Forth Dimensions XIX.6 27

Tree1 Tree.Init
>CMD INFO %INFO >CMD X %INFO
>CMD STOP %END >CMD QUIT %END
>CMD HELP %Help

\ **** Commands for prompted input *****

\ Get-TIB
\ This is a word which gets (and edits) keyboard input until terminated by
\ pressing ENTER. The input must be placed at the start of the terminal
\ input buffer. The buffer pointer is reset. The input should be displayed
\ right after the prompt. When Get-TIB is finished the cursor should be
\ right at the end of input. ANS standards do not specify the display and
\ editing actions for ACCEPT -- so some systems may require a custom version.

: Get-TIB (--)
 AT? QUERY AT \ Put cursor at end of prompt
 >IN @ 0 WORD \ Put cursor at end of input
 COUNT TYPE >IN ! ;

\ **** Samples for prompted input ****
comment:
 The following prompted input words are included as samples.
 An input word should be designed for each type of data. It
 should provide a prompt; get an input line (using get-TIB);
 process the line and perhaps check for validity; and leave
 on the stack whatever the action word expects to find.
 Invalid input can either throw an exception or discard the
 invalid input to allow the user to try again.
comment;

2VARIABLE Save-Pos
: Get-Num (-- n)
 AT? Save-Pos 2!
 BEGIN Save-Pos 2@ AT \ reposition to start
 Get-TIB BL WORD
 COUNT ?DUP 0= THROW \ empty input aborts the command
 NUMBER? IF DROP TRUE
 ELSE 2DROP BEEP FALSE \ invalid input starts over
 THEN
 UNTIL ;

\ Fancy input routine

: Pos (char -- pos) \ pos = 0 if not found
 >IN @ SWAP PARSE 2DROP
 >IN @ #TIB @ > (past end of buffer)
 IF 0 ELSE >IN @ THEN
 SWAP >IN ! ;

: Input"
 BEGIN
 [CHAR] \ Pos
 IF POSTPONE (.") ,\
 BL WORD DUP COUNT UPPER
 FIND 0= ABORT" word not found"
 COMPILE, FALSE
 ELSE
 [CHAR] " Pos
 POSTPONE (.") ,"
 THEN
 UNTIL ; IMMEDIATE

