
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999 1

Computer Simplification of Formulas in Linear
Systems Theory

J. William Helton, Mark Stankus, John J. Wavrik

Abstract— Currently, the three most popular commer-
cial computer algebra systems are Mathematica, Maple and
MACSYMA. These systems provide a wide variety of sym-
bolic computation facilities for commutative algebra and
contain implementations of powerful algorithms in that do-
main. The Gröbner Basis Algorithm, for example, is an
important tool used in computation with commutative alge-
bras and in solving systems of polynomial equations.

On the other hand, most of the computation involved in
linear control theory is performed on matrices, and these do
not commute. A typical issue of IEEE TAC is full of linear
systems and computations with their coefficient matricies A
B C D’s or partitions of them into block matrices. Math-
ematica, Maple and MACSYMA are weak in the area of
non-commutative operations. They allow a user to declare
an operation to be non-commutative, but provide very few
commands for manipulating such operations and no power-
ful algorithmic tools.

It is the purpose of this article to report on applications of
a powerful tool: a non-commutative version of the Gröbner
Basis Algorithm. The commutative version of this algorithm
is implemented in most major computer algebra packages.
The noncommutative version is relatively new [FMora].

. INTRODUCTION

Part One of the paper introduces Gröbner Bases (GB)
and lays the foundation for simplification of complicated
algebraic expressions from engineering and other applica-
tions. In Part Two we shall describe the Gröbner Bases for
several elementary situations which arise in systems theory.
These GB give (in a sense to be made precise) a “com-
plete” set of simplifying rules for formulas which arise in
these situations. We have found that this process provides
a practical means of simplifying expressions.

We begin Part Three with an illustration of how the
simplification rules from Part One apply in system theory.
Section IV illustrates the use of Gröbner Basis with an ap-
plication to the Doyle-Glover-Khargonekar-Francis theory
of H∞ control. The rest of Part Three explores other facets
of the Gröbner Basis machinery.

The simplification process and the Gröbner Basis depend
on the choice of an ordering on variables. In Section V we
will examine the effect of changing the ordering on the GB
which arise in connection with Lyapunov equations .

In addition to providing an approach to simplifying com-
plex expressions, the Gröbner Basis Algorithm can be used
to generate new and (sometimes) interesting equations
from equations that are the statements of the basic assump-
tions. For example, the Youla-Tissi formulas involving the
intertwining of the controllability and observability oper-
ators of a system arise as a subset of the Gröbner bases

Department of Mathematics, University of California, San Diego
This work was sponsored by the Air Force Office for Scientific Re-

search and by the National Science Foundation.

studied in Section VI.
The research required the use of software suited for com-

puting with non-commuting symbolic expressions. Most of
the research was performed using a special-purpose system
developed by J. Wavrik. This system uses a new approach
to the creation of support software for mathematical re-
search. It provides the flexibility needed for experimenta-
tion with algorithms, data representation, and data analy-
sis.

In an effort to make available computational facilities
for work in non-commutative algebras to a wider audi-
ence, the other authors have written a collection of pack-
ages for Mathematica called NCAlgebra (available from
ncalg@osiris.ucsd.edu). NCAlgebra has a number of com-
mands for manipulating non-commuting expressions which
are named and designed to be noncommutative analogs of
Mathematica’s built in commands. We have incorporated
in these packages many of the results on simplification ob-
tained from this research.

PART ONE: SIMPLIFYING EXPRESSIONS

I. Simplification

The problem of simplification involves a collection of ex-
pressions and a notion of equivalence among expressions.
A goal is to obtain expressions equivalent to a given ex-
pression which are simpler in some way. Another goal is to
find a unique representation for equivalent expressions.

When matrix expressions are simplified by hand, they
are scanned for subexpressions which can be replaced by
something which is equivalent and simpler. For example,
the expression 1 − x−1x + x2 simplifies to x2 because the
subexpression x−1x can be replaced by 1, and then 1 − 1
can be replaced by 0.

In the case above, the occurrence of a matrix expression
next to its inverse leads to a rather obvious simplification.
Simplification can also use less obvious replacements. For
example, (1− yx)−1 − x−1(1− xy)−1x simplifies to 0 even
though no subexpression consists of a matrix adjacent to its
inverse. Here we use the fact that (1−xy)−1x is equivalent
to x(1− yx)−1 so that

(1− yx)−1 − x−1(1− xy)−1x

→ (1− yx)−1 − x−1x(1− yx)−1

→ (1− yx)−1 − (1− yx)−1 = 0

The simplification rule (1−xy)−1x → x(1−yx)−1 is well
known – but it is not quite as obvious. We will show that
this rule and others of this sort are generated automatically
by the simplification technology introduced in this paper.

2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999

We will examine several classes of matrix expressions. In
each case we will start with a few simple matrix expressions
and variables like x, x−1, (1−x)−1, and (1−xy)−1 which we
will call elementary or atomic expressions. Polynomial
expressions are those which can be obtained by repeat-
edly performing arithmetic operations (addition, subtrac-
tion, multiplication and multiplication by scalars) on these
atomic expressions. 1 Very complex expressions can be ob-
tained in this way. It is quite possible for two expressions
which look quite different to be equivalent in the sense that
they represent the same matrix. We would like to find the
simplest possible among these representations.

We are drawing a distinction among, for example, the
polynomial expressions xx−1, x−1x, and 1. We regard
these as different expressions because they are formed dif-
ferently in terms of atomic expressions and operations.
They look different. While they are not identical expres-
sions, they are (strongly) equivalent2 in the sense that,
for any choice of invertible matrix x they assume the same
value.

Simplification depends on a concept of simplicity and a
concept of equivalence. A simplifier is a procedure, S,
which takes any expression E to an equivalent and sim-
pler expression S(E). Thus we have S(E) ∼ E (indicating
that S(E) is equivalent to E) and S(E) ≤ E (indicat-
ing that S(E) is simpler, in some sense, than E). In this
paper we will discuss a simplifier which is based on a non-
commutative version of the Gröbner Basis Algorithm. It
can be implemented on a computer and shows evidence of
being a very valuable tool. The precise notions of simplic-
ity and equivalence which we use are discussed in Section
I-C. We have been able to show, in the cases we have ex-
amined, that this simplifier is a canonical simplifier in
the sense that E1 ∼ E2 ⇐⇒ S(E1) = S(E2). The expres-
sion S(E) is a canonical form for E. In other words,
equivalence of expressions can be tested by reducing them
to the canonical form. A test for equivalence of expressions
is a major application for simplification machinery.

The problem of automatically simplifying matrix expres-
sions and our use of the non-commutative Gröbner technol-
ogy for this purpose are quite new. Simplification plays a
fundamental role in computer algebra. A treatment of the
general theory of simplification including an extensive set
of references is found in the survey article of Buchberger
and Loos [BL]. A good general reference on commutative
Gröbner Basis is [CLS] and on non-commutative Gröbner
Basis is [TMora].

A. Replacement Rules

For a collection of atomic expressions, there is usually
a collection of replacement rules coming from obvious re-
lations among the expressions. Thus we have rules like

1For example, x2(1−x)−1 and 2+x+3x−1 are polynomial expres-
sions in the atomic expressions x, x−1 and (1 − x)−1, while sin(x)
and x/(2+x) are not polynomial expressions in x, x−1 and (1−x)−1.

2We will just say equivalent until we need to distinguish this from
another concept of equivalence.

xx−1 → 1 and x−1x → 1 which allow us to replace a ma-
trix which occurs next to its inverse. The initial set of rules
is insufficient for producing major simplifications. Crucial
to our simplification procedures is a mechanism for extend-
ing a set of simplification rules.

A replacement rule consists of a left hand side (LHS),
which will always be a monomial, and a right hand side
(RHS) which will always be a polynomial. A replacement
rule is applied to an expression by scanning its terms to
find a match for LHS. If we find a term which has LHS
as a factor, we replace the factor by RHS. Our notation
for a rule is LHS → RHS. Thus, for example, we have
the replacement rule xx−1 → 1.

Naturally we are unwilling to substitute RHS for
LHS unless these are equivalent. Thus we require that

LHS −RHS becomes 0
whenever matrices are substituted for the matrix variables
that occur in the atomic expressions. xx−1 → 1 is a valid
replacement rule since xx−1 − 1 becomes 0 whenever x is
replaced by an invertible matrix and x−1 by its inverse.
(1−xy)−1x → x(1− yx)−1 is also a valid replacement rule
(since (1−xy)−1x−x(1−yx)−1 becomes 0 whenever x and
y are replaced by matrices for which this makes sense)3.

Simplification of a polynomial expression, p, using a list,
L, of replacement rules involves repeatedly applying rules
in the list until we arrive at an expression which is irre-
ducible (no further rules on the list are applicable). In
Section I-C.2 we will place an ordering on the terms of
polynomial expressions. Our replacement rules will always
have the property that LHS is greater than any of the
terms in RHS in this ordering. This will guarantee that
(1) repeated application of the rules eventually leads to an
irreducible expression and that (2) the irreducible expres-
sion is simpler in the sense of having terms of smaller order
than the original. If h is irreducible and obtained from p
by applying reduction rules in list L, we will say that h is a
normal form of p and write h = NForm(p,L) or p →L h.
In general, the normal form is not unique4.

We will now look at an example of simplification. This
will illustrate the process and show what can occur. Here
is a list of simplification rules based on the definition of
inverse for the atomic expressions x, x−1 and (1− x)−1:

Rule 1 xx−1 → 1
Rule 2 x−1x → 1
Rule 3 x(1− x)−1 → (1− x)−1 − 1
Rule 4 (1− x)−1x → (1− x)−1 − 1

Example 1: We now apply these rules to the expression:
x−1x(1− x)−1 − x−1(1− x)−1 − (1− x)−1 (2)

We first apply Rule 3 to the first term. This produces

x−1((1− x)−1 − 1)− x−1(1− x)−1 − (1− x)−1 (3)

3As mentioned above, this classical rule can be automatically de-
rived from simpler rules. See Section I-D.

4If the reduction rules are applied in different sequences, different
normal forms can be obtained (unless L has special properties). Even
though the normal form is not uniquely defined, the notation h =
NForm(p,L) is commonly used.

HELTON, STANKUS, AND WAVRIK 3

which, after expanding, rearranging, and cancelling terms,
produces the result:

−x−1 − (1− x)−1 . (4)

None of the rules apply to this expression and, therefore,
it is irreducible. Thus (4) is a normal form for (2).

B. Complete lists of rules

We come to one of the more basic points which is the
concept of ‘completeness’ of a list of rules.

The reader may have noticed that there are other possi-
bilities for applying the replacement rules to (2). If we first
apply Rule 2 then we get

(1− x)−1 − x−1(1− x)−1 − (1− x)−1 . (5)

This, after rearranging and cancelling terms, becomes

−x−1(1− x)−1 . (6)

We obtain two different expressions, (4) and (6), just by
changing the sequence in which rules are applied. As a
result, we obtain two expressions which are equivalent but
which cannot be reduced to a common irreducible form.
The difference of these two expressions is

x−1(1− x)−1 − x−1 − (1− x)−1 . (7)

It is equivalent to 0 but cannot be reduced to 0 by repeated
application of the rules. A set of rules will be called com-
plete if it is sufficient for simplifying to 0 all expressions
which are actually equivalent to 0. The set of Rules 1-4 is
not complete because they are not enough to simplify the
expression (7) to 0.

This problem can be handled by enlarging the set of
rules. The expression (7) does not reduce to 0 using the
current set of rules, so we add it to the list of rules. The
two rules we obtain in this way are:

Rule 5 x−1(1− x)−1 → x−1 + (1− x)−1

Rule 6 (1− x)−1x−1 → x−1 + (1− x)−1

Incidentally, Rules 5 and 6 are often called the resolvent
identities.

It will follow from Section II-A that this expanded list
has several important special properties. First of all, the
expanded set of rules Rule 1-6 is complete5. Such a com-
plete set of rules corresponds to something called a Gröbner
basis (or GB) for the relations on x, x−1 and (1−x)−1 (with
respect to the given ordering); this will be discussed later.
Secondly, if the full list is of rules is applied repeatedly to
any polynomial p in x, x−1 and (1−x)−1, then one obtains
a particular irreducible polynomial q. The same polyno-
mial q is obtained regardless of the sequence in which the
rules are applied. We can show, in this case, that q is a
canonical form for p with respect to algebraic equivalence6:

5This is not obvious. It follows from the fact that the Mora Algo-
rithm terminates in this case (see Section I-D).

6We will discuss algebraic equivalence in Section I-C.3. It depends
on the choice of starting rules.

decisions about algebraic equivalence of expressions p can
be made by comparing canonical forms q.

We have illustrated the idea of expanding a set of sim-
plification rules to find a complete set for a particular ex-
ample. We now provide a more formal description of this
process in general.

C. Formal Description

It can become very confusing if we sometimes regard
xx−1and x−1x as different, and, at other times, treat them
as the same. We can understand what is at issue here by
introducing a bit of formalism. This section will also make
precise the concepts of simplicity and equivalence used in
this work.

C.1 Polynomials

We will make a polynomial ring with one (non-
commuting) variable for each of our atomic expressions.
Let’s continue with the example from the previous section
where the atomic expressions are x, x−1 and (1−x)−1. We
introduce three polynomial variables a, b and c. Since the
variables do not commute, ab and ba are different polyno-
mials. Now take a polynomial in a, b and c and substitute
a matrix M for a, M−1 for b and (1 − M)−1 for c. The
result is a matrix. The result of substituting into ab is
MM−1 while the result of substituting into ba is M−1M .
The polynomials are different but the resulting matrices
are the same. We obtain, in this way, one notion of equiv-
alence on polynomials: two polynomials are (strongly)
equivalent if, upon any meaningful substitution, they pro-
duce the same matrix. Here are some polynomials that are
equivalent to 0 with the substitution as in this example:

ab− 1, ba− 1, ac− c + 1, cb− c− b (8)

because, on substitution, they become

MM−1 − 1, M−1M − 1,
M(1−M)−1 − (1−M)−1 + 1,
(1−M)−1M−1 − (1−M)−1 −M−1

all of which are 0 for any matrix M for which they make
sense. A polynomial which is equivalent to zero (in the
context of association of the polynomial’s variables with
atomic expressions) is said to be a relation on the vari-
ables. Therefore, in our example, ab− 1, ba− 1, ac− c + 1
and cb− c− b are relations on a, b and c.

Let P denote all polynomials in three noncommuting
variables a, b and c. Define

p1 = ab− 1, p2 = ba− 1, p3 = ac− c + 1, p4 = ca− c + 1 (9)

and observe that if we substitute M for a, M−1 for b and
(1 −M)−1 for c, then these polynomials become 0 and in
fact constitute the definitions of the expressions x−1 and
(1−x)−1. These relations correspond to the simplification
rules Rules 1-4. In practice it is only easy to determine that
some very simple polynomials are relations. p1, p2, p3 and
p4 are relations which result from the definition of inverse.
We often show that a more complicated polynomial is a

4 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999

relation by showing that it is an “algebraic consequence”
of known relations. For example, p = bc−b−c is a relation
because:

p = bc− b− c = p2c− bp3 (10)

Notice that any matrices substituted for a,b, and c which
make p2 and p3 zero will also make p zero. Thus p is a
relation since p2 and p3 are relations and p is an “algebraic
consequence” of p2 and p3.7

Since our work involves the notion of “algebraic con-
sequence” we will introduce some terminology to make it
precise. Let P be the set of polynomials in a fixed finite col-
lection of non-commuting variables. Recall that an ideal
of P is a subset I of P such that whenever p1 and p2 are
in I and whenever q1 and q2 are in P, both p1 + p2 and
q1pq2 are in I. The ideal generated by a set of poly-
nomials S is the smallest ideal of P containing S. This
ideal consists of finite sums of the form

∑

ripisi where ri,
si are any polynomials and pi ∈ S.

Suppose that S is a finite set of polynomials,

S = {p1, ..., pn},

I is the ideal generated by S and f ∈ I. If any set of
matrices Mj satisfy the equations pi(M1, ..., Mm) = 0 then
they also satisfy f(M1, ..., Mm) = 0. If the pi are relations
on some atomic expressions, then f will also be a relation
on these expressions. We say that f is an algebraic con-
sequence of p1, ..., pn if f is in the ideal generated by the
pi. An ideal is the set of all algebraic consequences of a
starting set of polynomials.

Notation: Using the strict polynomial notation, as we
have above, makes it hard to remember which atomic ex-
pression is associated with which variable. We have found
it convenient to use the associated atomic expressions as
names for the polynomial variables. Thus, in the case
above, we would use x rather than a and x−1 rather than b.
x should be thought of as a variable for which matrices can
be substituted. xx−1 − 1 should be thought of as a poly-
nomial in two variables which is not zero (as a polynomial)
but which becomes zero when any matrix and its inverse
are substituted for the variables. We will always specify in
advance which atomic expressions are being used.

C.2 Ordering

A replacement rule LHS → RHS gives rise to a relation
LHS − RHS. A relation, on the other hand, could give
rise to several possible replacement rules. For example, the
definition of (1− x)−1 gives the relation

x(1− x)−1 − (1− x)−1 + 1 (11)

The 3 replacement rules we could associate to this are

7We call attention to the way that p is obtained from p2 and p3
namely p = p2c − bp3. This shows that p can be obtained from p2
and p3 by applying certain algebraic operations.

1 → (1− x)−1 − x(1− x)−1

(1− x)−1 → x(1− x)−1 + 1
x(1− x)−1 → (1− x)−1 − 1

We wish to use the rule to make expressions less compli-
cated so we choose the last rule which replaces the “most
complicated” monomial in (11) by a sum of simpler ones.
A choice of a particular replacement rule for any relation is
made by placing an ordering on the terms in expressions.
The ordering will be chosen so that expressions which we
subjectively regard as complicated tend to be higher in the
order than those which we think of as simpler. Once an
ordering is imposed, each relation has a term of highest
order. We associate to a relation that replacement rule for
which LHS is the term of highest order.

Let us assume that the variables for the polynomial ring
P are a, b, c, ... (one letter for each atomic expression). The
monomials of P are words in the letters a, b, c.... We place
an ordering on these monomials by:

M ≤ N if and only if
either length(M) < length(N)
or length(M) = length(N) and

M comes before N in the dictionary

This is called graded lexicographic ordering of the
monomials.

If a < b < c then the monomials of degree 3 are ordered

aaa < aab < aac < aba < abb < abc < aca < acb < acc <
baa < bab < bac < bba < bbb < bbc < bca < bcb < bcc <
caa < cab < cac < cba < cbb < cbc < cca < ccb < ccc

These are all taken to be bigger than any monomial of
degree 2.8

Every polynomial p has a unique term whose monomial
part 9 is of highest order. This is called the leading term of
p and is denoted LT (p). A polynomial relation is converted
to a simplification rule, by setting LHS to be LT (p) and
RHS to be LT (p) − p. One polynomial is simpler than
another if the terms of the first polynomial are smaller in
this ordering than the largest term of the second. Our
simplification rules decrease the order of the terms.

C.3 Definition of Gröbner Basis

Definition 12: Let P be a polynomial ring and O an or-
dering on the terms of P . A set G of polynomials cor-
responds (using the ordering) to a set L of replacement
rules. Let h and p be polynomials and let h be obtained
from p by applying rules in list L until no further rules ap-
ply. We will say that h is a normal form of p and write
h = NForm(p,G) or p →G h.

Definition 13: Let P be a polynomial ring, I an ideal of
P , and O an ordering on the terms of P . A set G ⊂ I is

8This ordering is intended to capture our notion of simplicity. When
we apply this machinery, we assign variables higher in the order-
ing (alphabet) to atomic expressions which seem more complicated.
Terms having fewer factors are automatically regarded as simpler
than terms with more factors.

9in the term 2xyx , 2 is the coefficient and xyx the monomial part.

HELTON, STANKUS, AND WAVRIK 5

called a Gröbner Basis for I if it generates I and if p ∈ I
implies p →G 0.

We will also speak of a set of simplifying rules as a
Gröbner Basis when the associated set of polynomials is a
GB. If G is a Gröbner Basis, then NForm(p, G) is indepen-
dent of the order in which replacement rules are applied. It
is also a canonical form for algebraic equivalence (that
is, p and q are algebraically equivalent if p−q is in the ideal
I). 10

D. A Gröbner Basis Algorithm

Here is a simplified version of Mora’s Algorithm used to
extend a set, G, of generators for an ideal I to a larger (and
potentially complete) set of generators.

Simplified Basis Algorithm
Let S := {(g1, g2) | g1, g2 ∈ G}
While S 6= ∅

Choose (g1, g2) ∈ S
S := S − {(g1, g2)}
For all f = SPoly(g1, g2)

Let h = NForm(f, G)
If h 6= 0 then

S := S ∪ {(g, h) | g ∈ G}
G := G ∪ {h}

An SPoly(g1, g2) is a combination of the form
a1l1g1r1 − a2l2g2r2

where the ai are numbers and the li and ri are monomials.
These are chosen so that (1) the leading term of a1l1g1r1
equals the leading term of a2l2g2r2 and (2) this occurs in
a “minimal” way 11. NForm(f,G) may depend on the se-
quence in which the simplification rules are applied. h can
be chosen to be any normal form of f .

Notice that the algorithm is an iterative process which
adds new polynomials to G. Notice also that every new
element h which is added to G is in the ideal I. So the
elements of G at any stage in this algorithm are all algebraic
consequences of the starting G. Thus, if the original G
consists of relations among a set of matrix expressions, all
the elements of G (at any stage) will also be relations on
the matrix expressions.

A criterion for a set G to be a Gröbner Basis is
SPoly(g1, g2) →G 0 for all g1, g2 ∈ G. If the algorithm
terminates, then the criterion shows that the (finite) re-
sulting set G is automatically a Gröbner Basis for I. In
the case of polynomials in commuting variables, the algo-
rithm always terminates and so always produces a Gröbner
Basis.

10If p and q are algebraically equivalent and if the generators of
I are relations (i.e., become zero upon substitution), then p and q
are also strongly equivalent. Thus, for most of our Gröbner Bases,
which are obtained from somewhat evident starting relations, two
expressions which simplify to the same normal form are equivalent in
the usual sense.

11In the case of commuting variables, there is a unique minimal
match – and so a unique SPoly(g1, g2). In the non-commutative case,
there may be none or several minimal matches for a given pair (g1, g2).
See [HW], [FMora] or [TMora] for details.

D.1 Comments on Rules and Notation

In general, the process of applying rules to simplify a
given expression is very quick once a Gröbner Basis has
been computed. The process of computing a Gröbner Basis
is usually labor intensive and there is a big advantage to
computing it and storing it, once and for all, for a given
set of atomic expressions. As we have noted, if the Mora
Algorithm terminates yielding a finite basis, then this basis
is automatically a Gröbner Basis [FMora].

In some of our examples, the Gröbner Basis is infinite.
In this case, the Mora Algorithm is interrupted after it has
produced sufficiently many new polynomials to indicate the
ultimate result. The truncated output can be quite useful.
In practice we have found that it can provide a list of rules
which has considerable simplifying power. We have also
found that, in analyzing the output, we could sometimes
obtain recursive formulas for parametrized families of rela-
tions. Application of the SPoly criterion has allowed us to
assert that the infinite families discussed in this paper are
actually Gröbner bases. See Section II-C for examples of
this.

Parametrized families of rules can be applied almost as
readily as a finite set of rules. Thus, the use of an infinite
set of rules can be quite practical. We are using an or-
dering which depends on the number of factors in a term.
If we wish to simplify a particular expression, f , the only
rules which will be applicable are those whose LHS has a
smaller number of factors than the leading term of f. Thus
a finite subset of the rules will be sufficient to simplify all
expressions up to a certain complexity. An infinite set of
rules has been implemented by storing all rules up to a suf-
ficiently high degree to handle most situations, generating
any instances of yet higher order rules as needed.

PART TWO: LISTS OF GRÖBNER BASES
In this part we will give lists of simplification rules which

arise in settings of increasing complexity. We will provide
examples of complete bases which are finite and also some
which are infinite. We conclude with a formulation which
provides a powerful general summary of many of our sim-
plification rules.

II. Simplification Rules for some Common
Settings

In this section we list Gröbner Bases for reducing poly-
nomials in

(RESOL) x, x−1 and (1− x)−1

(EB) x, y, x−1, y−1, (1− xy)−1 and (1− yx)−1

(preNF) x, y, x−1, y−1, (1− x)−1, (1− y)−1,
(1− xy)−1 and (1− yx)−1

(NF) x, y, x−1, y−1, (1− x)−1, (1− y)−1,
(1− xy)−1, (1− yx)−1, (1− xy)1/2 and (1− yx)1/2

The names (RESOL), (EB), (preNF) and (NF) are ex-
plained in the following sections even though the names are
irrelevant to what we are doing here.

Here, as in the rest of this paper, we have adopted the
convention that atomic expressions will be used as the

6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999

names of polynomial variables (sometimes called indeter-
minates). Thus, for example, x and x−1 are not matrices;
they are variables for which matrices can be substituted. If
we substitute a matrix for x, we must substitute the inverse
of that matrix for x−1.

There are many ways to impose orders on the monomials
in the expressions we have listed above. The choice of an
ordering for monomials is arbitrary, but the Gröbner Basis
may depend on the particular order chosen. In this paper
we use a graded lexicographic order which is determined
by an ordering of the atomic expressions. We have selected
orderings which reflect our subjective notion of which ex-
pressions are more complicated than others.

For example, the ordering x < x−1 < (1 − xy)−1 of
variables is consistent with this intuitive idea of increas-
ing complexity. Specifying an order on the three variables
imposes a unique graded lexicographic order on the mono-
mials in these variables. For example, when we use this
graded lexicographic order, the following monomials are
ordered as indicated:

xx < xx−1 < x(1− xy)−1 < x−1x < (1− xy)−1x
< (1− xy)−1x(1− xy)−1 < (1− xy)−1x−1x

A. A Gröbner Basis for Resol

The first list, called RESOL Rules, is a generalization of
the example presented in Part One which involves expres-
sions in x, x−1 and (1− x)−1. The following list of rules12

involves expressions in x, (λ− x)−1 and (µ− x)−1.

(RESOL0) (λ− x)−1x → λ(λ− x)−1 − 1
(RESOL1) x(λ− x)−1 → λ(λ− x)−1 − 1
(RESOL2) (µ− x)−1x → µ(µ− x)−1 − 1
(RESOL3) x(µ− x)−1 → µ(µ− x)−1 − 1
(RESOL4) (µ− x)−1(λ− x)−1 →

1
µ−λ (λ− x)−1 + 1

λ−µ (µ− x)−1

(RESOL5) (λ− x)−1(µ− x)−1 →
1

µ−λ (λ− x)−1 + 1
λ−µ (µ− x)−1

for all operators x on a Hilbert space H and distinct com-
plex numbers λ and µ. The following theorem is an easy
generalization of a corresponding result from [HW].

Theorem 14: The list RESOL Rules is complete (where
λ and µ are distinct complex numbers).
Proof: If one uses the ordering

x < (λ− x)−1 < (µ− x)−1

and the polynomials corresponding to
(RESOL0), (RESOL1), (RESOL2) and
(RESOL3) together with the fact that scalars λ
and µ commute with everything

as starting relations for Mora’s algorithm, then the algo-
rithm terminates giving (RESOL0) through (RESOL5) as
output. Thus by Section I-D, this is a GB.

12We use graded lexicographic order consistent with the order in
which the symbols are listed.

The name RESOL reflects the fact that operator theo-
rists call (λ− x)−1 the resolvent of x.

B. A Gröbner basis for EB

The indeterminates which are used in EB and the order-
ing which we use is as follows:

x < y < x−1 < y−1 < (1− xy)−1 < (1− yx)−1 .

The set of relations of EB is the set of defining relations of
x−1, y−1, (1− xy)−1 and (1− yx)−1

(EB0 through EB7 below) 13. This set of relations is not a
Gröbner basis. The following theorem shows that one can
extend this list of relations to obtain a Gröbner basis.

Theorem 15: The following relations constitute a finite
Gröbner basis for EB.

EB0 = x−1x− 1
EB1 = xx−1 − 1
EB2 = y−1y − 1
EB3 = yy−1 − 1
EB4 = xy(1− xy)−1 − (1− xy)−1 + 1
EB5 = yx(1− yx)−1 − (1− yx)−1 + 1
EB6 = (1− xy)−1xy − (1− xy)−1 + 1
EB7 = (1− yx)−1yx− (1− yx)−1 + 1
EB8 = (1− yx)−1x−1 − y(1− xy)−1 − x−1

EB9 = (1− xy)−1y−1 − x(1− yx)−1 − y−1

EB10 = x−1(1− xy)−1 − y(1− xy)−1 − x−1

EB11 = y−1(1− yx)−1 − x(1− yx)−1 − y−1

EB12 = (1− yx)−1y − y(1− xy)−1

EB13 = (1− xy)−1x− x(1− yx)−1

Proof: Mora’s algorithm terminates producing this set.
We express this GB as a list of polynomials rather than as

a list of replacement rules. We will use the convention that
polynomials are written with terms in descending order.
Thus the first term of a polynomial will be the LHS when
it is converted to a replacement rule. Note that EB6 and
EB7 can be reduced to 0 using the other rules and so EB0
through EB6 together with EB9 through EB13 is a GB.
They have been included in this list because they are in
the starting set of relations and we find it helpful to keep
the starting relations visible for reference.

The relations which form the GB for (EB) are of inter-
est because they underlie energy balance equations in H∞

control.

C. An infinite Gröbner basis for preNF
The set of relations considered in this section is named

(preNF) because it is preliminary to a set of relations which
is named NF for Nagy-Foias. 14 The indeterminates which
are used in (preNF) and the ordering which we use are as
follows. Using the guidelines for ordering atomic expres-
sions mentioned at the beginning of Section II, the orders

13That is, they come from the definition of “inverse”.
14The NF relations add (1 − xy)

1
2 and (1 − yx)

1
2 to preNF. They

are important to those working with 2× 2 block unitary matrices or
with discrete time lossless balanced systems (called the Nagy-Foias
operator model by mathematicians). Further details are found in
[HW].

HELTON, STANKUS, AND WAVRIK 7

which we consider for the expressions of (preNF) (expres-
sions in x, y, x−1, y−1, (1 − x)−1, (1 − y)−1, (1 − xy)−1

and (1− yx)−1) all have the form

x
y

<
x−1

y−1
<

(1− x)−1

(1− y)−1
<

(1− xy)−1

(1− yx)−1
.

By specifying in addition that x < y we have the order

preNF x < y < x−1 < y−1 < (1− x)−1 <
(1− y)−1 < (1− xy)−1 < (1− yx)−1 .

The set of relations of (preNF) is the set of defining
relations of x−1, y−1, (1 − x)−1, (1 − y)−1, (1 − xy)−1

and (1 − yx)−1. Notice that the variables and relations
for (preNF) are those for (EB) together with those for
(RESOL) with λ = 0 and µ = 1. The Gröbner basis ob-
tained for (preNF) is infinite. It consists of a small col-
lection of special relations followed by several sequences of
parameterized relations. This is the content of the next
theorem.

The theorem is proved using the S-Polynomial criterion
discussed in Section I-D. The details of a similar proof are
found in [HW]. Since the proof involves detailed checking
of a large number of cases, we omit it here. The authors
are studying ways to automate and simplify proofs of this
sort.

Theorem 16: The following relations form a Gröbner
Basis for (preNF).
There are 22 special relations:

(A) The relations for (EB)
(B) The (RESOL) relations for both x and y

with λ = 0, µ = 1
(C) Two additional relations

Prenf1 = (1− y)−1x(1− yx)−1 − (1− y)−1(1− yx)−1

−x(1− yx)−1 + (1− y)−1

Prenf2 = (1− x)−1y(1− xy)−1 − (1− x)−1(1− xy)−1

−y(1− xy)−1 + (1− x)−1

There are 8 (infinite) classes of general relations each of
which are parameterized by a positive integer n:

I[n] = x(1− yx)−n(1− x)−1 − (1− xy)−n(1− x)−1

+ (1− xy)−n

II[n] = x(1 − yx)−n(1 − y)−1 − (1 − xy)−n(1 − y)−1

− x(1− yx)−n + (1− xy)−(n−1)(1− y)−1

III[n] = y(1 − xy)−n(1 − x)−1 − (1 − yx)−n(1 − x)−1

− y(1− xy)−n + (1− yx)−(n−1)(1− x)−1

IV [n] = y(1 − xy)−n(1 − y)−1 − (1 − yx)−n(1 − y)−1

+ (1− yx)−n

V [n] = (1−x)−1(1− yx)−n(1− x)−1− (1−x)−1(1−
xy)−n(1− x)−1 − (1− yx)−n(1− x)−1 + (1−
x)−1(1− xy)−n

V I[n] = (1− x)−1(1− yx)−n(1− y)−1− (1− x)−1(1−
xy)−n(1−y)−1−(1−yx)−n(1−y)−1−(1−x)−1

(1−yx)−n +(1−x)−1(1−xy)−(n−1)(1−y)−1

+ (1− yx)−n

V II[n] = (1−y)−1(1−yx)−n(1−x)−1−(1−y)−1Σ(1−
x)−1 +Σ(1−x)−1 +(1−y)−1Σ−Σ−(1−y)−1

(1− x)−1

V III[n] = (1− y)−1(1− yx)−n(1− y)−1 − (1− y)−1(1−
xy)−n(1−y)−1+(1−xy)−n(1−y)−1−(1−y)−1

(1− yx)−n

where
∑

=
∑n

k=0(1− xy)−k

Observations: Class IV is obtained from class I by in-
terchanging x and y. Class II and III are similarly related.
Class V III is obtained from class V by interchanging x and
y and reordering terms. Some of the other classes (classes
I and V) are obtained from very general rules ((Gr2) re-
spectively (Gr4)) in the forthcoming Section III.

III. General Rules

Some of the infinite families of rules which you have just
seen are special cases of the simple rules which are given
in this section. These rules are a bit sophisticated in that
they are stated directly in terms of the functional calculus
of a matrix. The functional calculus is an important con-
struction in matrix and operator theory which associates
the matrix h(M) to a matrix M and a polynomial h in
one complex variable. More generally, one can use a func-
tion h which is analytic on the spectrum of M . The map-
ping h → h(M) of analytic functions to matrices is what
is called the functional calculus of M . For example, if
h(s) = 1

1−s , then h(M) is (1 − M)−1. Similarly, one can
obtain expressions like h(xy) = (1−xy)1/2 and h(M) = eM

provided the eigenvalues of xy and M are in the right lo-
cation.

This section concentrates on a particular list of rules
which are described in terms of the functional calculus. As
you will see, a brief list of functional calculus based rules
contains a great deal of information.

A. Statement of the (GENR) Rules

The following is a set of rules which hold for all operators
x and y on a Hilbert space H with x, y, λ − x and λ −
y invertible, functions h analytic on the spectrum of xy
and yx and all λ 6= 0. (Technically, the following are not
necessarily replacement rules for certain h since the left
hand side may not be a monomial. We will discuss this
shortly.)

GENR Rules

(Gr0) h(xy)x → xh(yx)

(Gr1) h(yx)x−1 → x−1h(xy)

(Gr2) xh(yx)(λ− x)−1 → λh(xy)(λ− x)−1 − h(xy)

(Gr3) x−1h(xy)(λ− x)−1 → λ−1x−1h(xy)+

λ−1h(yx)(λ− x)−1

(Gr4) (λ− x)−1h(yx)(λ− x)−1

−(λ− x)−1h(xy)(λ− x)−1 →
λ−1(h(yx)(λ− x)−1 − (λ− x)−1h(xy))

(Gr5-9) The rules (Gr0) through (Gr4) with

x and y swapped.

In the above list of rules, the expression on the left hand
side of the rule may not be a monomial. For example, see
(Gr4) or set h(z) = z + z2. It is easier to automate re-
placement rules if the LHS of a rule is a monomial. When
these rules are used for machine computation, they are re-
arranged, using a term ordering, so that LHS is a mono-
mial.

It should be noted that it is easy to verify the GENR
Rules by hand so that they can be introduced independent

8 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999

of the Gröbner Basis machinery. For example, (Gr1) fol-
lows from (Gr0) by multiplying (Gr0) on both sides by x−1

and the following calculation verifies (Gr3) using (RESOL)
and (Gr1).

x−1h(xy)(λ− x)−1 = h(yx)x−1(λ− x)−1

= (yx)(λ−1x−1 + λ−1(λ− x)−1)

= λ−1h(yx)x−1 + λ−1h(yx)(λ− x)−1

B. Properties of GENR
The rules (RESOL) plus (GENR) are a “complete” set

of rules in a sense. A major point is that these rules are
valid for every analytic function h. These rules are a “com-
plete” 15 set of rules in that they are complete for the ideal
generated by the key relations on

x, y, x−1, y−1, (λ− x)−1, (λ− y)−1, h(xy), h(yx)

for any h (which is analytic on the spectrum of xy and yx).
These key relations are

the defining relations for the inverses x−1, (17)
y−1, (λ− x)−1 and (λ− y)−1 and

the relations h(xy)x− xh(yx) and h(yx)y − yh(xy).

This is discussed more thoroughly in [HW].

C. Using GENR with a particular function h

Now suppose we specialize to a particular h. If, for ex-
ample, h(z) = (1−z)−1, then we will have the same atomic
expressions as we used in the preNF situation. A major dif-
ference, however, is that in the preNF case we added addi-
tional relations which come from the definition of (1−xy)−1

and (1 − yx)−1. We do not expect, nor do we find, that
GENR embodies all the extra relations that may hold for
a particular h. What we do expect is that GENR will pro-
vide a useful set of easily implemented rules that at least
provides simplification in a general sense – without using
any special properties of a particular h.

Of the 8 infinite families listed for preNF, we find that
I, IV, V, and VIII can be obtained from the GENR Rules
together with the RESOL Rules while the other 4 families
cannot. Here one makes the substitution h(s) = (1− s)−n,
so that h(xy) = (1−xy)−n and h(yx) = (1−yx)−n. The re-
maining 4 families require the use of more particular prop-
erties of (1− xy)−1 and (1− yx)−1.

While this paper has not listed the NF rules, the NF
Rules contain 16 infinite families. Eight of these infinite
families follow from the GENR Rules together with the
RESOL Rules.

Also, we mention that some special relations in (preNF)
and (NF) can be obtained from the GENR Rules together
with the RESOL Rules.

15This is formalized by a computation of a Gröbner basis. in a
related setting. A Gröbner basis can be found for polynomials in
x < y < x−1 < y−1 < (1−x)−1 < (1−y)−1 < S < T where S and T
are variables and we take as starting relations the defining relations
for the inverses and the relations Sx = xT and yS = Ty (see [HW])
which extract the algebraic essence of (17). For the case of λ = 1, the
(GENR) rules are obtained by substituting h(xy) for S and h(yx) for
T in the Gröbner basis from [HW].

Even in situation besides (preNF) and (NF) a natural
thing to try is to supplement (GENR) plus (RESOL) with
some of the obvious rules for whatever particular h you are
using in your computations. We have found, in practice,
that extremely effective simplification can be done this way.

PART THREE: USES OF GRÖBNER BASES
This part treats several different topics.
In Section IV, we will see that GB’s are useful for the

computational task of simplifying expressions. We will also
provide an example of their use in making deductions.

The Gröbner Theory starts with a set of relations and
produces new relations. The primary purpose of the Mora
algorithm is to produce a “complete” set of relations.
While it does not generate all possible relations, the new
relations it does generate are often of intrinsic interest. We
show how the famous formulas of Youla and Tissi for sys-
tem similarity emerge directly from a GB as does half of
the State Space Isomorphism Theorem. This is the subject
of Section VI.

Section V concerns efficient computation of GB for Lya-
punov equations.

IV. Simplification of formulas: an illustration
involving H∞ control.

In this section we will give an application of the sim-
plification machinery discussed in Part One. We will also
provide an example of the use of GB in making deductions.

A. An application of a Gröbner bases to H∞ Control

A.1 Simplification

In H∞ control, c.f. [DGKF], one deals with a Hamilto-
nian H on the state space (x, z) of the closed loop system.
Here x is a state of the plant and z is a state of the compen-
sator. The unknowns in H are a quadratic form ε which is
to be a storage function of the closed loop system and the
a, b, c, d which define the unknown compensator. As usual,
take d = 0. Thus a, b, c and ε are unknowns. If a solution ε
exists, then one can derive that for some controller, called
the central controller, a, b and c must be given by certain
formulas. These formulas do not imply that a solution to
the H∞ control problem exists. To see if it does, one must
plug the central controller formulas back into H and see if
H ≤ 0 for all states (x, z) of the closed loop system.

We apply the usual normalization to H:

ε(x, z) = (xT zT)
(

Y −1 −(Y −1 −X)
−(Y −1 −X) Y −1 −X

)(

x
z

)

(18)

The Doyle Glover Khargonekar Francis simplifying as-
sumptions (c.f., [DGKF]) are then made. These greatly
reduce the complexity of the formula for H. We still obtain
an expression which is very complicated:

H =
tp[x] ** X ** A ** z + tp[x] ** inv[Y] ** A ** x -
tp[x] ** inv[Y] ** A ** z + tp[x] ** tp[A] ** X ** z +
tp[x] ** tp[A] ** inv[Y] ** x - tp[x] ** tp[A] ** inv[Y] ** z +
tp[x] ** tp[C1] ** C1 ** x + tp[z] ** X ** A ** x -
tp[z] ** X ** A ** z - tp[z] ** inv[Y] ** A ** x +
tp[z] ** inv[Y] ** A ** z + tp[z] ** tp[A] ** X ** x -
tp[z] ** tp[A] ** X ** z - tp[z] ** tp[A] ** inv[Y] ** x +

HELTON, STANKUS, AND WAVRIK 9

tp[z] ** tp[A] ** inv[Y] ** z + tp[x] ** X ** B1 ** tp[B1] ** X ** z -
tp[x] ** X ** B2 ** tp[B2] ** X ** z +
tp[x] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** x -
tp[x] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** z +
tp[z] ** X ** B1 ** tp[B1] ** X ** x -
tp[z] ** X ** B1 ** tp[B1] ** X ** z -
tp[z] ** X ** B2 ** tp[B2] ** X ** x +
tp[z] ** X ** B2 ** tp[B2] ** X ** z -
tp[z] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** x +
tp[z] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** z -
tp[x] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** x +
tp[x] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** z +
tp[x] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** x -
tp[x] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** z -
tp[x] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** X ** x +
tp[x] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** X ** z +
tp[x] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** inv[Y] ** x -
tp[x] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** inv[Y] ** z +
tp[z] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** x -
tp[z] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** z -
tp[z] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** x +
tp[z] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** z +
tp[z] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** X ** x -
tp[z] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** X ** z -
tp[z] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** inv[Y] ** x +
tp[z] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** inv[Y] ** z +
tp[x] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** X ** x -

tp[x] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** X ** z -
tp[x] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** inv[Y] ** x +

tp[x] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** inv[Y] ** z -

tp[x] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** X ** x +
tp[x] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** X ** z +
tp[x] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** inv[Y] ** x -
tp[x] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** inv[Y] ** z -
tp[z] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** X ** x +
tp[z] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** X ** z +
tp[z] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** inv[Y] ** x -
tp[z] ** X ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** inv[Y] ** z +
tp[z] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** X ** x -

tp[z] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** X ** z -

tp[z] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** inv[Y] ** x +

tp[z] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** Y **
inv[-1 + X ** Y] ** inv[Y] ** z

Figure IV.1
Here we have used the same notation that one finds in our

NCAlgebra program to give a feel for this type of compu-
tation. tp stands for transpose while inv stands for inverse
and ‘**’ for multiply. This expression has 57 terms. The
leading term has 10 factors. Many of the factors in Fig-
ure IV.1 contain inverses of the type discussed in Part One.
The rules (RESOL) together with the rules (EB) from Part
One are stored in a function NCSimplifyRational (NCSR)
in NCAlgebra which applies them repeatedly to an expres-
sion until no change occurs. When we apply NCSimpli-
fyRational to H, we get the following considerably simpler
expression. 16

HYI := NCSimplifyRational[H]=
tp[x] ** X ** A ** z + tp[x] ** inv[Y] ** A ** x -
tp[x] ** inv[Y] ** A ** z + tp[x] ** tp[A] ** X ** z +
tp[x] ** tp[A] ** inv[Y] ** x - tp[x] ** tp[A] ** inv[Y] ** z +
tp[x] ** tp[C1] ** C1 ** x - tp[x] ** tp[C2] ** C2 ** x +
tp[x] ** tp[C2] ** C2 ** z + tp[z] ** X ** A ** x -
tp[z] ** X ** A ** z - tp[z] ** inv[Y] ** A ** x +
tp[z] ** inv[Y] ** A ** z + tp[z] ** tp[A] ** X ** x -
tp[z] ** tp[A] ** X ** z - tp[z] ** tp[A] ** inv[Y] ** x +
tp[z] ** tp[A] ** inv[Y] ** z + tp[z] ** tp[C2] ** C2 ** x -
tp[z] ** tp[C2] ** C2 ** z + tp[x] ** X ** B1 ** tp[B1] ** X ** z -
tp[x] ** X ** B2 ** tp[B2] ** X ** z +
tp[x] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** x -
tp[x] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** z +
tp[z] ** X ** B1 ** tp[B1] ** X ** x -
tp[z] ** X ** B1 ** tp[B1] ** X ** z -
tp[z] ** X ** B2 ** tp[B2] ** X ** x +
tp[z] ** X ** B2 ** tp[B2] ** X ** z -
tp[z] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** x +
tp[z] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** z

Figure IV.2

16Reduction of H by just the starting rules does not produce a
change.

This expression has 29 terms and the highest order term
has only 6 factors. Notice that everything of the form inv[1-
Y**X] and inv[1-X**Y] has been eliminated from H. This
took 27 seconds on a SPARC II using NCAlgebra. 17

We expect our simplifier to replace high order terms by
lower order terms. The decrease in the number of factors in
each term and the elimination of complicated factors is the
expected behavior. The simplifier can also, as in this case,
reduce the total number of terms. This is a consequence of
the fact that terms are reduced to a standard form. This
can produce cancellation of like terms. In our experience,
the Gröbner technology has been very effective for sim-
plifying expressions built from the type of subexpressions
discussed in Part One.

Notice that the transition from Figure IV.1 to Figure
IV.2 involves the use of general purpose simplification tools.
It uses information about the way H is constructed as an
algebraic expression, not on specialized information from
H∞ Control Theory.

A.2 Proving a Theorem

A major theorem in H∞ Control Theory is that H = 0
if the Doyle-Glover-Khargonekar-Francis [DGKF] Riccati
relations hold. We have simplified H to obtain the expres-
sion HY I which is still quite complicated. We now intro-
duce the assumption that the [DGKF] Riccati equations
RX = 0 and RY = 0 hold where:

RX = −XB2BT
2 X + XB1BT

1 X + CT
1 C1 + AT X + XA and

RY = Y −1B1BT
1 Y −1 − CT

2 C2 + CT
1 C1 + AT Y −1 + Y −1A.

An ordering for the variables was chosen essentially at
random by our computer program:

A < B1 < B2 < C1 < C2 < x < X < Y −1 < z < AT < BT
1 <

BT
2 < CT

1 < CT
2 < xT < zT .

This is done in NCAlgebra using the command

SetMonomialOrder[{A, B1, B2, C1, C2, x, X, inv[Y],

z, tp[A], tp[B1], tp[B2], tp[C1], tp[C2], tp[x], tp[z]}] .

The NCAlgebra command

GroebnerSimplify[HY I, {RX , RY }]

computes the reduction of HY I with respect to the
Gröbner Basis generated by RX and RY . The result of the
simplification of HY I using the above command was zero.
The computation took 116 seconds using NCAlgebra.18

The GB generated was finite.
We have just obtained 19 the classic result:

17The same computation took 1.8 secs using the special purpose
system we have used for research (running on a 486/33MHz PC).

18Using the special-purpose research software it took 5.1 secs to
calculate the Gröbner Basis and 0.4 secs to perform the reduction.
NCAlgebra is integrated with Mathematica and is therefore slower.

19The idea of the proof is this: The fact that HY I reduces to zero
using the GB obtained from the DGKF Riccati equations shows that
HY I is in the ideal generated by RX and RY . That is, HY I is
a sum of terms of the form cLfR where c is a number, L and R
are monomials, and f is either RX or RY . Thus, if matrices are
substituted for the variables, a substitution which solves the DGKF
equations will also make HY I = 0.

10 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999

Theorem The Hamiltonian of the closed loop system based
on the central controller is identically zero if X and Y
satisfy the two Doyle Glover Khargonekar Francis Riccati
equations RX = 0 and RY = 0.

B. Comments

In the proof in Section IV-A.2 we produce a GB from re-
lations special to the problem. The goal is to examine con-
sequences of these relations. Gröbner Bases are applicable
in other areas which involve matrix expressions. We em-
phasize that when working in H∞ control, one often knows
the DGKF Riccati equations hold. It is, therefore, natural
to introduce these relations as hypotheses and seek to draw
conclusions from them. We have used a well known theo-
rem to illustrate the process. The ideas which we have pre-
sented can be just as useful when the answer is not known
in advance. They can be a valuable tool for exploration.
They can provide a quick way to check the correctness of a
tentative set of assumptions. They can disclose additional
conditions needed for a theorem to hold. They can provide
a proof for a general theorem whose truth is suggested by
examples or special cases.

V. The Effects of Ordering: An Illustration
with Lyapunov Equations

In this section we shall examine GBs which arise in the
study of Lyapunov equations. We shall see that, in some
cases, the same starting relations will produce either a finite
or an infinite GB, depending on the term ordering. Finally,
in section V-B we make some comments on the description
of infinite Gröbner Bases by generating functions.

A. Lyapunov Equations

If the Mora Algorithm terminates with a finite basis,
this basis is automatically a Gröbner Basis. A finite ba-
sis is, therefore, advantageous. In contrast, if the Mora
Algorithm does not terminate and is interrupted, a trun-
cated list of rules produced may be useful for simplifying
expressions. As we saw in Section II-C it is often possible
to describe an infinite basis as collections of parameter-
ized polynomials. However, this type of analysis is not
automated and can be time consuming. In this section
we examine a situation in which the same set of starting
relations produce both finite and infinite bases depending
on the choice of term ordering. We will give some guide-
lines for obtaining a finite GB in the case of the Lyapunov
Equation and an application to Lossless systems. The finite
Gröbner Bases which we find in this section are very small
(e.g., around 30 relations) and can be generated with a
computer in less than a minute.

The Lyapunov Equation is one of the most common
equations in engineering:

am−mf − q = 0 . (19)

Here a, f and q are typically given and m is unknown,
eventually to be determined numerically. At the algebraic
stages of the research, one often is manipulating expres-
sions in: a, f , q, m, m−1, a−1, f−1 and the resolvents of

a and f . (We will not treat eat and eft in this paper, al-
though they do commonly arise.) We take (19), together
with some invertibility assumptions as indicated, to be the
starting relations for the GB process.

The following chart summarizes the results of some ex-
periments with term ordering:

am −mf = Invertible Behavior Examples

q a and f finite for all m < a < a−1 < f < f−1 < q
tested orders a < a−1 < f < f−1 < q < m

q a, f, m infinite for all q < a < a−1 < f < f−1

tested orders < m < m−1

q1q2 a, f, m finite for most all orders in which q1 >
tested orders both a and f

q1q2 a, f, m infinite for at q1 < q2 < a < a−1 < f
least one order < f−1 < m < m−1

Table V.1
Notice that the finitude of the GB depends on whether

or not m is invertible, whether we use a ‘q’ (with total de-
gree 1) or ‘q1q2’ (with total degree 2) as the affine term,
and the choice of ordering. In many engineering applica-
tions the affine term ‘q’ in (19) is a quadratic of the form
q1q2. For example, Am − mAT = CT C is a familiar ex-
pression which has this property. The results above show
that a Gröbner Basis obtained from this relation (together
with the defining relations for the inverses) will be finite
for suitably chosen orders.

It is common to manipulate expressions which contain
the resolvents (r − a)−1 and (s − f)−1 where r and s are
scalars. When we add these resolvents, similar conclusions
are reached. In particular, it seems that if m and m−1 are
high in the order, we obtain an infinite Gröbner Basis while
if m and m−1 are low in the order, the basis is finite.

B. Infinite Families and Generating Functions

In §II-C, we gave a GB for (preNF) which was infinite.
This GB consisted of a finite set of polynomials together
with 8 infinite collections of polynomials. Each of these col-
lections of polynomials was parameterizable using a single
integer. There are other interesting ways to describe the
members of an infinite family. Here we will explore the use
of generating functions. A generating function can often
be found which has the members of the family appearing
as coefficients in its expansion.

Here is an example which is related to the Lyapunov
Equations discussed in this section. We found that we ob-
tain an infinite basis in some situations (Table V.1). For
example, if one uses the starting relation am−mf−q with
the order a < f < q < m < m−1, the Mora Algorithm
produces general rules:

L1(n) = m−1anm−
n−1
∑

k=0
m−1akqfn−1−k − fn

L2(n) =
n−1
∑

k=0
m−1akqfn−1−km−1 −m−1an + fnm−1

for n ≥ 0. If we set GenFun(λ) = m−1(1 − λa)−1m −
m−1(1− λa)−1λq(1− λf)−1 − (1− λf)−1, then

GenFun(λ) =
∞
∑

k=0

L1(k)λk .

Generating functions like this occur in classical studies
of Lyapunov equations. For example, if the spectrum of a

HELTON, STANKUS, AND WAVRIK 11

and f are disjoint, then the integral equation
∫

Q

m
ξ

GenFunc(
1
ξ
)dξ = 0

yields the commonplace formula

m =
∫

Q
(ξ − a)−1 q (ξ − f)−1 dξ (20)

for m. Here the contour Q is chosen so that the spectrum
of a lies inside of Q and the spectrum of f lies outside of
Q.

VI. Gröbner Bases Spawn Interesting Formulas

Rather than viewing the Gröbner Basis Algorithm as a
means towards the end of simplification, we view it in this
section as a means for obtaining algebraic consequences of
a set of equations. We will provide a simple illustration of
how this occurs in a familiar system engineering context.
Our example shows how the famous formulas of Youla and
Tissi [YT] for system similarity emerge directly from a GB
as does half of the State Space Isomorphism Theorem. One
thing we shall see is that the occurrence of an infinite GB
in this case is quite natural. For example, the elements of
the infinite GB appear as coefficients of the power series
expansions of frequency response function.

A. State Space Isomorphism Theorem

A basic theorem of system theory, the State Space Iso-
morphism Theorem, says that two controllable and observ-
able systems with identical frequency response function T
are “similar”. Systems (a, b, c, d) and (A,B, C, d) are said
to be similar if there is a map m satisfying

m−1Am = a (21)

cm−1 = C (22)

mb = B . (23)

It is natural to generate a GB for these relations in order
to discover consequences. The defining relations for m−1

together with (21), (22) and (23) were used as starting
relations for the Mora Algorithm:

Rel[0] = m−1m− 1
Rel[1] = mm−1 − 1
Rel[2] = m−1Am− a
Rel[3] = cm−1 − C
Rel[4] = mb−B

.

The ordering used was the graded lexicographical order
induced by A < B < C < a < b < c < m < m−1.

When we run Mora’s Algorithm on Rel[0]-Rel[4], the
algorithm does not terminate in a short time and so we in-
terrupted it and viewed the set which had been produced
up to that point (see Section I-D). It was apparent that
the Gröbner Basis was not finite. Computations by hand

showed that the reduced Gröbner basis is the starting re-
lations Rel[0]−Rel[4] together with the special relations

Rel[5] = ma−Am
Rel[6] = m−1A− am−1

Rel[7] = Cm− c
Rel[8] = m−1B − b

and general rules

Gen[1] = CAkm− cak

Gen[2] = cakb− CAkB
Gen[3] = cakm−1 − CAk

for all k ≥ 0.
We now recall that two system have the same frequency

response function if

1 + c(s− a)−1b = 1 + C(s−A)−1B (24)

for all s ∈ C such that both s− a and s−A are invertible.
If (24) is expanded in powers of s, we find that the coeffi-
cients of the various powers (called Markov parameters) are
precisely the relations Gen[2]. Thus we have shown that
similar systems have the same Markov parameters; indeed
this is the content of Gen[2].

Also note that if the defining relations for (s− a)−1 and
(s−A)−1 are added to the starting relations using the order

A < B < C < a < b < c < m < m−1 < (s− a)−1 < (s−A)−1

then (24) itself is in the GB. Thus we see several ways in
which the Gröbner process could be interpreted as produc-
ing formulas which prove one half the State Space Isomor-
phism Theorem.

A.1 The Youla-Tissi Formulas

Now we turn to the interpretation of Gen[1] and Gen[3].
Recall the famous formulas (due to Youla and Tissi [Y-

T]) for the state space isomorphism m which say that it
intertwines the controllability operators and observability
operators of the system. In our notation these say

(Y-T) makb−AkB = 0 and CAkm− cak = 0

for all k ≥ 0.
We see that Gen[1] is exactly the second of the (Y-T)

formulas while Gen[3] is a simple variant of it. The first
of the (Y-T) formulas reduces to zero (using Rel[5] and
Rel[4]). So both the controllability and observability for-
mulas have been shown to be a consequence of the relations
which define similarity.

It is interesting to note that the second (Y-T) formula
appears explicitly in the GB while the first does not (al-
though they do reduce to zero). We note that there is a
change in the ordering of variables 20 for which Mora’s al-
gorithm produces a GB in which the first (Y-T) formula
occurs, but the second does not.

APPENDIX
20this is true for the ordering m < m−1 < A < B < C < a < b < c.

12 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 1999

VII. Remarks on special situations

A. Exploiting finite dimensions

What we have done in this paper is purely algebraic and
a formula derived by these methods takes no account of
whether one is working with matrices on an n dimensional
space, operators on a Hilbert space or on a Banach space,
be they bounded or unbounded. Many of us wish to work
with finite dimensional matrices and are fully willing to use
the fact that they are finite dimensional. An interesting
question is: can one formulate the finite dimensionality in
an algebraic way which fits well with the techniques of this
paper?

A common suggestion is that we use the Cayley-
Hamilton Theorem if we work in an n dimensional space for
a fixed n. The fact that every matrix M satisfies a poly-
nomial equation of degree n would, at first glance, seem
to provide a way for reducing higher powers of matrices to
lower powers and eliminate infinite families of simplification
rules. The main problem with this is that the characteristic
polynomial, p(M), of the matrix M has coefficients which
depend on M . Thus even if we knew the characteristic
polynomial for each of the atomic variables x1, . . . , xk in
the problem, we would not necessarily know the character-
istic polynomial for any sum, product, etc. of the atomic
variables. Consequently, using the Cayley-Hamilton The-
orem to impose finite dimensionality does not give rules
which apply in general. Indeed, when a specialist uses the
Cayley-Hamilton Theorem in derivations, he typically ap-
plies it to one or two matrices which he has carefully con-
structed. In this context, one might adjoin a characteristic
polynomial equation to a computer algebra session to ob-
tain results for a particular matrix.

B. Square vs nonsquare matrices

Another question which arises is how do these techniques
handle nonsquare matrices. At first glance it appears that
there is a problem because the setting for this paper is an
algebra, to wit we may multiply any two matrices, while
if, for example, B is not a square matrix, then BB is not
meaningful. In other words, when the matrices involved
are all square matrices of the same size, the translation
between polynomials and matrix expressions is clear and
simple. Any product of variables makes sense. On the
other hand, when the matrices involved are not all square
matrices, then some products and some sums of matrices
are allowed while others are not.

We begin by considering a collection of polynomials
which we call allowable. This is done in a purely algebraic
way by attaching to each variable, x, a pair of numbers r(x)
and c(x) (which will correspond to the number of rows and
columns for the matrix which will be substituted for x in
the problem). We allow only products of elements with
compatible dimensions. We can attach dimensions to any
allowable product21. A polynomial is allowable if each term
is allowable and all the terms have the same dimensions.

21The empty product 1 is considered to be allowable, but it is not
assigned dimensions. It acts as if r(1) = c(1) = n for arbitrary n.

Intuitively, these are polynomials which produce meaning-
ful matrix expressions when we substitute matrices of the
proper dimensions for the variables.

Note that, in all examples of this paper, the starting
relations correspond to allowable matrix expressions and
all the relations in the GB’s we obtained correspond to
allowable matrix expressions. The following theorem shows
that this phenomenon holds in general.

Theorem 25: If the starting relations are allowable, then
Mora’s algorithm produces only relations which are allow-
able.

The proof requires an analysis of the details of the Mora
Algorithm at a level beyond the scope of this paper and is
omitted.

REFERENCES

[BL] Buchberger, B. & Loos, R. “Algebraic Simplifi-
cation” Computer Algebra - Symbolic and Algebraic
Computation, Springer-Verlag(1982),pp 11-43.

[CLS] D. Cox, J. Little, D. O’Shea, Ideals, Vari-
eties, and Algorithms: An Introduction to Computa-
tional Algebraic Geometry and Commutative Algebra,
Springer-Verlag, Undergraduate Texts in Mathemat-
ics, 1992.

[DGKF] J. C. Doyle, K. Glover, P. P. Khargonekar and
B. A. Francis, “State–space solutions to standard H2
and H∞ control problems”, IEEE Trans. Auto. Con-
trol 34 (1989), 831–847.

[HW] J. W. Helton and J. J. Wavrik “Rules for Com-
puter Simplification of the formulas in operator model
theory and linear systems”, Operator Theory: Ad-
vances and Applications 73 (1994), pp. 325—354.

[FMora] F. Mora, “Groebner Bases for Non-commuta-
tive Polynomial Rings” Lecture Notes in Computer
Science, number 229 (1986) pp 353-362.

[TMora] T. Mora, “An introduction to commutative
and non-commutative Gröbner Bases”, Theoretical
Computer Science, Nov 7,1994, vol. 134 N1:131-173.

[NCA] J.W. Helton, R.L. Miller and M. Stankus,
“NCAlgebra: A Mathematica Package for Doing Non
Commuting Algebra” available from ncalg@ucsd.edu

[NF] B. Sz-Nagy and C. Foias, Harmonic Analysis of
Operators on Hilbert Space North Holland 1970

[YT] D.C. Youla and P. Tissi ”n-port synthesis via loss-
less extraction- part I” 1966 Intern. Conv. Record vol
14 pt 7, pp 183-208

