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ABSTRACT 

 
Some branches of mathematics require the ability to represent unusual types of data 
and algorithms. Some of the needs of workers in these areas can be met by providing 
them tools to construct their own special purpose software systems. Forth has 
properties that make it very useful for this purpose. It is possible to build such systems 
from re-usable parts and to create abstract types like “polynomial” and “matrix” which 
can, without writing new code, be specialized to polynomials with various kinds of 
coefficients and monomial parts, matrices with various kinds of entries, etc. -- and 
which can be combined to form compound structures. This paper discusses an 
approach resulting in systems which manipulate complex mathematical objects using 
standard Forth syntax and semantics. 

 
 

INTRODUCTION 

 
Most people associate mathematics with numerical computation -- an aspect of mathematics 

intimately tied to the early development of computers and computer languages. Most mathematics, 
however, manipulates symbols. A more recent development in computer systems is the appearance 
of programs like MACSYMA, Maple, Mathematica, etc. which are designed to perform symbolic 
computations. Both numerical and symbolic programs involve parts of mathematics which have a 
history of computation, which have a body of established algorithms, and which are of widespread 
use outside of mathematics itself. There are parts of mathematics, however, which have not been 
historically bound up with computation. Where experimentation is needed with data representation 
and algorithms. And which are not likely to receive the attention of commercial software 
developers. This paper is a survey of an approach to meet the needs of workers in these fields. It 
uses Forth to provide users with a toolkit for the building of small special purpose systems. In the 
spirit of object-oriented programming, these systems manipulate complex mathematical objects 
using standard Forth syntax and semantics. Program design emphasizes modular techniques so that 
component parts of the systems are reusable both by their author and others.  
 
 Problem-solving often benefits by the creation of a special purpose language designed for the 
problem domain. If a user is to create a problem-oriented language, the language used for 
implementation must allow lower level access to the computer than most conventional languages 
provide. The implementation language must allow the user to work at the level at which language 
features are made -- but must not restrict him to that level. In mathematics it is almost essential to 
have an interactive environment. Forth was selected for this project because it has these necessary 
characteristics.  
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MATHEMATICAL OBJECTS AND THEIR PROPERTIES 

Mathematical objects have been and are studied independently of computer representation. An 
indication of the approach used by modern mathematics can be seen in the definition of the first 
and simplest mathematical objects: the natural numbers. The natural numbers are members of a 
class. The class has properties and operations which characterize it. (The natural numbers are 
characterized by having a distinguished number called 1 and an operation called “successor”. 
Together they satisfy a set of assertions called the Peano Axioms.) New classes and properties are 
constructed from old classes and properties. The class of integers, for example, can be defined in 
terms of the class of natural numbers. Addition, subtraction, multiplication, and “long division” of 
integers are ultimately based on the successor operation. Even such a simple class as the integers 
has an amazingly large body of knowledge built up in the form of layers of theorems which 
ultimately stem from the axioms.  

 
The idea of developing a body of mathematics from a small set of fixed axioms comes from 

the Ancient Greeks. The abstract point of view, which regards mathematical entities as members of 
a class of objects having certain properties, is an extension of the axiomatic approach of the 
Greeks. It developed gradually over several hundred years. It became the dominant viewpoint 
during the early part of this century. It is extremely useful because it allows the mathematician to 
think about objects in terms of their properties rather than in terms of the often very complicated 
ways in which they originally present themselves. Moreover, the mathematician can exploit 
similarities in the properties shared by classes of objects even if these objects are presented in very 
different ways. This point of view has become so pervasive that many mathematicians define 
mathematics as the subject which studies the consequences of a set of assertions about a certain 
class of objects having certain properties.  

 
Treating things as objects, therefore, is quite natural to mathematicians. If the words 

“produced”, “present”, and “arise” in the previous paragraph are replaced by “implemented”, the 
statement will almost sound like something said by a modern computer scientist about object-
oriented programming. There are some important distinctions between object-oriented 
programming and the axiomatic view of mathematics: The computer scientist’s “methods” act on 
objects in a class, while the mathematicians “operations” and “properties” can belong to the class 
as a whole as well as to individual objects. The computer scientist’s “message passing” paradigm for 
triggering methods does not seem to match the mathematician’s idea of applying an operation to a 
set of arguments. The mathematician has a broader set of techniques for creating new classes of 
objects -- the new classes reflect the properties of the old, but do not necessarily inherit them in the 
strong sense.  

 
MATHEMATICAL OBJECTS AND THEIR REPRESENTATION 

A naive view is to regard the computer as just a new medium for representing mathematics and 
regard the task of getting a computer to do mathematics as a simple problem of translation. The 
computer is, in fact, quite different from pencil and paper. Even in the traditional area of “number 
crunching” there are important differences between the computer’s floating point numbers and the 
mathematician’s real numbers. Moreover, conventional computer languages do not offer the 
facilities to perform computations even in parts of mathematics which have a heavy computational 
flavor. Until recently no computer language offered the ability to manipulate symbolic expressions 
and to do “exact arithmetic” with rational numbers and “arbitrary precision” integers. Efficient 
algorithms for machine computation are not always transcriptions of algorithms for hand 
computation (see, for example, Knuth’s description of an algorithm for multiplying permutations in 
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“The Art of Computer Programming” 1.3.3). Many areas of mathematics are so new to machine 
computation that there are no conventional ways to represent the data and no body of algorithms. 
To make things worse, logicians have shown that some of the techniques used by mathematicians 
to construct new classes of objects (particularly the formation of quotient structures) can never be 
done algorithmically in general.  

 
 
The use of computers in pure mathematics will require new approaches on both sides. Some 

thinkers, like Errett Bishop (“Foundations of Constructive Analysis”), suggest abandoning 
traditional mathematics in favor of a new “constructive” mathematics more in line with the 
algorithmic nature of machine computation. Others look to computer science to produce systems 
that more nearly approach what mathematicians currently do (e.g. “automated theorem proving”). 
A middle ground is to expect mathematics to be pursued in a more or less traditional way, but to 
have the computer serve as an experimental laboratory for examining examples and testing 
hypotheses -- this entails the exploration of data representation and algorithms. This paper 
describes an approach for producing software systems designed to facilitate experimentation. These 
systems are designed by users for specific problem areas -- providing the user with the ability to 
create a specialized data representation and vocabulary. In order to allow the time and effort 
involved in producing such systems to be recovered, they are built from packages or modules 
which are reusable and easily modified. The packages are constructed using a technique similar to 
object-oriented programming. They isolate representation dependence of the objects as much as 
possible from other parts of the package and from other packages. They allow for extension and 
modification of the features of a package while minimizing side effects. In this way the packages 
can be independently useful in other applications -- they constitute a toolkit for building systems.  

 
 
This paper is based on the contention that, if done properly, there are advantages to allowing 

users to interact with a computer at a very low level. It is not a bad idea for people to think about 
how to make a chunk of computer memory behave like a mathematical object provided that (1) the 
language eventually allows them to forget the details, (2) the amount of code which specifically 
depends on representation can be kept small, and (3) mechanisms exist for building new objects 
from old without constant return to the representation details.  

 
Let us examine a class of familiar objects: polynomials in one variable with integer coefficients. 

An object in this class looks like: 
 

(1) anxn + ... + a1x + a0  (with the ai integers) 
 

Polynomials can be added, subtracted, multiplied and (sometimes) divided using algorithms 
taught in high school. A first attempt at a polynomial package treats the polynomial as an array of 
integers and defines the polynomial arithmetic operations explicitly in terms of this representation. 
This approach has several disadvantages. The polynomial package becomes tied to a particular type 
of coefficients and to a particular representation. Whenever an algorithm is implemented the 
mathematician must think in terms of representation rather than in terms of mathematical entities. 
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A better approach is to identify the essential properties of polynomials and define words which 

embody these properties. We may introduce a defining word POLY which sets aside storage for a 
polynomial. The most important task for a child word is to put the address of its storage block on 
the stack. (Child words often do only this -- but they can also define a referencing environment, put 
vocabularies in the search path, install values for system variables, etc.) The main features of 
polynomials in one variable are that they have coefficients and a degree. We define COEFF so that 
i P COEFF puts the ith coefficient of P on the stack. We define COEFF! to store a new value for a 
particular coefficient. We define DEG so that P DEG returns the degree of P. The definitions, of 
course, depend on the specific way we have chosen to represent polynomials. It may be, for 
example, that a polynomial occupies a block of memory in the dictionary and that the degree of a 
polynomial is stored at the base of its block -- so DEG is defined by : DEG @ ;. On the other 
hand, the access words can also be used to conceal the details of more complex memory allocation. 
In the case of a processor like the Intel 80x86, the coefficients for polynomials may reside in a 
segment outside the code segment which contains the dictionary. The polynomial P could put a 
segment address on the stack and COEFF and COEFF! would contain code for moving 
coefficients from the data segment to the stack. In this case, all of the manipulation involving 
segments takes place entirely within the access words and is transparent to the rest of the package. 
It might also be that a polynomial is not represented as an array, but rather as a linked list [although 
different access words and algorithms are usually used for “sparse” representations]. In any case, if 
we have been thorough enough in identifying the essential features of a class of objects, the 
implementation of these features will be the ONLY place where details of the representation are 
used. Should we change the representation, only the access words need to be changed. Aside from 
this practical advantage, we gain an important psychological advantage which should not be 
minimized: arithmetic of polynomials can be implemented in terms of polynomials, coefficients, 
and degrees rather than in terms of memory locations. We can conceptualize in mathematical rather 
than computer terms.  

 
The virtue of this approach becomes even more evident when we generalize. In (1) above we 

can allow the coefficients to be rational numbers, or floating point numbers, or polynomials in 
another variable, or matrices. All of the algorithms for polynomial arithmetic can be extended to 
these coefficient domains and, on an abstract level, the algorithms are the same. We add two 
polynomials, for example, by adding corresponding coefficients. We may also make similar 
statements about another familiar data type: matrices and their arithmetic. “Polynomial” and 
“Matrix” are general (some say “abstract”) data types. The approach taken in the paragraph above 
makes it possible to implement a general polynomial or matrix package which can be used with 
arbitrary coefficients. Here is how:  

 
We examine the algorithms for polynomial (or matrix) arithmetic and discover that the 

polynomial package must know certain things about the coefficient domain. It must know how to 
add, subtract and multiply coefficients (and, for some algorithms, how to divide). We may also need 
the size of coefficients in bytes, words to swap and dup them on the stack, and words to store and 
fetch them from memory. The creation of a general polynomial package, therefore, begins with an 
analysis of what a polynomial package must know about its coefficient domain. The polynomial 
package will need to know that coefficients can be added, but does not need to know how the 
coefficients are represented or how the addition is defined. We build the package using words like 
X+ for the addition of coefficients; XSIZE for the size of a coefficient; X. for printing a 
coefficient; etc. Here is how polynomial addition looks:  
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: P+ ( poly1 poly2 -- sum )  GETRES IS P2 IS P1 
P1 DEG  P2 DEG  MAX  DUP RESULT DEG! 
1+ 0 DO  I P1 COEFF  I P2 COEFF  X+ 

 I RESULT COEFF! 
     LOOP  RESULT SETDEG  RESULT ; 

 
 
P1 and P2 are initializable constants. Removing the arguments from the stack allows the 

algorithm to be implemented without stack manipulations which depend on coefficient size. 
GETRES obtains a temporary storage location, RESULT, for the result. SETDEG recalculates the 
degree of the result (since cancellation of coefficients could have occurred). [The details of a 
mechanism for managing temporary storage locations are found in a paper “Handling Multiple 
Data Types in Forth” by J Wavrik to appear in the Journal for Forth Application and Research.]  

 
There are, of course, computerisms in this definition. The mathematician must find a place to 

put the result; compute loop limits; reset degrees; etc. The important thing, however, is that in this 
(and also other algorithms in the package) specific details of representation of the coefficients and 
polynomials do not appear. Elements of the coefficient domain are being treated as objects and the 
algorithms of polynomial arithmetic are expressed in terms of these objects and their properties. 
The end result is a polynomial package which treats polynomials as objects (with properties and 
operations): If F and G are names for polynomials then F G P+ will add F and G putting the result 
on the stack. Syntactically and semantically polynomials are handled in the same way as other Forth 
objects (indeed even the stack operations work as expected since polynomials are represented on 
the stack by their addresses).  

 
The object-oriented viewpoint we have described becomes particularly useful when we realize 

that polynomials are just low level building blocks for even more complex structures. Computer 
algebra specialists pose as a challenge to create systems with the ability to handle compounding of 
structures. We might wish, for example, to work with matrices whose entries are polynomials with 
integer coefficients. The challenge is to create a matrix package, a polynomial package, and a way of 
joining them so that this and other combinations can be easily formed. Early computer algebra 
systems could not do this. An unusual feature of Forth makes it possible to meet this challenge in a 
fairly simple way provided the components have been built using an object-oriented modular 
approach: Forth allows several definitions of the same word to coexist in the dictionary. When a 
word is redefined the earlier version is still the referent for prior words (and can, by use of 
vocabularies, still be accessible). Here is a Forth solution to the problem of producing matrices of 
polynomials:  

 
(1) We define, as above, general matrix and polynomial packages using X+, etc for the 

entries (coefficients). 

(2) We now load an interface module which defines the coefficient operations to apply to 
the integers (i.e. : X+ + ; etc). 

(3) Now we load the polynomial package. (We have just produced polynomials with integer 
coefficients.) 

(4) Next load another interface module which defines coefficient operations to apply to 
polynomials (i.e. : X+ P+ ; etc). 

(5) Finally load the general matrix package. At the top level the matrices have entries which 
are polynomials with integer coefficients. 
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The process is easy to visualize: we are putting three modules (integers, polynomials, matrices) 
together in somewhat the way that children make chains from pop-beads. At the two joints we put 
a dab of glue (the interface modules). If we compile the polynomial package into a separate 
vocabulary we still have access to the operations of its coefficient domain. All that is needed for 
this scheme is that for each potential coefficient domain we also create an interface module which 
defines the generic domain operations in terms of the operations of this package. Here is an 
example from a package produced in this way: 

 
  

2 2 matrix mm   2 2 matrix nn 
 
(( 1 2 3 )} ({ 1 0}) {( 2 1 )) (( 1 0 –1 }} mm matinput 
 
mm mat. 
 
 2 
x   + 2 x + 3                                x 
 
                                              2 
2 x + 1                                      x   - 1 
 
 
{{ 1 1 1 )} (( 2 0 0 )} ({ 1 1 }} {( -1 0 1 0 }} nn matinput 
 
nn mat. 
 
 2                                              2 
x   + x + 1                                  2 x 
 
                                               3 
1                                            -x + x 
 
mm nn mat* 
 
mat. 
 
 4     3      2                               4      3     2 
x  +3 x  + 6 x + 6 x + 3                     x  + 4 x  +7 x 
 
   3     2                                    5      3      2 
2 x + 4 x + 3 x                             -x  + 6 x  + 2 x  - x 
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Object-oriented design produces computer systems based on classes of objects which they 

manipulate (rather than on functions they perform). Generality is achieved by realizing objects as 
instances of abstract types. The design is modular, and the modules interface in specific and limited 
ways. Modules encapsulate the details of the representation and manipulation of a class of 
objects—providing the outside world with a specific set of tools to be used to act on the objects. 
Large programs are built by hierarchically linking modules. Ease in writing and correctness are 
enhanced by allowing modules to interact using only the features provided by their interfaces. Some 
object-oriented systems impose further requirements: detailing the mechanisms which can be used 
to act on objects and requiring that code internal to a module be inaccessible from outside. The 
goal of this type of design is to enhance the reusability of component parts; to enhance extendibility 
of systems; to improve program correctness; and to speed the creation of systems.  

 
 
We have outlined an approach to system design in this paper which resulted from a blend of 

the mathematician’s object-oriented viewpoint with features inherent in the Forth language. Forth 
has several features which makes it useful for designing mathematical systems. It is able to isolate 
the properties, features, and operations associated with a class of objects in the actions of individual 
words. Forth extensibility allows applications to be built in a layered fashion permitting a gradual 
ascent from the level of machine representation to the level of ultimate abstraction. The fact that 
Forth provides an integrated assembly language makes it possible to increase speed; employ 
unusual memory allocation schemes; and interface with hardware without disturbing the high-level 
appearance of a package. The user’s ability to create defining words is used to create classes of 
objects. The user’s ability to create control structures and manipulate the input stream can be used 
to shape the appearance of the language. We feel that the approach taken in this work is natural, 
both from the point of view of representing mathematics and from the point of view of the 
characteristics of the Forth language.  

 
A comment should be made about “information hiding” which is a prominent feature of 

object-oriented programming. We have discussed the reasons why a programmer should not have 
to be constantly aware of details of implementation for low level features. Forth’s vocabulary 
mechanism or even explicit manipulation of dictionary links can be used (as in Richard Poutain’s 
book “Object-Oriented Forth”) to produce sealed modules. Most of our systems, however, are 
relatively small and are dynamic. They are built in a “middle out” fashion. Packages start with the 
most obvious features for export rather than an exhaustive list. For our purposes it has been found 
useful not to render implementation details inaccessible.  
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