About Groups32

After the class demondtration of the Groups32 program, severa students asked for
some informetion aboutt it.

Firg of dl, Groups32 contains, interndly, a set of tables for the groups of orders 1-32.
All of theinformation generated by issuing commands is computed from the tables.
Groups32 contains a set of commands, at various levels, which operate on group tables —
the ones presented to the user are the “top level”. There are foundational commands
which are used to build the top level commands.

Groups32 isextensble. It ispossble to add new commands and very easy to extend
the user interface to include them. (In agebra classes there has never been enough time
to talk about how the system is constructed and to program. | have, however, produced
severd packages of custom commands which have been added for certain classes.)

History:

| started writing the program around 1990 when Kenneth Almquist posted afile
containing tables of al groups of order 1-16. The tables had been generated by a
computer program, apparently as a programming exercise (Almquist did not seem to have
abackground in group theory). He did not discuss the algorithm he was using, but |
assume it used backtracking as we discussed in class. Readers of the origina posting
pointed out that he gave too many tables of some of the orders. In a subsequent posting,
he corrected the errors (saying that his isomorphism routine had failed to detect
isomorphisms of some of the tables). | became curious about what one would need to
know about groups to be able to detect the duplicationsin the original tables. Thisledto a
smadl preiminary program to extract information from the group tables.

My research areais* computer dgebra’. Thisfield is concerned with the task of
making computers do symbolic mathematics. | am interested in the mathematics behind
computer dgorithms and dso in using the computer as atool for doing mathematics. My
particular interest is absiract dgebra and related fields.

The system which eventualy became Groups32 was built in the sameway asa
research system. It serves asagood illugtration of my ideas for building software
systems, particularly because its subject matter isfamiliar to al mathematicians. Some
mathematicians who saw an early version of the program felt thet it aso had merit asan
ingructiond program — and encouraged me to make it easier to use. 1n 1995, severd
factors came together to make it possible to extend the origina program to groups of
order up to 32. | aso developed and tested severd user interfaces. The current
“commands completion” interface proved to be easiest and quickest to use. It dso hasthe
advantage that it is very easy to add new commands to the interface.

Language:

Conventiona computer languages were not designed for abstract algebra. The
concepts of the mathematical area are too far from the means of expression afforded by
the language. Conventiona languages are dso more suited to the creation of Satic
systems. In some parts of mathematics “the program” is afixed entity through which one
passesvarying data. In agebra, an interactive environment is essential. Modifying and
extending the software isatypica part of use.

For this reason, Groups32 (and my research work) is based upon use of a non
conventiond language, Forth. This language, itsdf, provides an interactive environment.
Datais persstent: it does not disgppear after acommand is executed. Itispossbleto
have a sesson in which commands are issued from the keyboard, and further actionis
based on the observed results. New commands can be added to extend the system during
asession (and, if desired, can be saved for future use). Most new commands are defined
in terms of existing commands. It is dso possible to define commands in terms of
assembly language to increase speed. Mogt of Forth iswritten in Forth. The tasks of a
conventiona compiler are distributed to words in the language. Thus even control
structure words like IF and THEN are defined within the language. This leaves open the
possibility of defining custom control-flow words. Forth is alanguage for implementing

languages.

Forth is the invention of CharlesMoorein thelate 1960's. Forth was very popular in
the early days of microcomputers. It was one of the few high level languages which could
be supported by small machines. The Forth Interest Group produced compatible
implementations of the language for al microcomputers popular a the time — so Forth
was perhaps the most portable language available through the 1980's.

Developing Groups32:

To give some flavor of how Groups32 was developed, here are some code examples.
Some things about Forth need to be understood:

1. What | have caled “commands’ are caled “words’ in Forth. The name of aword
isany collection of printable characters ddimited by spaces. Each word hasa
name and an associated action. Forth has adictionary of al the wordsiit currently
undergtands (together with a description of their action).

2. Programming is equivalent to extending the dictionary.

3. Forthisstack-based. Most words communicate by taking their arguments off the
gtack, performing their actions, and putting their results on the stack. Asaresullt,
most Forth words can be documented by describing the before/after effect on the
stack.

To reduce “magic numbers’ severd important congtants are given names. All the tables
arethe same size, 32 x 32.

32 CONSTANT MaxOr d
MaxOrd DUP * CONSTANT Tabl e_Si ze
150 CONSTANT MaxTabl es

\ Storage area for the group data

CREATE GroupDat a Tabl e_Si ze MaxTables * ALLOT
\ nultiplication tables

CREATE 1 dx MaxTabl es ALLOT
\ Group orders

All group operations are performed on the * current group” stored in avariable Grp:
VARI ABLE Grp \ These are set for each group by >G oup

To speed up computation, the groups elements are stored as indices. 0 isthe identity
(and it will be printed as“A”), 1 isthe next dement (which will be printed as“B”) etc.
Hereisthe implementation for group multiplication which is actudly used in the
Windows version of the program (it isin assembly language for the 40846 but it is
particular for Win32Forth). Notice that direct assembly language coding of commands
isonly used for the most [abor intengve and frequently used commands. Only 9 words,
in the current version of Groups32, are defined using assembly language — but this gives
abx increase in speed for some of the more computation-intensve commands.

CODE G (i j -- %)
SHL EBX, 5
POP EAX ADD EBX, EAX
MOV EAX, Grp [EDI]
ADD EBX, EAX
SUB EAX, EAX \ Find byte at this address
MOV AL, [EBX] [EDI]
MOV EBX, EAX

NEXT END- CODE

%x \WE ASSUME MaxOr d=32 *
Multiply j by 32

Add i

Add group of fset

—— - -

The high leve (Forth) codefor G* is

S C O O I I R
MaxOrd * + Gp @+ CO ;

So agroup is stored in a 32 x 32 table which is stretched linearly by rows into a 1024
chunk of bytes. The groups are stored consecutively — starting with group 0. The variable
Grp contains the address of the start of the selected group. Either version of the code
takes two indices and returns the byte representing the product.

Internally the group dementsare 0,1,... We convert the internal representations to the
externd A,B,C... whenever printout is required.

CHAR A CONSTANT I D \ ascii code for printing identity
.Ele (ele--) ID+ EMT SPACE ;

This has the interesting effect of making the group dements of a group of order 32 print
out as.
ABCDEFGHIJKLMNOPQRSTUVWXY Z[\|*

It is easy to change the symbols printed without changing the interna representation of
elements. One could, for example, use .Ele (the word which prints an eement) so that
the group e ements become:
ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdef or
ABCDEFGHIJKLMNOPQRSTUVWXY 2123456 or
123456ABCDEFGHIJKLMNOPQRSTUVWXY Z

It turned out, in practice, that it was convenient to have the group eements be “case
independent” — so that either “b” or “B” would be taken to be the second eement of the
group. The “funny symbols’ only appear in groups of order 27 or above — and students
hardly ever seemed to play with groups that big.

Here is an indication of how lower leve commands are used to build commands on the
next levd. One of the commands, ORDERS, computes the order of each dement in a
group and then prints the results — liding the dements by order. The orders of the
edements are caculated by CALC-ORDERS. The results are printed out by PRT-
ORDERS.

EleOrder (ele -- ord)
0O For-All-Elenents
DO OVER G DUP 0=
IF 2DROP | 1+ LEAVE THEN
LOOP ;

CREATE OTable MaxOrd 1+ CELLS ALLOT \ order for each el enent

CREATE Ccnt MaxOrd 1+ CELLS ALLOT \ count for each order
"ORD (ele -- addr) CELLS Orable + ;
"Cnt (i -- addr) CELLS Ccnt +
+Ccnt (ord --) "Cent 1 SWAP +!
Od' (ordele --) "ORD !

OCl ear OfTable MaxOrd 1+ CELLS ERASE
Ocnt MaxOrd 1+ CELLS ERASE ;

Cal c- Orders OoCl ear
For-All -El enents DO

| El eOrder \ compute order of elenent i
DUP +Ccnt \ update count for that order
| Ord! \ save the order

LOOP

Prt-Orders Gord 1+ 1
DO Gord | MOD 0=
IF (i divides order of G)
3 SPACES | '"'Gnt @2 .R
" elements of order " | 2 .R." : "
For-All-Elenents DO Il '"ORD @J =

IF | .Ele THEN
LOOP CR
THEN LOOP ;
Oders (grp# --) CR >Group
" Group number " Gnum.
." of Order " Gord . CR

Calc-Orders Prt-Orders

Wheat thislookslikein practiceis:

8 orders
Group number 8 of Order 6
1 el enments of order
3 elenents of order
2 elenments of order
0 el ements of order

Quhk
W o >
om

Cdc-Orders runs through the group cdculating the orders of the dements. For each
element it saves the order — and it also updates a count of how many times that order has
occurred. [Generaly, Groups32 has been coded to emphasi ze obviousness).

Most words at this eéve follow the Forth convention of removing their parameters from
the stack. The word “Orders’ removes the group number from the stack. It does not
leave anything on the stack as a result (it produces a printout). Orders is factored into
two separate words Cdc-Orders and Prt-Orders since the firs of these may be useful
independently. [Prt-Orders uses information in particular arrays rather than being passed
through the stack — but this word is not intended to be used independently.] Suppose, for
example, wewish to print alist of groups and the orders of dements that looks like this:

1 1 1

2 2 1 1

3 3 1 2

4 4 1 1 2
5 4 1 3 O
6 5 1 4

7 6 1 1 2 2
8 6 1 3 2 O
9 7 1 6

10 8 1 1 2 4
11 8 1 3 4 O
12 8 1.7 0 O
13 8 1.5 2 0
14 8 1.1 6 O
15 9 1 2 6
16 9 1 8 O

Where we have listed the group number, the order of the group, and then the number of
elements of each order (for each divisor of the group order). A table like this might be
used to scan the entire collection of groups to answer some questions about group orders
(like whether two groups having the same number of dements of esch order ae
isomorphic).

This custom table is obtained by

New- Prt - Or ders Gord 1+ 1

DO Gord | MO 0= \' I is a divisor of order(Q
IF | "Cnt @3 .R
THEN LOOP ;
New- Orders (grp# --) CR >Group
Guum 4 . R
Gord 4 .R

Calc-Orders New Prt-Orders

: All-Oders
For-All -Groups DO | New Orders Loop ;

We have produced a new printout routine but used the existing word which caculates
orders.

Extensible User Interface:

To usethe system at the level described above requires that the user knowsthe
name of every important command and what parameters are needed for it to act.
Groups32 was made useful to students by equipping it with an interface that givesalist
of commands and prompts for any additional information.

For speed, the interface uses “command completion”. The names of the commands
available to the user are stored. As the user types, the system checksif what has been
typed so far matches a stored command. There are three possihilities:

1. Theinput matches the sarting letters of more than one command.
2. Theinput matchesthe gtarting letters of exactly one command.
3. Theinput does not match the sarting letters of any command.

In the first case, the system waits for the user to type more letters. In the second case, the
system prompts for any input needed and carries out the command. In the third case, the
offending last letter is removed and the system beeps.

One interegting feature of this interface is the ease with which new commands can
be added. Suppose we wart to add the command New-Order (see above) to the menu.
We need to prompt for the input of a group number, and we will add a help comment. So
we define anew auxiliary word %New-Order:

%New- Or der
Hel p:

This prints a condensed |ist of orders of elenments of the

given group. For group 33 we get this output:

3316115 0 0 O

This shows that group 33 has order 16. The divisors of 16

are 1,2,4,8 and 16. There is 1 elenment of order 1,

15 el ements of order 2, and O el ements of orders 4, 8, 16.
Hel p;

Get-Gp New Oder

This new command isingdled by

>CMD New Order 9%N\ew Or der

