Math 103A - Winter,2001
Professor John J Wavrik

Quotient Groups

We use Group32 to generate $\mathrm{G}=\mathrm{S}_{4}$. We notice that S_{4} has a normal subgroup N of order 4. We determine the structure of the quotient group G / N.

STEP 1: S_{4} is generated by (1234) and (12):

CENTER	CENTRALIZER	CHART	CONJ-CLS
COSETS	EVALUATE	EXAMPLES	GENERATE
GROUP	HELP	INFO	ISOMORPHISM
LEFT	NORMALIZER	ORDERS	PERMGRPS
POWERS	QUIT	RESULT	RIGHT
SEARCH	STOP	SUBGROUPS	TABLE
X			
G1>> PERMGRPS			
CREATE	ELEMENTS	HELP	INFO
INSTALL	MAIN	MULTIPLY	QUIT
X			

```
PERM>> CREATE
Subgroup of Sn -- what is n? Number 4
    Put in generators as product of cycles.
    End with a blank line
Generator (1 1 2 3 4)
Generator (1 2)
Generator
Group is of order 24
A
A
A 
A
A
P (1 3 4 4 )
A
A
B \(\quad\left(\begin{array}{ll}3 & 4\end{array}\right)\)
C (2 3 3}
E (llll
K
F}\quad(\begin{array}{lll}{2}&{4}\end{array}
N (lllll
T (1 4 2 )
W}\quad(\begin{array}{llll}{1}&{4}&{2}&{3}\end{array}
I (\begin{array}{lll}{1}&{2}&{3}\end{array})
PERM>> INSTALL
    Install as table k (1..5) Number 1
```

PERM \gg MAIN			
CENTER	CENTRALIZER	CHART	CONU-CLS
COSETS	EVALUATE	EXAMPLES	GENERATE
GROUP	HELP	INFO	ISOMORPHISM
LEFT	NORMALIZER	ORDERS	PERMGRPS
POWERS	QUIT	RESULT	RIGHT
SEARCH	STOP	SUBGROUPS	TABLE
X			

Step 2: Look at the subgroups of $S_{\mathbf{4}}$

```
G1>> SUBGROUPS of Group Number 1
    ... wait
    * = Normal subgroup
    Generators Subgroup
        { }
        { B }
        {C }
        {F }
        {G }
        { H }
        {0 }
        {Q }
        { V }
        { X }
        { D }
        { I }
        { L }
        { P }
        { B G }
        { FO }
        { J }
        { R }
        { K }
        { H Q }
        {C V }
        { B C }
        { C G }
        { F G }
        { B O }
        { F H }
        { C H }
        { B Q }
        { D H }
        { B I }
                            * { A }
        { A B }
        {A C }
        {A F }
        {A G }
        {A H }
        {A O }
        { A Q }
        { A V }
        { A X }
        {A D E }
        { A I M }
        {A L T }
        {A P U }
        {ABGGH }
        {AFOQ }
        { A J Q S }
        {A H R W }
        { A K N X }
        * { A H Q X }
        {A C V X }
        {A B C D E F }
        {AC G I M O }
        {A F G L T V }
        {A B O P U V }
        {A F H J O Q S X }
        {A CHKNQ V X }
        { A B G H Q R W X }
    * { A D E H I L M P Q T U X }
    * {A B C D E F GH I J K L M NOP Q R S T U V W X }
```

Step 3: Look at cosets of subgroup 19, generated by H and Q
G1>> COSETS of subg generated by set: \{ hq \}

Step 4: Select representatives and do some arithmetic

G1>> EVALUATE	(use ' for inverse)	$b b=A$
G1>> EVALUATE	(use ' for inverse)	$C C=A$
G1>> EVALUATE	(use ' for inverse)	$d d=E$
G1>> EVALUATE	(use ' for inverse)	ee=
G1>> EVALUATE	(use ' for inverse)	$f f=A$
G1>> EVALUATE	(use ' for inverse)	ddd= A
G1>> EVALUATE	(use ' for inverse)	eee= A

Step 5: Translate to notation used in class

```
\([\mathrm{A}]=\mathrm{N}_{\mathrm{A}}=\{\mathrm{A} \mathrm{H} Q \mathrm{X}\}\)
\([B]=N_{B}=\{B G R W\}\)
\([C]=N C=\{C K N V\}\)
\([\mathrm{D}]=\mathrm{N}_{\mathrm{D}}=\{\mathrm{D} \mathrm{L} \mathrm{M} \mathrm{U}\}\)
\([E]=N_{E}=\{E\) I P T \(\}\)
\([F]=N_{F}=\{F J O S\}\)
[B], [C], and [F] are of order 2
[D] and [E] are of order 3
```

We can easily write a Cayley table for this group. However, since it is a group of order 6 we know it is either isomorphic to S_{3} or to Z_{6}. There is no element of order 6 , so it must be S_{3}. Thus $G / N \approx S_{3}$.

Step 6: Determine N

Notice that $N=\{A$ н Q \} . A is the identity while H, Q and X have order 2. This means that $\mathrm{N} \approx \mathrm{Z}_{2} \times \mathrm{Z}_{2}$. It might be interesting to look at this in terms of permutations. Go back to where we generated G :

The subgroup N consists of the permutations of the form (ab)(c d) together with the identity.
S_{4} is an extension of $Z_{2} \times Z_{2}$ by S_{3}.

The importance of being Normal:

We defined the multiplication of cosets by picking representatives: $[x][y]=[x y]$. It is true (but we didn't check) that we could pick any element in [B] and multiply by any other element in $[\mathrm{B}]$ and we would always get an element of $[\mathrm{A}]$. This justifies our assertion that $[B]$ is of order 2 .

Let's see what would happen if we picked a subgroup, also of order 4, which is not normal.

```
G1>> SUBGROUPS of Group Number 1
    ... wait
        * = Normal subgroup
\begin{tabular}{|c|c|}
\hline Generators & Subgroup \\
\hline 0 \{ \} & * \(\{\) A \} \\
\hline 1 \{ B \} & \{ A B \} \\
\hline \(2\{\mathrm{C}\}\) & \{ A C \} \\
\hline 3 \{ F \} & \{ A F \} \\
\hline \(4\{\mathrm{G}\) \} & \{ A G \} \\
\hline 5 \{ H \} & \{ A H \} \\
\hline 6 \{ O \} & \{ A O \} \\
\hline 7 \{ Q \} & \{ A Q \} \\
\hline 8 \{ V \} & \{ A V \} \\
\hline 9 \{ X \} & \{ A X \} \\
\hline 10 \{ D \} & \{ A D E \} \\
\hline 11 \{ I \} & \{ A I M \} \\
\hline 12 \{ L \} & \{ A L T \} \\
\hline 13 \{ P \} & \{ A P U \} \\
\hline
\end{tabular}
    14{B G } {A B G H }
15 {FO } {A F O Q }
16 { J } {A J Q S }
17 { R } { A H R W }
18 { K } { A K N X }
19 {H Q } *{ A H Q X }
20 { C V } { A C V X }
21{BC } {A B C D E F }
22{C G} {ACGGIMO}
23{ F G } {A F G L T V }
24{BO}{ {A B OP UV }
25 { F H } {A F H J OQ S X }
26 { C H } { A C H K N Q V X }
27 {BQ } {A B GHQ R W X }
28 { D H } *{ A D E H I L M P Q T U X }
```


The subgroups of order 4 which have one generator are cyclic, they are isomorphic to Z_{4}.
The subgroups of order 4 which have two generators are isomorphic to $Z_{2} \times Z_{2}$.

Let me pick the subgroup 14 which has two generators but is not normal.

```
G1>> COSETS of subg generated by set: { bg }
    Left Cosets Right Cosets
{ A B G H } { A B G H }
{CDMN } {C E I K }
{E FST } {D F J L }
{ I J O P } {M O S U }
{ K L U V } {N P T V }
{Q RW X } { Q R W X }
The subgroup { A B G H } is NOT a NORMAL subgroup
```

The element C is in the second right coset. The square of C is in the first coset. The element E is also in the second right coset. The square of E is in the third right coset.

```
G1>> EVALUATE (use ' for inverse) cc= A
G1>> EVALUATE (use ' for inverse) ee= D
```

This is what happens when the subgroup is not normal: we cannot define multiplication of cosets consistently just by choosing representatives. We get different ideas of what the square of the second coset should be: C tells us it it should be the first coset - but its companion, E , disagrees.

