Generators and Relations

Groups can often be conventiently described in terms of generators and relations. A group G is generated by a set of elements $S=\left\{x_{1}, \ldots, x_{k}\right\}$ if G is the smallest subgroup which contains the x_{i}. We write $G=\left\langle x_{1}, . ., x_{k}\right\rangle$ and call S a set of generators for G . G must contain inverses of the elements in S and also all products that can be formed of elements in S and their inverses. This set of products is the subgroup generated by S .

The Generators usually satisfy relations. Consider groups that have two generators x and y. A relation is given as and equality: $x^{3}=e, y^{2}=e$ are relations. The SEARCH command in Groups32 can be used to find the groups of orders 1-32 which have a given set of generators satisfying given relations:

```
G1>> SEARCH
Enter distinct generators as a string
e.g. RS means two generators R and S
    Generators: xy
Do you want these to generate the entire group? (y or n) Y
Enter the exact order for each generator.
Press Enter for no order specified
    X is of order 3
    Y is of order 2
A relation is of the form LHS = RHS
Put in LHS RHS or LHS ( if RHS is e )
        <Press ENTER to quit>
Generators:
    XY
Orders:
    X= 3
    Y= 2
RELATIONS:
-- Pressing ESC will abort the search --
        group order = 6 X = C Y = D
        group order = 6 X = B Y = D
        group order = 12 X = B Y = D
        group order = 18 X = C Y = B
        group order = 24 X = B Y = D
        group order = 24 X = F Y = E
```

We have asked for groups having a generator x of order 3 and a generator y of order 2. We have not imposed any additional relations on these generators. We obtain 6 groups. Let's look at the two groups of order 6:

```
G1>> CHART Order of Groups (1-32 or 0) Number 6
    7 8*
    There are 2 Groups of order 6
    1 abelian and 1 non-abelian
```

We have seen these groups many times before. Group 7 is isomorphic to Z_{6} (the abelian group of order 6) and group 8 is isomorphic to S_{3} (the nonabelian group of order 6).
\mathbf{Z}_{6}
Since G is abelian, there is an additional relation between x and y namely $y x$ $=x y$. We see that every element of G can be written as a product $x^{a} y^{b}$ where a is $0,1,2$ and b is 0,1 . We get 6 distinct products this way. The multiplication of two such products is determined by the additional relation: $x^{a} y^{b} x^{c} y^{d}=x^{a} x^{c} y^{b} y^{d}=x^{a+c} y^{b+d}$ where $a+c$ is taken $\bmod 3$ and $b+d$ is taken mod 2. We can make a Cayley table using this multiplication. This group is cyclic and $x y$ is an element of order 6 .
S_{3}
(or $y x \ln$ this case there is also an additional relation between x and y : $\mathrm{yx}=$ $x^{2} y=x^{-1} y$). We see, again, that every element of G can be written as a product $x^{2} y^{b}$ where a is $0,1,2$ and b is 0,1 . We get 6 distinct products this way. The multiplication of two such products is determined by the additional relation. The relation tells us how to move an x to the left past a y . We leave it as an exercise to the reader to show that:
$x^{a} y^{b} x^{c} y^{d}=x^{a} x^{2^{b} c} y^{b} y^{d}=x^{a+2^{b} c} y^{b+d}$ where the exponent of x is taken mod 3 and the exponent of y is taken mod 2 . Again we can take find the Cayley table for the multiplication.

Why only two groups of order $\mathbf{6 ?}$

Cauchy's Theorem assures us that a group of order 6 must have an element, x , of order 3 and an element, y , of order 2. The subgroup H generated by x is of order 3 and so of index 2. Subgroups of index 2 are always normal. Thus $z=y x y^{-1}$ must be an element of H and it must have order 3 . The only possibilities are $z=x$ and $z=x^{-1}$. From this we find that either $y x=x y$ or $y x=x^{-}$ y . The analysis above shows that x and y generate an abelian group of order 6 in the first case and a non-abelian group of order 6 in the second case.

How can we get a group of order $>\mathbf{6}$?

Here is one of the other groups listed which have two generators, one of order 3 and one of order 2. Notice that the generators are given as elements B and D respectively.

```
23 group order = 12 X = B Y = D
```

The matter is mysterious only if you assume that everything in the group can be written as a product $x^{a} y^{b}$. This would only give 6 elements.

G23>> EVALUATE	(use ' for inverse) $\mathrm{a}=\mathrm{A}$
G23>> EVALUATE	(use ' for inverse) $\mathrm{b}=\mathrm{B}$
$\mathrm{G} 23 \gg$ EVALUATE	(use ' for inverse) $\mathrm{b} b=\mathrm{C}$
$\mathrm{G} 23 \gg$ EVALUATE	(use ' for inverse) $\mathrm{ad}=\mathrm{D}$
G23>> EVALUATE	(use ' for inverse) $\mathrm{bd}=\mathrm{G}$
G23>> EVALUATE	(use ' for inverse) $\mathrm{b} b \mathrm{~d}=\mathrm{J}$

The only elements obtained by putting a product of " B " in front and a product of " D " in back are the 6 elements A, B, C, D, G, J.

Now yx is $\mathrm{DB}=\mathrm{E}$ which is not one of the 6 elements. We do not have a relation which allows us to "switch an y past an x". Neither the subgroup generated by B nor the subgroup generated by D is normal. G is not the product of these two subgroups.

G23>> SUBGROUPS of Group Number 23
... wait

Generators	Subgroup
0 \{ \}	* $\{$ A \}
1 \{ D \}	\{ A D \}
2 \{ I \}	\{ A I \}
3 \{ K \}	\{ A K \}
4 \{ B \}	\{ A B C \}
5 \{ F \}	\{ A F G \}
6 \{ E \}	\{ A E J \}
7 \{ H \}	\{ A H L \}
8 \{ D I \}	* $\{$ A D I K \}
9 \{ B D \}	* $\{$ A B C D E F G H I J K L \}

However, $\mathrm{DB}=\mathrm{E}$ is an element of order 3. So we do have a relation $(y x)^{3}=e$. This group is, in fact, the only one that has generators x of order 3, y of order 2 and satisfies $(y x)^{3}=e$:

```
G23>> SEARCH
Enter distinct generators as a string
e.g. RS means two generators R and S
    Generators: xy
Do you want these to generate the entire group? (y or n) Y
```

```
Enter the exact order for each generator.
Press Enter for no order specified
    X is of order 3
    Y is of order 2
A relation is of the form LHS = RHS
Put in LHS RHS or LHS ( if RHS is e )
            <Press ENTER to quit>
LHS RHS >> yxyxyx
Generators:
    XY
Orders:
    X= 3
    Y= 2
RELATIONS:
    YXYXYX= e
-- Pressing ESC will abort the search --
    23 group order = 12 X = B Y = D
```

The elements of this group can be written as products of B and D, but not with all the B's on the left.

EVALUATE	(use ' for inverse) $a=A$
G23>> EVALUATE	(use ' for inverse) $d=D$
G23>> EVALUATE	(use ' for inverse) b= B
G23>> EVALUATE	(use ' for inverse) bd= G
G23>> EVALUATE	(use ' for inverse) $\mathrm{bb}=\mathrm{C}$
G23>> EVALUATE	(use ' for inverse) bbd= J
G23>> EVALUATE	(use ' for inverse) $\mathrm{db}=\mathrm{E}$
G23>> EVALUATE	(use ' for inverse) db b $=\mathrm{F}$
G23>> EVALUATE	(use ' for inverse) dbd=
G23>> EVALUATE	(use ' for inverse) bdb=
G23>> EVALUATE	(use ' for inverse) bbdb=
G23>> EVALUAT	for

[It might be interesting to point out that this group is isomorphic to A_{4} which can be generated by $\mathrm{x}=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\mathrm{y}=\left(\begin{array}{ll}1 & 2\end{array}\right)(34)$ and for which $\mathrm{yx}=\left(\begin{array}{ll}2 & 4\end{array}\right)$ does have order 3.]

