
PHONG HUYNH
Final Project
Math 107

KNIGHT'S TOUR

The purpose of this project is to explore all the possible
moves that the Knight (chess piece) can move in an nxn
board. This is also known as the Knight's Tour. A
Knight's tour is a sequence of moves by a knight chess
piece, which may only make moves that simultaneously shift
one square along one axis and two along the other forming
an L shape, such that each square of the board is visited
exactly once. This is also a way in which we explore the
Hamiltonian path.
The following is an illustration of how the graphs should
look.

> restart;
> with(networks): with(linalg):
Warning, the names charpoly and rank have been redefined

Warning, the protected names norm and trace have been redefined and
unprotected

The Initial Purpose of the Knight's Tour

In this section, I am hoping to accomplish the initial
stage of developing a chessboard and hopefuly get some of
the knight moving procedures to work. Most importantly get
Maple to produce all the possible moves that a knight can
move.

> new(G):
With the new graph G. I want to create a board with an nxn
vertices using the following procedure called "board". The
purpose of this procedure is to give the general nxn board
of vertices.

By assigning an initial size value I don't have to keep on
changing the values within my procedures later in the
program. I can just change the Size value here and then
reproducing a new set of board and possible moves.

WARNING: DO NOT assign a big number for "Size > 5", unless
you have the time to sit and wait..........for a really
realllllllllllly long time.

> Size:=5;
 Size := 5
> board := proc(n): for i from 1 to n
 do for j from 1 to n
 do addvertex([[i,j]],G):
 od;
 od;
 end proc:
Warning, `i` is implicitly declared local to procedure `board`

Warning, `j` is implicitly declared local to procedure `board`

> board(Size);

By assigning a Size to this procedure we can have all the vertices stored in the graph G
with a Size-by-Size table.

 [5, 5]
> vertices(G);
 {[1, 2], [2, 1], [4, 5], [5, 1], [4, 3], [4, 4], [3, 5], [4, 1], [4,
2], [3, 3], [3, 4],

 [3, 1], [3, 2], [2, 3], [2, 4], [2, 5], [1, 4], [1, 5], [2, 2],
[5, 5], [5, 4], [5, 2],

 [5, 3], [1, 3], [1, 1]}

The following procedure is to figure out the possible moves that a knight can move

within an nxn board by assigning a vertex [i,j] to the procedure. Since the knight is
moving in an [i+1,j+2], [i+1,j-2], [i-1,j+2], [i-1,j-2], [i+2,j+1], [i+2,j-1], [i-2,j+1], or [i-
2,j-1] position, the procedure can be written as follow.

> possiblemoves := proc(v,n):
> w:=[seq(0,i=1..8)];
 w[1] := v + [2,1];
> w[2] := v + [1,2];
> w[3] := v + [-2,1];
> w[4] := v + [1,-2];
> w[5] := v + [-1,-2];
> w[6] := v + [-2,-1];
> w[7] := v + [-1,2];
> w[8] := v + [2,-1];
> for i from 1 to 8 do
 if ((0 < w[i][1]) and (w[i][1] < n+1) and (0 < w[i][2])
and (w[i][2] < n+1))
 then connect({v},{w[i]}, G)
 end if;
 end do;
end proc:
Warning, `w` is implicitly declared local to procedure `possiblemoves`

Warning, `i` is implicitly declared local to procedure `possiblemoves`

Notice that the result will not display all the vertices that connected to the initial vertex.
Instead it displays the edge that is being connected to the initial vertex.

> possiblemoves([2,3],4);
 e4

The resulting vertices of the initial vertex can be obtain by using the neighbors method.
This method will display all the vertices that are connecting to the initial vertex.
Unfortunately, this does not tell me anything. I don't want Maple to give me just a few
vertices that connected to the initial vertex.

neighbors([2,3],G);
 {[4, 4], [4, 2], [3, 1], [1, 1]}

I'm hoping that edges(G) would tell me something about all
the edges that are being connected.

> edges(G);
 {e3, e4, e2, e1}
>

Finally, the following procedure chessTable will generate a

chess table for the possiblemoves procedure that contains
all the possible moves (in vertices) with the given Size
value.

> chessTable:= proc(n): for i from 1 to n
 do for j from 1 to n
 do possiblemoves([i,j],n)
 od;
 od;
 end proc:

Warning, `i` is implicitly declared local to procedure `chessTable`

Warning, `j` is implicitly declared local to procedure `chessTable`

By calling Size in chessTable, I am able to generate all
the vertices on the chess board. YES!!!!! This is what I
want Maple to display. Hopefuly this will give me all the
vertices that I needed to work with.

> chessTable(Size);
ends(G);
 {{[3, 3], [5, 4]}, {[5, 1], [3, 2]}, {[4, 5], [3, 3]}, {[3, 2], [1,
3]}, {[4, 1], [3, 3]},

 {[4, 3], [2, 2]}, {[3, 3], [5, 2]}, {[3, 5], [1, 4]}, {[1, 4],
[2, 2]}, {[4, 2], [3, 4]},

 {[1, 2], [3, 3]}, {[3, 4], [5, 5]}, {[3, 2], [2, 4]}, {[2, 3],
[1, 5]}, {[4, 3], [3, 5]},

 {[3, 4], [5, 3]}, {[4, 5], [2, 4]}, {[3, 3], [1, 4]}, {[3, 4],
[1, 5]}, {[1, 2], [2, 4]},

 {[3, 5], [5, 4]}, {[4, 3], [2, 4]}, {[2, 1], [4, 2]}, {[1, 2],
[3, 1]}, {[4, 1], [5, 3]},

 {[2, 1], [3, 3]}, {[3, 3], [2, 5]}, {[4, 2], [5, 4]}, {[2, 3],
[1, 1]}, {[3, 1], [2, 3]},

 {[5, 1], [4, 3]}, {[4, 4], [2, 3]}, {[4, 4], [2, 5]}, {[4, 3],
[5, 5]}, {[3, 4], [1, 3]},

 {[3, 2], [1, 1]}, {[4, 2], [2, 3]}, {[3, 4], [2, 2]}, {[3, 1],
[5, 2]}, {[2, 5], [1, 3]},

 {[4, 1], [2, 2]}, {[4, 3], [3, 1]}, {[4, 4], [5, 2]}, {[3, 2],
[5, 3]}, {[4, 5], [5, 3]},

 {[4, 4], [3, 2]}, {[3, 5], [2, 3]}, {[2, 1], [1, 3]}}

Here is the result when use the draw(G) method. Notice

this is not the result that I want Maple to display.
Unfortunately, Maple is unable to produce a grid table that
I want it to.

> draw(G);

AHH! You would think that I would be giving up by now.
Wait until you see the next section.
>

Knight's Tour
With the help of Sonja Willis's project on Hamiltonian
Paths and Cayley Digraphs of Algebraic Group. I'm hoping
that it would help me in finding the tour for Maple to
graph. The following codes are taken from Sonja Willis's
project.

> continuepath := proc(Graph,path)
 local daugh;
 daugh:=sort([op(departures(path[1],Graph) minus
{op(path)})]);

 if daugh = []

 then RETURN ([path,false]);
 else RETURN ([[daugh[1],op(path)],true]);
 fi;
end:
> backtrack := proc(Graph, origpath)
 local bad, daugh, position, path ;
 path := origpath;
 do
 bad:=path [1];
 path:=path [2..nops(path)];
 if path = []
 then RETURN ([path, false]);
 fi;
 #print (path);
 daugh:=sort([op(departures(path[1],Graph) minus
{op(path)})]);
 member (bad,daugh,'position');
 #print(`da-po-ba`,daugh,position,bad);
 if position < nops(daugh)
 then RETURN ([[daugh[position + 1],op(path)],true]);
 fi;
 #print(`bac-path`,path);
 od;
end:
> HamiltonianPath := proc(Graph,start)
 local path, result;
 path := [start];
 do
 do
 result := continuepath (Graph,path);
 path := result[1];
 # print (path);
 if result[2] = false
 then break;
 fi;
 od ;

 if nops(result[1]) = nops(vertices(Graph))
 then RETURN (path);
 fi ;

 result:=backtrack (Graph,path);
 if result[2]=false
 then print (`NO PATH TRY ANOTHER VERTEX`); break ;
 else path :=result[1];
 fi;
 od;

end:

It is time for me to check out what this HamiltonianPath
procedures would give me. By calling my original graph G
and assigning an initial vertex, this is what
HamiltonianPath gives me.

> tour := HamiltonianPath(G,[1,1]);
>
 tour := [[5, 5], [3, 4], [1, 5], [2, 3], [3, 1], [5, 2], [4, 4], [2,
5], [1, 3], [2, 1],

 [4, 2], [5, 4], [3, 3], [1, 2], [2, 4], [4, 5], [5, 3], [4, 1],
[2, 2], [1, 4], [3, 5],

 [4, 3], [5, 1], [3, 2], [1, 1]]

It turns out that HamiltonianPath procedure does give me a
path that connects all the vertices on my chess board. It
works, but now, how am I going to transfer all these points
(vertices) into a grid table that I have always wanted?

Since Maple cannot produce a grid table, I'm hoping that
matrix will give me some kind of output that would be
similar to the grid table. Then again, it seems as though
matrix is the only thing that is close to a grid table.
Worth a try!

> m := matrix(Size,Size,0);

 := m













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

I am crossing my finger and hoping that the following codes
will produce the right matrix that display the path that
the Knight's tour gives.

> n := nops(tour):
 for i from 1 to n
 do m[tour[n-i+1][1],tour[n-i+1][2]] :=
i;
 od:
> matrix(m);













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

YEA HEW!!!!!!!!!!!!!! This is exactly what I wanted since
the beginning of the project. This is really exciting!

The following results are displayed by generating a 5 by 5
table. Notice that every time Maple generates, the results
are different. The reason for this is that the
HamiltonianPath is generating in a random form and it is
depending on the points that Maple pick to generate the
graph. The chronological number from 1 to Size-by-Size
represent the order in which the knight is moving.













1 10 5 18 3
14 19 2 11 6
9 22 13 4 17

20 15 24 7 12
23 8 21 16 25













1 14 19 8 25
6 9 2 13 18

15 20 7 24 3
10 5 22 17 12
21 16 11 4 23













1 18 5 12 3
8 13 2 17 6

19 22 7 4 11
14 9 24 21 16
23 20 15 10 25













1 4 11 16 25
12 17 2 5 10

3 20 7 24 15
18 13 22 9 6
21 8 19 14 23

>

Final Thoughts

WELL, The project turns out to be as what I wanted it to be but the task did not reach its
conclusion as easy as I thought. When I first started the project, I did not know what to
do and how to begin the task. Knight's tour seems to have a simple task, as I begin to
explore the tour and with the helps of Stefan Erickson, I find out that the simple task
become a really big task. The biggest challenge for me is to write a procedure that
teaches Maple to move the initial vertex to its final destination and then print out the
results in a gridded board. As you have read the step by step that I have written during
the mission in accomplishing the Knight's tour, it have taken me this long to have
mission accomplished! I am a happy man!! Thank you for following my task.
Special thanks to Professor J. Wavrik and Stefan Erickson
for helping me with this mission. And thanks Sonja Willis
for her HamiltonianPath codes.

	The Initial Purpose of the Knight's Tour
	Knight's Tour

