
 
LIEN TRAN 
Math 107B - Spring 2002 - Final Project 
 

CAKE-CUTTING 
 
OBJECTIVE 
The ability to fairly divide a cake among n-people is a great 
concern of individuals with siblings.  Apparently, the problem of 
getting a fair share of cakes is more important than it sounds.  
This topic has moved beyond the kitchen and was introduced 
into the world of mathematics by Hugo Steinhaus on September 
17, 1947.  In this final, I will explore the methods in which a 
cake can be divided equally among n-people.   
 
SOURCES 
1) www.mathworld.com 
2) Cake-Cutting Algoriths: Be Fair If You Can  
    by Jack Robertson and William Webb  
 
WITH HELP FROM 
Professor JOHN WAVRIK and STEFAN ERICKSON 
 
NOTE 
This final contains two bit-map images that have been created by 
me.   
So, please use a computer that supports bit-map image.   
The computers in the lab do not suppport bit-map images and 
overwrite the file leaving out the images. 
> restart: 
>  

In this section, I am exploring several possible algorithms that 
one can use to equally divide cakes. 

POSSIBLE ALGORITHMS FOR FAIR DIVISION OF CAKES 
 
CUT & CHOOSE algorithm (2 people) 
Step1 - person1 cut the cake 
Step2 - person2 chooses first  



              and the remaining piece goes to person1 
OUTCOMES (This algorithm uses (n-1) cuts) 
Person2 will always benefit despite the fact that the cake is or 
isn't divided equally.  If person1 slips and cut one piece of the 
cake bigger than the other, person2 will benefit from choosing 
the bigger piece since person2 gets to choose first.  Therefore, it 
is in the benefit of person1 to cut the cake as equally as he can.   
 
DOESN'T CUT IT algorithm (3 people) 
Step1 - person1 cuts a cake into two pieces so that  
              pieceA=1/3 of the cake and pieceB=2/3 of the cake 
Step2 - person2 cuts pieceB into two equal pieces so that 
              pieceB1=1/3=pieceB2 of the cake 
Step3 - person3 chooses one of three pieces (pieceA, pieceB1, or 
pieceB2) 
              then person1 chooses next 
              and the last piece goes to person2 
OUTCOMES (This algorithm uses (n-1) cuts) 
Person3 has the greatest advantage followed by person1 and 
person2, respectively.  If person1 does not cut the cake into two 
pieces that are 1/3 and 2/3 of the cake, person3 will benefit from 
choosing the piece that is >1/3 and leaving the piece that is < 2/3 
to be divided among person1 and peson2.  In this case, person1 
and person2 will not be able to get their fair share of the cake.  
In the second case, if person1 has cut the cake correctly but 
person2 does not divide the piece that is =2/3 of the cake into 
two equal pieces that are 1/3 each, then person3 will choose the 
piece that is >1/3, person1 will choose the piece that =1/3, and 
person2 is left with a piece that is <1/3.  Therefore, person2 will 
always get the disadvantages unless both person1 and person2 
cuts the cake evenly into three pieces that are =1/3 of the cake 
so that all three persons will be happy.                     
 
MOVING KNIFE algorithm (n people) 
Step1 - person1 place the knife on the left end of the cake  
             and continuously moves the knife to the right  
           - any other player can say "STOP" when he believes that  
             the portion to the left of the knife is 1/n of the cake  



             and that piece is given to the player who said "STOP"  
             and the player is out 
           - if more than one players say "STOP,"  
             then the piece can go to any one of the players 
Step2 to (n-1)  
           - Step1 is repeated for the remaining portion of the cake  
              by the remaining players 
Stepn - Since there is only one player left, he gets the last piece 
OUTCOMES (This algorithm uses (n-1) cuts) 
This is not a good algorithm for fair division of cakes because  
there are three disadvantages in using this algorithm to divide 
cakes.  One, the players may take advantage of the method and 
say "STOP" when the left portion is more than 1/n of the cake.  
Second, players who said "STOP" at the same time may argue 
over who gets the piece.  Third, it is unfair for the last player 
because he is assigned the last piece of the cake despite its 
size.  The last player will be the one to get the smallest portion 
because, when it comes to the last two players, the cutter has to 
keep the knife moving until the other player say "STOP."  
However, the other player does not have to say stop until he 
wants to and this gives him the authority to say stop when the 
remaining portion to the right of the cake is really small.  
Therefore, this algorithm does not have any "check and balance" 
system to maintain equality among the players.  
 
TRIMMING algorithm (n people) 
Step1 - person1 cuts a piece, 1/n of the cake 
Step2 - this piece is passed successively to  
              person2, person3,...,person(n-1) 
           - anyone who thinks the piece is bigger than 1/n trims  
              so that it is 1/n according to the trimmer. 
Step3 - person(n) takes the trimmed piece  
              if he thinks it is at least 1/n of the cake 
           - otherwise the trimmed piece goes to the last trimmer 
Step4 - repeast Step1 to Step3 on the remaining portion of cake  
              with n replaced by (n-1) 
           - repeat until only one player left  
OUTCOMES (This algorithm uses indefinite cuts) 



This is not a sufficient way of fairly dividing cakes into n-pieces.  
By trimming the cake, the players will end up with small/little 
pieces or even crumbs as their share of the cake.  Also, this 
method can take a really long time to finish because the players 
may not agree to each of the portions until these portions 
become little pieces of crumbs. 
>  

Now that we know how to divide cakes equally among n-people.  
Lets explore the ways in which we could divide cakes equally 
among two families with unequal number of members using the 
Ramsey Partitions.  The purpose of the Ramsey Partition is to 
divide a cake into k1/n and k2/n where n=k1+k2.  In other words, 
the cake has to be divided into a ratio of k1:k2 for 
familyA:familyB. 

RAMSEY PARTITIONS 
*********************************************************** 

RAMSEY PARTITION algorithm 

Step1 - With the ratio k1:k2 given,  

             choose any Ramsey partition for the ratio k1:k2 

Step2 - Ask either player to cut the cake  

             in the ratios given in the Ramsey partition 

Step3 - Ask the non-cutter to indicate which pieces  

             are acceptable 

Step4 - Assign the non-cutter pieces chosen from  

             the acceptable ones whose values sum to  

             the non-cutter's portion and the cutter  

             takes the remaining pieces 

*********************************************************** 



Below is an EXAMPLE of a RAMSEY PARTITION: 

Let familyA=k1=8 and familyB=k2=5 thus, the entire cake is 
8+5=13.  For the table below, the letters (A or B) to the right of a 
number indicates that this piece has been chosen by family A or 
B.  Also, the number inside the { } indicates pieces that are 
selected from the previous steps.   
 

Starting with a cake of 13/13 , the Ramsey Partition below 
requires 5-cuts/steps.   

(1)  FamilyB makes the first cut to divide the cake into two 
pieces: 8/13 and 5/13.  Then familyA gets to pick.   

If familyA thinks that one of the pieces is worth at least 8/13 of 
the cake, then familyA will pick that piece and the 5/13 goes to 
familyB.  The division process stops here because, now, familyA 
has {8/13} and familyB has {5/13}. 

However, if familyA does not think that any of the pieces is at 
least 8/13 of the cake, then familyA will take the piece that is at 
least 5/13.  Now, familyA has {5/13} and the piece that is 8/13 is 
divided in step(2).   

(2)  FamilyA cuts the remaining piece into two pieces: 5/13 and 
3/13.  Then familyB gets to pick.   

If familyB thinks that one of the pieces is worth at least 5/13 of 
the cake, then familyB will pick that piece and the 3/13 goes to 
familyA.  The division process stops here because, now, familyA 
has {5/13, 3/13} and familyB has {5/13}. 

However, if familyB does not think that any of the pieces is at 
least 5/13 of the cake, then familyB will take the piece that is at 
least 3/13.  Now, familyA has {5/13}, familyB has {3/13} and the 
piece that is 5/13 is divided in step(3). 

(3)  FamilyB cuts the remaining piece into two pieces: 3/13 and 
2/13.  Then familyA gets to pick.   



If familyA thinks that one of the pieces is worth at least 3/13 of 
the cake, then familyA will pick that piece and the 2/13 goes to 
familyB.  The division process stops here because, now, familyA 
has {5/13, 3/13} and familyB has {3/13, 2/13}. 

However, if familyA does not think that any of the pieces is at 
least 3/13 of the cake, then familA will take the piece that is at 
least 2/13.  Now, familyA has {5/13, 2/13}, familyB has {3/13} and 
the piece that is 3/13 is divided in step(4). 

(4)  FamilyA cuts the remaining piece into two pieces: 2/13 and 
1/13.  Then familyB gets to pick.   

If familyB thinks that one of the pieces is worth at least 2/13 of 
the cake, then familyB will pick that piece and the 1/13 goes to 
familyB.  The division process stops here because, now, familyA 
has {5/13, 2/13, 1/13} and familyB has {3/13, 2/13}. 

However, if familyB does not think that any of the pieces is at 
least 2/13 of the cake, then familyB will take the piece that is at 
least 1/13.  Now, familyA has {5/13, 2/13}, familyB has {3/13, 1/13} 
and the piece that is 2/13 is divided in step(5). 

(5)  FamilyB cuts the remaining piece into two pieces: 1/13 and 
1/13.  Then familyA gets to pick.   

If familyA thinks that one of the pieces is worth at least 1/13 of 
the cake and the remaining piece goes to familyB.  Now, familyA 
has {5/13, 2/13, 1/13} and familyB has {3/13,1/13,1/13}. 



 

The branches that are to the right are immediate steps to the 
Ramsey Partitions, and they are not considered as a complete 
Ramsey Partition.  However, the branch that goes straight down 
on the left is one of the many Ramsey Partitions for the ratio of 
k1=8:5=k2.  In other words, the set of {5,3,2,1,1,1} is a Ramsey 
Partition, where familyA gets {5,2,1} and familyB gets {3,1,1}. 

 

PROPERTIES OF RAMSEY PARTITIONS 

The example above is a Ramsey Partition because it satisfies 2 
properties: 

(1) A partition is Ramsey for the ratio k1:k2 if and only if the 
sums do not skip over either k1 or k2 when summing terms in the 
order they appear, leaving out whichever terms you wish.  



Applying this property to the set {5,3,2,1,1,1}, it is a Ramsey 
Partition because 5=5 and 5+3=8 so k2=5 and k1=8 are not 
skipped. 

(2) Let k1 and k2 be positive integers.  A partition of the integer 
k1+k2 is a Ramsey Partition in the ratio k1:k2 if and only if, for 
any subset of terms in the partition, there are parts which sums 
to k2 in the complementary subset if there are not parts which 
sums to k1 in that subset. 

 

Using these two properties, my goal is to produce a program that 
generates a table of all possible Ramsey Partitions for a given 
k1:k2 
> with(combinat): with(ListTools): 
Warning, the protected name Chi has been redefined and unprotected 
 
Warning, the assigned name Group now has a global binding 
 

What is the purpose of this procedure? 
The purpose of this procedure is to generate the sum of the 
elements in the list.  Notice that Maple displays the numbers in a 
list from the smallest to the largest, respectively.  Therefore, this 
procedure adds the numbers from right to left (or from last to 
first).  
> sums := proc(L)  
 
        # defining local variables 
        local S, i, j; 
 
        # initializing the set S 
        S := {}; 
 
        # this for-loop goes from 1 to the number of 
elements in the list L 
        for i from 1 to nops(L)    
  
          # this do-loop add the sequence of values from 1 
to the number of elements in  
          # the list L and combining it to the set S            
          do S := S union {add(L[j],j=i..nops(L))}; end do; 
 



        # returning the set S 
        return S;  
 
        end proc: 
Here is a simple test to see if my procedure works.  Apparently it 
does because it returns a list of the total starting at 4=4, 4+3=7, 
4+3+2=9,... 
> sums([1,1,2,3,4]); 
                                        {4, 7, 9, 10, 11} 

What is the purpose of this procedure? 
The purpose of this procedure is to call "sums" and store the 
result in a list to test whether or not the k1 and k2 are in my list 
of sums.  If so, then return true.  
> test := proc(k1,k2,L)  
 
        # defining local variables 
        local S, maxSum, mn, mx; 
 
        # calling sums to add the elements in list L and 
storing the result in S   
        S := sums(L); 
 
        # calling the function max to test the maximum 
elements in S 
        maxSum := max(seq(S[i],i=1..nops(S)));  
 
        # returns the minimum of k1 and k2 
        mn := min(k1,k2);  
 
        # returns the maximum of k1 and k2 
        mx := max(k1,k2); 
 
        # if this test is true, then this mean that maxSum 
will not skip k1 or k2  
        # because it cannot skip something that it does not 
reach 
        if maxSum < mn then return true;  
         
        # if this test is true, then we want to test if k1 
and k2 are in S 
        elif maxSum >= mx then return member(k1,S) and 
member(k2,S); 
 
        # otherwise, we just want to test if the minimum of 
k1 and k2 are in S 



        else member(mn,S); 
 
        end if;  
 
        end proc: 
Here is a simple test to see if my procedure works.  Apparently it 
does because it returns true when the numbers k1 and k2 are in 
the list of sums and false when they are not. 
 
For this case, 4 and 7 are in the list of sums which contains 
{4,7,910,11} 
> test(4,7,[1,1,2,3,4]); 
                                              true 

For this case, 5 and 6 are not in the list of sums which contains 
{4,7,9,10,11} 
> test(5,6,[1,1,2,3,4]); 
                                              false 

What does this procedure do? 
The purpose of this procedure is to test for property(2) by sub-
partitioning the list.  This gives the sublists and their 
complements. 
> SubPartitions := proc(Part) 
 
                 # defining local variables 
                 local SS, Subsets, i;    
    
                 # this creates a set from 1 to the number 
of elements in Part     
                 SS := {$1..nops(Part)}; 
 
                 # returns a set of all the subsets of SS 
                 Subsets := powerset(SS); 
 
                 # maps x to a list that contains x and a 
list that contains everything else 
                 # this gives a list that contains a 
sublist and its complements  
                 map(x->[convert(x,list),convert(SS minus 
x, list)], Subsets); 
                 subs({seq(i=Part[i],i=1..nops(Part))},%); 
 
                 end proc: 
Here is a simple test to see if my procedure works. Apparently it 



does because it returns (the sublist, its complement). 
> SubPartitions([1,1,2,3,4]); 
  {[[], [1, 1, 2, 3, 4]], [[1], [1, 2, 3, 4]], [[3], [1, 1, 2, 4]], 
[[1, 1, 2, 3, 4], []], 
 
        [[1, 2, 3, 4], [1]], [[2, 3, 4], [1, 1]], [[3, 4], [1, 1, 2]], 
[[1, 3, 4], [1, 2]], 
 
        [[1, 1, 3, 4], [2]], [[4], [1, 1, 2, 3]], [[1, 4], [1, 2, 3]], 
[[1, 1, 4], [2, 3]], 
 
        [[2, 4], [1, 1, 3]], [[1, 2, 4], [1, 3]], [[1, 1, 2, 4], [3]], 
[[1, 1], [2, 3, 4]], 
 
        [[2], [1, 1, 3, 4]], [[1, 2], [1, 3, 4]], [[1, 1, 2], [3, 4]], 
[[1, 3], [1, 2, 4]], 
 
        [[1, 1, 3], [2, 4]], [[2, 3], [1, 1, 4]], [[1, 2, 3], [1, 4]], 
[[1, 1, 2, 3], [4]]} 

What does this procedure do? 
The purpose of this procedure is to eliminate the partitions that 
does not satisfy the property(1) of the Ramsey Partition.  First, it 
calculates all of the possible partitions of the given k1 and k2.  
Then, it calls the test function to see check for property(1). 
> ramsey1 := proc(k1,k2) 
 
           # defining loval variables 
           local part, newPart, j; 
 
           # returns all of the partition of k1+k2 
           part := partition(k1+k2); 
 
           # selecting the partitions from part which 
satisfy the function test 
           newPart := select(L->test(k1,k2,L),part); 
 
           # returning the reversed version of newPart 
           return Reverse(newPart); 
            
           end proc: 
Here is a simple test to see if my procedure works.  
> R := ramsey1(3,5); 
  R := [[1, 2, 2, 3], [1, 1, 1, 2, 3], [1, 1, 1, 1, 1, 3], [1, 1, 1, 1, 
1, 1, 2], 
 
        [1, 1, 1, 1, 1, 1, 1, 1]] 

Choosing the 4th list inside list R, I use the SubPartitions to 
generate sublists and their complements.  



> S := SubPartitions(R[4]); 
  S := {[[], [1, 1, 1, 1, 1, 1, 2]], [[1], [1, 1, 1, 1, 1, 2]], [[2], 
[1, 1, 1, 1, 1, 1]], 
 
        [[1, 1, 1, 1, 1], [1, 2]], [[1, 1, 1, 1], [1, 1, 2]], [[1, 1, 
1], [1, 1, 1, 2]], 
 
        [[1, 1], [1, 1, 1, 1, 2]], [[1, 1, 1, 1, 1, 1, 2], []], [[1, 1, 
1, 1, 1, 2], [1]], 
 
        [[1, 1, 1, 1, 2], [1, 1]], [[1, 1, 1, 2], [1, 1, 1]], [[1, 1, 
2], [1, 1, 1, 1]], 
 
        [[1, 2], [1, 1, 1, 1, 1]], [[1, 1, 1, 1, 1, 1], [2]]} 

What does this procedure do? 
The purpose of this procedure is to check for property(2) by 
calling test to check every sublist. 
> ramsey2 := proc(k1,k2,L) 
 
           # defining local variables 
           local subParts, i; 
 
           # calling SubParition on L and setting it to 
subParts 
           subParts := SubPartitions(L); 
 
           # this for-loop goes from 1 to the number of 
elements in subParts 
           for i from 1 to nops(subParts)  
  
             do  
               # if test returns false, then this means 
that the sublist does not  
               # satisfies property(2) of the Ramsey 
Partitions so we return false 
               if (test(k1,k2,subParts[i][1]) = false)  
               then return false; end if;  
             end do; 
 
           # else we return true 
           return true; 
 
           end proc:               
Here is a simple test to see if my procedure works. 
> ramsey2(3,5,R[4]); 
                                              true 

Knowing that the three procedures above works, it is time to put 



it all together. 
What does this procedure do? 
The purpose of this procedure is to display the all of the 
partitions that satisfy the property(1) and property(2) of the 
Ramsey Partitions. 
> finallyDONE := proc(k1,k2) 
 
               # defining local variables  
               local R, L, i; 
 
               # initializing the list L 
               L := []; 
 
               # calling the ramsey1 on k1 and k2 to test 
for property(1) 
               R := ramsey1(k1,k2); 
 
               # this for-loop goes from 1 to the number of 
elements in R 
               for i from 1 to nops(R)  
 
                 do 
                   # if ramsey2 returns true for k1 and k2,  
                   # then reverse the elements in R[i] and 
place in L  
                   if ramsey2(k1,k2,R[i])  
                   then L := [op(L), Reverse(R[i])]; end 
if; 
                 end do; 
 
               # return the list L 
               return L; 
            
               end proc: 
Calling the procedure above for k1=8:5=k2, the following Ramsey 
Partitions are displayed. 
> f := finallyDONE(8,5); 
  f := [[5, 3, 2, 1, 1, 1], [5, 3, 1, 1, 1, 1, 1], [5, 2, 1, 1, 1, 1, 
1, 1], 
 
        [5, 1, 1, 1, 1, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1, 1, 1, 1], 
[3, 2, 2, 1, 1, 1, 1, 1, 1], 
 
        [3, 2, 1, 1, 1, 1, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1], 
 
        [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1, 1, 



1, 1, 1], 
 
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] 

However, this is not what I want.  So I use a for-loop to create a 
table that displays the partitions on seperate lines and YOILA, 
this is what I get. 
> for i from 1 to nops(f)  
   do printf("%d.   %a\n", i, f[i]) end do; 
1.   [5, 3, 2, 1, 1, 1] 
2.   [5, 3, 1, 1, 1, 1, 1] 
3.   [5, 2, 1, 1, 1, 1, 1, 1] 
4.   [5, 1, 1, 1, 1, 1, 1, 1, 1] 
5.   [4, 1, 1, 1, 1, 1, 1, 1, 1, 1] 
6.   [3, 2, 2, 1, 1, 1, 1, 1, 1] 
7.   [3, 2, 1, 1, 1, 1, 1, 1, 1, 1] 
8.   [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 
9.   [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1] 
10.   [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 
11.   [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 

>  
One may ask for the reason why we bother to write a program 
that generates all of the Ramsey Partitions when it is a lot easier 
to use the partition of [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... (n-
times)] to divide the cakes into n-pieces.  The answer is that the 
Ramsey Partitions provide all of the possible ways to divide the 
cake.  So that individuals who are concern with the least number 
of cuts that are required to divide the cake can look at the 
different partitions and compare.  Notice that in the example 
above, the first partition of [5,3,2,1,1,1] only requires 5-cuts 
whereas the last partition of [1,1,1,1,1,1,1,1,1,1,1,1,1] requires 
12-cuts. 

Now, that we are familiar with some of the algorithms to fairly 
divide cakes, I want to write a program to calculate the area of 
the piece.  

EXPLORATION SECTION 
 Assume that the cake is a unit circle that is being divide by a 
line L.  For example, in the diagram below, we want to calculate 
the area of the shaded region.   



 
To do this we need: 
(areaOfShadedRegion) + (areaOfTriangle) = (theta/2Pi) ( Pi*R^2), 
which implies that 
                                   areaOfShadedRedion = (theta/2Pi) ( Pi*R^2) - 
(areaOfTriangle), note that R=1 for unit circle 
                                   areaOfShadedRedion = (theta/2Pi) ( Pi*1) - 
(areaOfTriangle), notice that Pi cancels out 
                                   areaOfShadedRedion = (theta/2) - 
(areaOfTriangle) 
and so:  
(1st)  
We need to find theta, which is (vector1 . vector2) / (||vector1|| . 
||vector2||) = cos(theta) 
Note that vector1 and vector2 are taken from the coordinates 
between the line and the circle. 
(2nd)  
Now, calculate areaOfTriangle = (1/2)*d*R*sin(theta)   
(3rd) 
After we know theta and the areaOfTriangle, we can substitute 
the solution back into the equation in red to solve for the 
areaOfShadedRegion. 



 
What is the purpose of this procedure? 
The purpose of this procedure is to find the coordinates of 
intersection betwee nthe lines and the unit circle. 
> findingXY := proc(line) 
 
             # defining local variables 
             local myCircle, answer, x1, x2, y1, y2; 
              
             # defining a unit circle  
             myCircle := x^2 + y^2 = 1; 
              
             # solving a linear system for values of x and 
y 
             answer := solve({myCircle,line},{x,y}); 
 
             #x1 := answer[1][1]; 
             #y1 := answer[1][2]; 
             #x2 := answer[2][1]; 
             #y2 := answer[2][2];                
              
             end proc: 
In this example, the procedure returns {y,x} , {y,x} 
> findingXY(y=x/3-1); 
                              {y = -1, x = 0}, {y = -4/5, x = 3/5} 

In this example, the procedure returns {x,y} , {y,x} 
> findingXY(y=2*x/3+1); 
                                    -12 
                               {x = ---, y = 5/13}, {x = 0, y = 1} 
                                    13 

>  
>  
>  
Since the position of x and y changes depending on the equation 
of the line, I could not figure out how to obtain the values of x 
and y from the procedure in order to calculate for d = [(x1-
x2)^2+(y1-y2)^2]^(1/2).  So I do not know how to proceed. 
 
CLOSING THOUGHTS 
I started this project with the goal of exploring ways in which I 
can divide cakes and other desserts into pieces with equal area 
using only vertical cuts.   However, the more I research the topic 
of cake-cutting, the more my project changes.  My findings 
consist more of experiments rather than the actual programming 



so it is difficult to place together a final project with programs.  
There are so many facts to consider.  Thanks to the help 
provided by Stefan in explaining the algorithm of Ramsey 
Partitions, I have decided to concentrate my final project on 
writing a program for this algorithm which will display a table of 
all the Ramsey Partitions.  However, the program for Ramsey 
Partitions that I have written works for small k1 and k2 and will 
become inefficient for large k1 and k2. 
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	If familyA thinks that one of the pieces is worth at least 8/13 of the cake, then familyA will pick that piece and the 5/13 goes to familyB.  The division process stops here because, now, familyA has {8/13} and familyB has {5/13}.
	However, if familyA does not think that any of the pieces is at least 8/13 of the cake, then familyA will take the piece that is at least 5/13.  Now, familyA has {5/13} and the piece that is 8/13 is divided in step(2).
	(2)  FamilyA cuts the remaining piece into two pieces: 5/13 and 3/13.  Then familyB gets to pick.
	If familyB thinks that one of the pieces is worth at least 5/13 of the cake, then familyB will pick that piece and the 3/13 goes to familyA.  The division process stops here because, now, familyA has {5/13, 3/13} and familyB has {5/13}.
	However, if familyB does not think that any of the pieces is at least 5/13 of the cake, then familyB will take the piece that is at least 3/13.  Now, familyA has {5/13}, familyB has {3/13} and the piece that is 5/13 is divided in step(3).
	(3)  FamilyB cuts the remaining piece into two pieces: 3/13 and 2/13.  Then familyA gets to pick.
	If familyA thinks that one of the pieces is worth at least 3/13 of the cake, then familyA will pick that piece and the 2/13 goes to familyB.  The division process stops here because, now, familyA has {5/13, 3/13} and familyB has {3/13, 2/13}.
	However, if familyA does not think that any of the pieces is at least 3/13 of the cake, then familA will take the piece that is at least 2/13.  Now, familyA has {5/13, 2/13}, familyB has {3/13} and the piece that is 3/13 is divided in step(4).
	(4)  FamilyA cuts the remaining piece into two pieces: 2/13 and 1/13.  Then familyB gets to pick.
	If familyB thinks that one of the pieces is worth at least 2/13 of the cake, then familyB will pick that piece and the 1/13 goes to familyB.  The division process stops here because, now, familyA has {5/13, 2/13, 1/13} and familyB has {3/13, 2/13}.
	However, if familyB does not think that any of the pieces is at least 2/13 of the cake, then familyB will take the piece that is at least 1/13.  Now, familyA has {5/13, 2/13}, familyB has {3/13, 1/13} and the piece that is 2/13 is divided in step(5).
	(5)  FamilyB cuts the remaining piece into two pieces: 1/13 and 1/13.  Then familyA gets to pick.
	If familyA thinks that one of the pieces is worth at least 1/13 of the cake and the remaining piece goes to familyB.  Now, familyA has {5/13, 2/13, 1/13} and familyB has {3/13,1/13,1/13}.
	�
	The branches that are to the right are immediate steps to the Ramsey Partitions, and they are not considered as a complete Ramsey Partition.  However, the branch that goes straight down on the left is one of the many Ramsey Partitions for the ratio of k1
	PROPERTIES OF RAMSEY PARTITIONS
	The example above is a Ramsey Partition because it satisfies 2 properties:
	(1) A partition is Ramsey for the ratio k1:k2 if and only if the sums do not skip over either k1 or k2 when summing terms in the order they appear, leaving out whichever terms you wish.  Applying this property to the set {5,3,2,1,1,1}, it is a Ramsey P
	(2) Let k1 and k2 be positive integers.  A partition of the integer k1+k2 is a Ramsey Partition in the ratio k1:k2 if and only if, for any subset of terms in the partition, there are parts which sums to k2 in the complementary subset if there are not p
	Using these two properties, my goal is to produce a program that generates a table of all possible Ramsey Partitions for a given k1:k2
	Now, that we are familiar with some of the algorithms to fairly divide cakes, I want to write a program to calculate the area of the piece.
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