
Leobardo Rosales

Final

math 107B

This project is concerned with several examples of sets and functions which can be
constructed iteratively. These sets and functions are important ones, for they have been
the source of examples and counter-examples for analysts and topologists. As such, this
project deals not only with the technical challenges of reproducing the construction of
these examples, but we will also discuss their relevance.

 We start with an interesting example, the Cantor Set and function.

Cantor Set
The Cantor Set is a subset of the interval [0,1] which was discovered by Georg Cantor
and presented in the appendix of a paper written in 1883. The set is constructed as
follows, we start with the interval [0,1]. We remove the open middle segment (1/3,2/3)
from this interval, and we are left with two closed segements, [0,1/3] and [2/3,1]. We
grab each of these segments and remove the middle thirds from them, so that we are left
with the union of the closed intervals [0,1/9],[2/9,1/3],[2/3,7/9], and [8/9,1]. We then
continue this process. What is left is what we call the Cantor Set.

This set has remarkable properties. Firstly, we should remark that this set is non-empty.
We always remove the middle thirds of intervals in constructing the set, and as such, we
will never remove the endpoints of any segment from the previous step of the
construction. Thus, the points 0,1/9,2/9,1/3 and so on will be in the Cantor Set. However,
much more is left than just these endpoints, in fact so much is left over as to make the
Cantor Set uncountable. The proof is simple, once we identify that the Cantor Set is the
set of all number in [0,1] whose ternary decimal expansion contains only 0's and 1's. Such
a set is uncountable by a diagonalization argument. For supposing that we had such an
enumeration of numbers, then we could list them as a sequence of points a(n) in their
ternary represenation as follows:

a(0)= .020200020020...
a(1)= .220220020000...
a(2)= .000022222022...

and so forth. However, then by letting A be the number whose nth decimal place is a 0 if
the nth decimal place of a(n) is 2, and vice versa, we get that A is in the Cantor Set but is
different from any a(n) in our enumeration. Thus, the Cantor Set must be uncountable.

The Cantor Set is also compact, perfect, and its closure has an empty interior. That the
Cantor Set is compact is easy to see, for it is the countable intersection of the compact
sets [0,1/3], [2/3,1], [0,1/9], [2/9,1/3], [2/3,7/9], [8/9,1], and so forth. The Cantor Set is
also totally disconnected, meaning that we cannot find two distinct points in the Cantor

Set that can be connected by a continuous function on [0,1] whose image lies totally
inside the Cantor Set. Thus, the Cantor Set is in some respects very meaty. However, in
other respects the Cantor Set is also very thin, in particular with respect to measure which
we shall discuss later.

Now, how can we use maple to better understand the Cantor Set? My first goal was to
devise an algorithm which given and i and a k, gives the ith point which is an endpoint of
a segment removed at the kth step of the construction of the Cantor Set. The algorithm
is as follows:
> cantorpoint:= proc(i,k)
option remember ;
if i=1 then 0 else
if i mod 2 = 0
then cantorpoint(i-1,k)+(1/(3^k)) ;
else cantorpoint(i-1,k)+((3^((ifactors(i-1)[2][1][2])-
1))/(3^k)) ;
fi fi end;
cantorpoint ,i kproc () :=
option ;remember

 = i 1 0if then
else

 = modi 2 0 + ()cantorpoint , − i 1 k /1 ^3 kif then
 + ()cantorpoint , − i 1 k ^3 ([]()ifactors − ielse

end if
end if

end proc

/) − [][]1 2 1 2 1 ^3 k

The algorithm is recursive. The ith point is given by adding an appropriate amount to the
previous point, what you add depends highly on the divisibility of i by 2. In this
algorithm, for each k, i ranges from 1 to 2^(k+1).

To verify the validity of this algorithm, let us make a list of the cantor points:
> cantorsequence:=(k)->
[seq(cantorpoint(i,k),i=1..2^(k+1))];

 := cantorsequence → k []()seq ,()cantorpoint ,i k = i .. 1 2
() + k 1

and let us thus list the points used in the construction of the cantor set for the steps 1,2,3:
> cantorsequence(1);







, , ,0

1
3

2
3 1

> cantorsequence(2);






, , , , , , ,0

1
9

2
9

1
3

2
3

7
9

8
9 1

> cantorsequence(3);







, , , , , , , , , , , , , , ,0

1
27

2
27

1
9

2
9

7
27

8
27

1
3

2
3

19
27

20
27

7
9

8
9

25
27

26
27 1

This all checks out. We see that on the second step of the construction, for example, after
having removed the segment (1/3,2/3), we then remove (1/9,2/9) and (7/9,8/9). Thus
cantorsequence(2) gives all of the important points of our construction, including 0 and
1. So, now let us make a procedure that gives us what is left at the kth step of the Cantor
Set construction. Specifically, given k=1 this procedure will tell us that we have removed
the segment (1/3,2/3) from [0,1], leaving us with the union of the closed segments [0,1/3]
and [2/3,1]. We will do so by making a procedure that spits out a list of lists which is to
represent a union of closed intervals. Thus in the case for k=1, this procedure will give
[[0,1/3], [2/3,1]] as the answer. So:
> cantorset:=(k)->[seq([cantorpoint(2*i-
1,k),cantorpoint(2*i,k)],i=1..(2^k))];

 := cantorset → k [(seq ,[],()cantorpoint , − 2 i 1 k ()cantorpoint ,2 i k = i .. 1 2k])

and now let us see what is left after steps 1,2,3,and 4:
> cantorset(1);







,






,0

1
3







,

2
3 1

> cantorset(2);






, , ,






,0

1
9







,

2
9

1
3







,

2
3

7
9







,

8
9 1

> cantorset(3);






, , , , , , ,






,0

1
27







,

2
27

1
9







,

2
9

7
27







,

8
27

1
3







,

2
3

19
27







,

20
27

7
9







,

8
9

25
27







,

26
27 1

> cantorset(4);






,0

1
81







,

2
81

1
27







,

2
27

7
81







,

8
81

1
9







,

2
9

19
81







,

20
81

7
27







,

8
27

25
81







,

26
81

1
3







,

2
3

55
81, , , , , , , , ,










,

56
81

19
27







,

20
27

61
81







,

62
81

7
9







,

8
9

73
81







,

74
81

25
27







,

26
27

79
81







,

80
81 1, , , , , , 




Now we may illustrate another remarkable fact about the Cantor Set, which is that it has
Lebesgue measure zero. We can see this most readibly by investigating the measure of
the complement of the Cantor Set on [0,1]. In the first step of the construction, we
remove the open interval (1/3,2/3), which has measure 1/3. At the second step, we
remove two disjoint intervals of length 1/9, each of which is disjoint from the first
interval removed. We proceed, at each kth step removing 2^(k-1) disjoint intervals that
are also disjoint from anything else removed, that are of length 3^k. Since all of the
segments are mutually disjoint, we may get the measure of the complement of the Cantor
Set by adding all of the measures of each of the removed segments, which in light of my
previous statements, can be evaluated as the infinite sum starting from 1 of 2^(k-1)/3^k.
This is a geometric series which evaluates to 1, the measure of [0,1], so that the Cantor
Set must have zero measure.

Let us test this through data. First, we write a program which given a disjoint union of
sets represented by a list of two element lists, will give the measure of that set by merely
subtracting endpoints and totalling the results:
> measure:= proc(x)
L:=0 ;
for i from 1 to nops(x) do L:=L+(x)[i][2]-(x)[i][1] od ;
L ;
end;
Warning, `L` is implicitly declared local to procedure `measure`

Warning, `i` is implicitly declared local to procedure `measure`

measure xproc () :=
local ;,L i

; := L 0 for to do end doi ()nops x := L + − L [][]x i 2 [][]x i 1 L
end proc

;

Then by calculating some examples, we can see the behavior of the measure of each step
of the construction, which should go to zero:
> measure(cantorset(1));

2
3

> measure(cantorset(2));
4
9

> measure(cantorset(3));
8
27

> evalf(measure(cantorset(4)));
.1975308642

> evalf(measure(cantorset(8)));
.03901844231

> evalf(measure(cantorset(15)));
.002283658261

Now we would like a way to visualize the steps taken in constructing the Cantor Set. We
would like to construct a function such that given a k, this function is 1 on the segments
removed up to the kth step of the construction of the Cantor Set, and is zero everywhere
else.

Conceptually this is no problem at all, given that we have already devised a program
which gives the cantor points. The idea is that at each step k, what is removed lies
between cantorpoint(i,k) and cantorpoint(i+1,k) for each i between 1 and 2^(k+1)-1

that is even. Thus, ideally we should define our function, which we shall call
ComplementFunction(x,k) as

ComplementFunction(x,k)= 1 if for some even i between 1 and 2^(k+1)-1 ,
cantorpoint(i,k) < x < cantorpoint(i+1,k)
 0 everywhere else.

Now is where we run into some difficulties. Basically, we are attempting to define a
sequence of functions that are defined piecewise. However, the number of pieces varies
with k. Even though maple does provide one with immediate tools in order to define
piecewise functions, it does not allow for the pieces to vary. In other words, we can only
define functions where the pieces are set and definite.

This nothwithstanding, there are two methods we can use to get around this obstruction.
One is involving sums, which is what we will use now, and the other involves do-loops.
What we can do is define a function of x,i, and k which is 1 if cantorpoint(2*i,k) < x <
cantorpoint(2*i+1,k). In essence, for a fixed k, this function draws each of the pieces
where our ComplementFunction will be 1, individually. Everywhere else this
complementfunction will be zero.
> complementfunction:= proc(x,i,k)
if cantorpoint(2*i,k) < x and x < cantorpoint(2*i+1,k)
then 1 else 0
fi end ;
complementfunction , ,x i kproc () :=

if then else end if and < ()cantorpoint ,×2 i k x < x ()cantorpoint ,× + 2 i 1 k 1 0
end proc

So, for example, for k=1 we only removed one segment, and so there will be only one
pice to graph at i=1:
> plot('complementfunction(x,1,1)',x=0..1,discont = true);

Up to step k=2, we removed three segments. So complementfunction should draw three
heights at i=1,2 and 3:
> plot('complementfunction(x,1,2)',x=0..1,discont = true);

> plot('complementfunction(x,2,2)',x=0..1,discont = true);

> plot('complementfunction(x,3,2)',x=0..1,discont = true);

Notice that the graph at i=2,k=2 is the same for i=1,k=1.

Now, to get ComplementFunction, we do the clever thing and sum
complementfunction for all the values of i that give us all of the even numbers between
1 and 2^(k+1)-1. This gives:
> ComplementFunction:= (x, k) ->
sum('complementfunction(x,i,k)', 'i'=1..((2^k)-1));

 := ComplementFunction → (),x k ∑
 = ' 'i 1

 − 2k 1

' '()complementfunction , ,x i k

To make an analogy, what we have done is build the four walls of a house seperately, and
then join them together in the end. Let us plot ComplementFunction for several k:
> plot('ComplementFunction(x,1)',x=0..1,discont = true);

> plot('ComplementFunction(x,2)',x=0..1,discont = true);

> plot('ComplementFunction(x,3)',x=0..1,discont = true);

> plot('ComplementFunction(x,4)',x=0..1,discont = true);

As we can see, the cantor set occupies less and less space on the interval [0,1], as
advertised.

Our next topic of interest is the Cantor Function. This function is obtained from a limit of
a sequence of functions directly obtained from the construction of the Cantor Set. The
construction is as follows, we start with the first step of the construction of the Cantor Set
where we have removed the middle third of the interval [0,1]. We define our first
function to be 1/2 on that segment removed, (1/3,2/3). We define this function to be 0 at
x=0, and 1 at x=1. For the rest of the values, we simple make the straight line
connections, so that our function looks like:

This is the first function in our sequence. For the next function, we consider all of the
segments removed up to the second step of the Cantor Set construction, which are
(1/9,2/9),(1/3,2/3), and (7/9,8/9). We define our function to be 1/4 on the first segment,
1/2 on the second, and 3/4 on the third. We let it be 0 at 0 and 1 at 1, and make the
straight line connections everywhere else, so that our function looks like:

We then proceed as such. What we will get is a sequence of uniformly convergent
continuous functions that must converge to a continuous function. We call this limiting
function the Cantor Function, which has very interesting properties. We have constructed
our sequence of functions so that at the kth step of the construction of the Cantor Set, all
of our functions after this step are all fixed constants on each segment removed up to the
kth step of the construction. Thus, our limiting function will be constant on all of the
segments removed in the construction of the Cantor Set, which has measure 1. On each of
these segments, the Cantor Function is differentiable and has derivative zero. Thus, the
Cantor Function is differentiable almost everywhere on [0,1] with derivative zero.
However, the Cantor Function is a limit of increasing functions, and so must be non-
decreasing. In fact, each function in our sequence leading up to the Cantor Function has
value 0 at 0 and 1 at 1, thus the value of the Cantor Function is 0 at 0 and 1 at 1. Thus, we
have managed to produce a function that is differentiable almost everywhere on [0,1]
with derivative 0, and yet it manages to climb up from 0 all the way up to one! As Jason
Lee remarked, if you blink on a set of measure zero, the Cantor Function is up there.

Let us now write a program which gives us our sequence of functions which lead up to
the Cantor Function. The main obstacle is the same as the one in the program for the
ComplementFunction, which is that our sequence of functions are defined piecewise but
how many pieces and where they start and end changes at each step. However, we use the
same technique of using sums here as was used in ComplementFunction.

Thus, firstly we make a function which accounts for the places where our sequence of
functions are constant:
> cfsteps:=proc(x,i,k)

if cantorpoint(2*i,k) < x and x <= cantorpoint(2*i+1,k)
then i/(2^k) else 0
fi end ;
cfsteps , ,x i kproc () :=

 and < ()cantorpoint ,×2 i k x ≤ x ()cantorpoint ,× + 2 i 1 k /i ^2 kif then
0else

end if
end proc

for each k, cfsteps draws each individual piece of our kth function where it is constant.
To get a function that is constant on all of the appropriate segements, we simply do as
before and take a sum:
> cfallsteps:= (x,k) -> sum('cfsteps(x,i,k)', 'i'=1..((2^k)-
1));

 := cfallsteps → (),x k ∑
 = ' 'i 1

 − 2k 1

' '()cfsteps , ,x i k

Now, for a fixed k, we must make all of the straight line connections. Again, we make
each piece seperately. Since each piece is a line, we can readibly come up with a formula
based on the cantor points. First we make some preliminary definitions:
> cflinepart1:= (x,i,k) -> ((3^k)/((2^k)(cantorpoint(2*i,k)-
cantorpoint(2*i-1,k))))*x
;

 := cflinepart1 → (), ,x i k 3k x
(()2k − ()cantorpoint ,2 i k ()cantorpoint , − 2 i 1 k)

> cflinepart2:= (i,k) ->
(3^k)*(((i-1)*cantorpoint(2*i,k)-i*cantorpoint(2*i-
1,k))/((2^k)(cantorpoint(2*i,k)-cantorpoint(2*i-1,k))));

 := cflinepart2 → (),i k 3k (− () − i 1 ()cantorpoint ,2 i k i ()cantorpoint , − 2 i 1 k
(()2k − ()cantorpoint ,2 i k ()cantorpoint , − 2 i 1 k

)
)

 and now we define each line:
> cfline:=proc(x,i,k)
if cantorpoint(2*i-1,k) < x and x <= cantorpoint(2*i,k)
then cflinepart1(x,i,k)+cflinepart2(i,k) else 0
fi end ;
cfline , ,x i kproc () :=

 and < ()cantorpoint ,× − 2 i 1 k x ≤ x ()cantorpoint ,×2 i kif then
 + ()cflinepart1 , ,x i k ()cflinepart2 ,i k

0else
end if

end proc

We are now ready to define our sequence. We define CantorFunction(x,k) to be our
sequence of functions, and we use the same trick of using sums:

> CantorFunction:=(x,k)-
>sum('cfline(x,i,k)','i'=1..(2^(k)))+'cfallsteps(x,k)' ;

 := CantorFunction → (),x k +










∑
 = ' 'i 1

2k

' '()cfline , ,x i k ' '()cfallsteps ,x k

Let us plot this for several k:
> plot('CantorFunction(x,1)',x=0..1);

> plot('CantorFunction(x,2)',x=0..1);

> plot('CantorFunction(x,3)',x=0..1);

> plot('CantorFunction(x,4)',x=0..1);

> plot('CantorFunction(x,5)',x=0..1);

> plot('CantorFunction(x,6)',x=0..1);

> plot('CantorFunction(x,7)',x=0..1);

> plot('CantorFunction(x,8)',x=0..1);

the Cantor Function is also referred to as the devil's staircase, and we can see why.
Graphically we can also be convinced that these curves are converging uniformly.
Indeed, each successive curve will be constant where the previous one was, so that the
maximum difference between one function in our sequence and another after it must
occur somewhere in between the places where the first curve is constant. As such, then it
is only a matter of getting our straight line connections to be sufficiently close to each
other, which pictorially we can see is not such a far-fetched thing to do.
 One can now contemplate what would happen if instead of removing the middle thirds
in the construction of the Cantor Set, we remove some other length strictly between 0 and
1. If we do this, we get what is called the General Cantor Set. These sets have interesing
properties as well. They are all uncountable, perfect, compact, and are totally
disconnected. However, it is possible to construct a General Cantor Set that has positive
measure if we allow how much we remove at each step change. Moreover, given any
number strictly between 0 and 1, we can produce a general cantor set that has that value
as its measure. Let us investigate the General Cantor Set.

General Cantor Set
Our task will be to produce an algorithm which gives us the points in the construction of
the General Cantor Set. More specifically, given an i,k and a b, this algorithm will give
us the ith point used in the kth step of the construction of the cantor set according to the
rule that we remove the middle b of each segment. For now, we regard the b as fixed at
every step, and b is always strictly between 0 and 1.

This algorithm will be a doubly recursive one. We will first manually produce the four
points that are used in the first step of the general construction, which will directly
depend on b. Then we will build on these points to get all the other points for every step
beyond the first step. As such, the first set of points is given by:
> firstgencantset:= proc(b) [0,(1/2)*(1-b),(1/2)*(1+b),1]
end;

 := firstgencantset proc () end procb [], , ,0 − × + /1 2 b /1 2 + /1 2 ×/1 2 b 1

one can check that the segment ((1/2)*(1-b),(1/2)*(1+b)) has length b. Now we define a
preliminary function, which we also used in the original Cantor Set, but that we describe
explicitly here for simplicity.
> factorsoftwo:= (i)-> ifactors(i)[2][1][2];

 := factorsoftwo → i ()ifactors i
2
1
2

Now we define our points:
> gencantpoint:=proc(i,k,b)
if k=0 then 1 ; else
if k=1 then (firstgencantset(b))[i] ; else
if i=1 then 0 else
if i mod 2 = 0 then
if factorsoftwo(i)=1 then gencantpoint(i-1,k,b)+(((1/2)*(1-
b))^k) ;
else gencantpoint(i*(2^(1-factorsoftwo(i))),k+1-
factorsoftwo(i),b) ; fi ;
else if factorsoftwo(i-1)=1 then gencantpoint(i-
1,k,b)+b*(((1/2)*(1-b))^(k-1)) ;
else gencantpoint((i-1)*(2^(1-factorsoftwo(i-1)))+1,k+1-
factorsoftwo(i-1),b) ;
fi ; fi ; fi ; fi ; fi ; end ;

]

1 then
 + (), , − 1 k b ^() − /1 2 ×/1 2 b k

gencantpoint , ,i k bproc () :=
 = k 0 1if then

else
 = k 1 [()firstgencantset b iif then

else
 = i 1 0if then

else
 = modi 2 0if then

 = ()factorsoftwo iif
gencantpoint i

gencantpoint ×i ^2 () − 1 (factorsoftwo i ,(else
 + − k 1 ()factorsoftwo i b,)

end if
else

 = ()factorsoftwo − i 1 1if then
 + ()gencantpoint , , − i 1 k b ×b − /1 2 ×/1 2

gencantpoint ×() − i 1 ^2 (− factorsoftwo(else
 + − k 1 ()factorsoftwo − i 1 b,)

end if
end if

end if
end if

end if
end proc

gencantset ,k bproc () :=
[(seq ,[],()gencantpoint , ,× − 2 i 1 k b ()gencantpoint , ,×2 i k b = i ..

end proc







,






,0

)

) ,

])

^()b () − k 1
 +)1 (− i 1 1

1 ^2 k

1
3







,

2
3 1







,






,0

1
3







,

2
3 1







, , ,






,0

1
9







,

2
9

1
3







,

2
3

7
9







,

8
9 1

This is a formidable algorithm, one that uses a heavy recursion. In order to get the ith
point used in the kth step, this algorithm not only investigates the the nature of the i, but
it also looks at the divisibility of i-1 by 2, and then draws on the points used in the
previous step of the construction.

Now we define as before, a procedure which lists out the sets that are left over at each
step in our construction:
> gencantset:=proc(k,b) [seq([gencantpoint(2*i-
1,k,b),gencantpoint(2*i,k,b)],i=1..(2^k))] end;

Now we can check that algorithm is correct, by putting in the value of b=1/3. This should
give us the regular Cantor Set, and we list gencantset and cantorset for several values of
k to verify this:
> gencantset(1,1/3);

> cantorset(1,1/3);

> gencantset(2,1/3);

> cantorset(2);






, , ,






,0

1
9







,

2
9

1
3







,

2
3

7
9







,

8
9 1

> gencantset(3,1/3);






, , , , , , ,






,0

1
27







,

2
27

1
9







,

2
9

7
27







,

8
27

1
3







,

2
3

19
27







,

20
27

7
9







,

8
9

25
27







,

26
27 1

> cantorset(3);






, , , , , , ,






,0

1
27







,

2
27

1
9







,

2
9

7
27







,

8
27

1
3







,

2
3

19
27







,

20
27

7
9







,

8
9

25
27







,

26
27 1

> gencantset(4,1/3);






,0

1
81







,

2
81

1
27







,

2
27

7
81







,

8
81

1
9







,

2
9

19
81







,

20
81

7
27







,

8
27

25
81







,

26
81

1
3







,

2
3

55
81, , , , , , , , ,










,

56
81

19
27







,

20
27

61
81







,

62
81

7
9







,

8
9

73
81







,

74
81

25
27







,

26
27

79
81







,

80
81 1, , , , , , 




> cantorset(4);






,0

1
81







,

2
81

1
27







,

2
27

7
81







,

8
81

1
9







,

2
9

19
81







,

20
81

7
27







,

8
27

25
81







,

26
81

1
3







,

2
3

55
81, , , , , , , , ,










,

56
81

19
27







,

20
27

61
81







,

62
81

7
9







,

8
9

73
81







,

74
81

25
27







,

26
27

79
81







,

80
81 1, , , , , , 




It seems to check out. Now out of curiosity, let us put in b=1/2 and list some of the steps:
> gencantset(1,1/2);







,






,0

1
4







,

3
4 1

> gencantset(2,1/2);






, , ,






,0

1
16







,

3
16

1
4







,

3
4

13
16







,

15
16 1

> gencantset(3,1/2);






, , , , , , ,






,0

1
64







,

3
64

1
16







,

3
16

13
64







,

15
64

1
4







,

3
4

49
64







,

51
64

13
16







,

15
16

61
64







,

63
64 1

> gencantset(4,1/2);






,0

1
256







,

3
256

1
64







,

3
64

13
256







,

15
256

1
16







,

3
16

49
256







,

51
256

13
64







,

15
64

61
256







,

63
256

1
4, , , , , , ,










,

,

3
4

193
256







,

195
256

49
64







,

51
64

205
256







,

207
256

13
16







,

15
16

241
256







,

243
256

61
64







,

63
64

253
256, , , , , , ,







,

255
256 1 




Now, let us measure take the measure the intervals left in each step of this construction:
> measure(gencantset(1,1/2));

1
2

> measure(gencantset(2,1/2));

1
4

> measure(gencantset(3,1/2));
1
8

> measure(gencantset(4,1/2));
1
16

We see that the measure of this cantor set will be zero. Indeed, any general cantor set will
have measure zero when b is fixed. This is again more apparent when we investigate the
measure of the compleement of such a general cantor set on [0,1]. The length of the first
interval removed is b. We are left with two intervals of length (1/2)*(1-b). At the second
step, we remove two intervals each of length b*(1/2)*(1-b). All of the segments removed
are disjoint. As such, at the kth step, we remove 2^k segments of length b*((1/2)*(1-
b))^k. All of these segements will be disjoint, so to get the measure of the complement of
this Cantor Set, we sum the lengths of each of the pieces. Including the first step, we get
the sum from 0 to infinity of (2^k)*b*((1/2)*(1-b))^k. The summand simplifies to b*(1-
b)^k. This is again a geometric series, which will sum to 1.

At this point one can continue as in the Cantor Set and define a general Devil's Staircase
based on the General Cantor Set.
Our next example deals with a classic question which comes to the mind of most
undergraduate mathematics students. Is every continuous function differentiable? The
answer is no, since the absolute value function is continuous at zero but not differentiable
there. However, we can ask, is there a function which is continuous everywhere but
differentiable nowhere? The answer is in the affirmative, and we now explore an example
of such a function.

Van der Waerden Nowhere Differentiable Function
Our example of a continuous nowhere differentiable function is due to Bartel Leendert
van der Waerden, and it will be obtained from taking the sum of a sequence of functions.
This sequence of functions is best described through graphs. The first function is a simple
sawtooth:

the second function is another saw tooth, with four teeth:

However, the height of each sawtooth is reduced by a half to 1/4. We proceed as such, at
each kth step getting a function that has 2^k sawteeth, each of height 1/2^k. The sum of

these functions is uniformly convergent by the Weierstrauss M-test, since the kth
function is bounded by 1/2^k. Thus, we call the resulting sum the Van der Waerden
Function, and it is continuous since it is the uniformly convergent sum of a sequence of
continuous functions. However, it fails to be differentiable anywhere on [0,1]. I shall give
some reasoning why later.

Now let us write a program that gives us the nth partial sum of our sequence of sawtooth
functions. First, we must get this sequence of functions. This task is easy enough given
our strategies. We first define each of the pieces of each sawtooth, and then sum them all
in the end:
> nowherediffeven:= proc(x,i,k)
if 2*i/(2^(k+1)) <= x and x < (2*i+1)/(2^(k+1))
then 2*x-(2*i/(2^k)) else 0
fi end ;
nowherediffeven , ,x i kproc () :=

 and ≤ ×2 /i ^2 () + k 1 x < x ()/× + 2 i 1 ^2 () + k 1 × − 2 x × /2 i ^2 kif then
0else

end if
end proc

> nowherediffodd:= proc(x,i,k)
if (2*i+1)/(2^(k+1)) <= x and x < (2*i+2)/(2^(k+1))
then -2*x+((2*i+2)/(2^k)) else 0
fi end ;
nowherediffodd , ,x i kproc () :=

 and ≤ ()/× + 2 i 1 ^2 () + k 1 x < x ()/× + 2 i 2 ^2 () + k 1if then
− × + 2 x ()/× + 2 i 2 ^2 k
0else

end if

end proc

These describe the left and right pieces of each sawtooth. Now, we add all the pieces up
using our sum technique:
> nowherediffseq:= proc(x,k)
if k=1
then if x <= 1/2 then x else -x+1 fi
else sum('nowherediffeven(x,i,k)', i=0...(2^k)-
1)+sum('nowherediffodd(x,i,k)', i=0...(2^k)-1)
fi end ;
nowherediffseq ,x kproc () :=

 = k 1 if then else end if ≤ x /1 2 x − + x 1if then
()sum ,' '()nowherediffeven , ,x i k = i .. 0 − ^2 k 1else

()sum ,' '()nowherediffodd , ,x i k = i .. 0 − ^2 k 1 +
end if

end proc

Let us plot our sequence:
> plot('nowherediffseq(x,1)',x=0..1);

> plot('nowherediffseq(x,2)',x=0..1);

> plot('nowherediffseq(x,3)',x=0..1);

> plot('nowherediffseq(x,4)',x=0..1);

> plot('nowherediffseq(x,5)',x=0..1);

As we can see, each successive function has more peaks. We now define the nth partial
sum of these functions, which shall approximate the Van der Waerden Function:
> nowherediff:=(x,N)-> sum('nowherediffseq(x,k)',k=1..N);

 := nowherediff → (),x N ∑
 = k 1

N

' '()nowherediffseq ,x k

Let us plot this function:
> plot('nowherediff(x,1)',x=0..1);

> plot('nowherediff(x,2)',x=0..1);

> plot('nowherediff(x,3)',x=0..1);

> plot('nowherediff(x,3)',x=0..1);

> plot('nowherediff(x,4)',x=0..1);

> plot('nowherediff(x,5)',x=0..1);

> plot('nowherediff(x,6)',x=0..1);

> plot('nowherediff(x,7)',x=0..1);

> plot('nowherediff(x,9)',x=0..1);

So why does the Van der Waerden Function fail to be differentiable? The main idea is
that at each step of the sum, we add more peaks. The function will certainly not be
differentiable at the top of each of these peaks. However, for any other point, what occurs
is that we add so many peaks which occur on smaller and smaller intervals that we can
get this point to be between two peaks, so just like the absolute value function at 0, the
difference quotient at this point will have different limits depending on whether we take it
from the left or the right.
We now change gears and move on to the topic of space filling curves. We know the
interval of points [0,1] is an uncountable set. As such, it is impossible to find a function
defined on the natural numbers that is onto the unit interval. However, it is a simple task
to come up with a function that maps the unit interval onto the whole real line. We could
take:

f(x):= − ()cot πx

with f(0)=f(1)=1.

This shows that the cardinality of the unit segment is the same as the real number line.
Now the question is, can we find a map from the unit segment [0,1] that is onto the unit
square [0,1]x[0,1]? The answer is in the affirmative, as was shown by Giuseppe Peano
and David Hilbert. The remarkable conclusion is that [0,1] and [0,1]x[0,1] are of the
same size. Furthermore, through our discussion of the Cantor Function, it is trivial to see
that Cantor Set can be mapped onto [0,1]. Thus, our misleadingly thin set the Cantor Set
in reality has so many points in it that we can map the set onto [0,1]x[0,1]!

Such a curve that maps the unit interval onto the unit square is called a space-filling
curve, and for good reason. However, Eugen Netto proved that any continuous map from
[0,1] to [0,1]x[0,1] (or the unit cube) that is onto must fail to be injective. All of our
examples will be onto and continuous, and we will readily see how they fail to be
injective.

Peano's Space Filling Curve
Peano gave a wondeful example of a space-filling curve. Like the Cantor Function, the
Peano Curve can be constructed as the limit of a sequence of curves. The first curve in
the sequence maps [0,1] onto:

again, we reiterate that this is a vector-valued function, so that the above red line is the
image of our function. The image of the second function in our sequence is:

What we have done is taken the unit square and divided it into four squares. We then took
the image of our original function, halfed it, then we rotated it 90 degrees clockwise and
drew it on the first square. This gives us the first one fourth of our above image. To get
the second fourth, we again half the size of our first image, and this time translate the
image up by a half. We get the last two fourths again by translations and rotations of the
first image.

To get the image of the next function, we apply the same transformations to the second
image. We will get:

One will note that the first fourth of this image is the previous one rotated clockwise by a
right angle.

If we proceed as such, we will get a sequence of continuous functions which will
converge uniformly to another continuous function. This limiting function, which we will
call the Peano Curve, will turn out to be onto the unit square.

Our task now is to come up with an algorithm which will allow us to graph the sequence
of functions which lead up to the Peano Curve. Our strategy is simple, we will first derive
a procedure which lists for us the "peano points." We note from above that our sequence
of functions consist of straight lines pieced together at a number of vertices. We call this
sequence of vertices the peano points. If we can come up with a procedure that at k will
list out the peano points at k, then producing the kth function in our sequence is merely
connecting each of these vertices in the right order. We start by first manually producing
the peano points for the first step:
> peanopoints1:=[[0,0],[1/2,1/2],[1,0]];

 := peanopoints1 





, ,[],0 0 






,

1
2

1
2 [],1 0

let us plot these points and see that indeed, if we join them in order we get the first
function in our sequence:
> with(plots):
> pointplot(peanopoints1,color=red);

Now, to get the next set of peano points, we merely apply the four transformations to the
previous points. We define these transformations now using:
> rotate:=(x,y)->[(x[1])*(cos(y))-
(x[2])*(sin(y)),(x[1])*(sin(y))+(x[2])*(cos(y))];

 := rotate → (),x y [], − x1 ()cos y x2 ()sin y + x1 ()sin y x2 ()cos y

so that:
> peanotransform1:=(x)->(1/2)*rotate(x,-Pi/2)+[0,1/2];

 := peanotransform1 → x +
1
2







rotate ,x −

1
2 π 






,0

1
2

> peanotransform2:=(x)->(1/2)*x+[0,1/2];

 := peanotransform2 → x +
1
2 x 






,0

1
2

> peanotransform3:=(x)->(1/2)*x+[1/2,1/2];

 := peanotransform3 → x +
1
2 x 






,

1
2

1
2

> peanotransform4:=(x)->(1/2)*rotate(x,Pi/2)+[1,0];

 := peanotransform4 → x +
1
2







rotate ,x 1

2 π [],1 0

As a check, we apply the first transformation to the first peano points, which should give
us the first three vertices of the second function in our sequence:
> pointplot(map(peanotransform1,peanopoints1),color=red);

Now, let me display my algorithm:
> peanopoint:=proc(i,k)
option remember;
if k=1 then (peanopoints1)[i+1];
else if i=0 then [0,0];
else if i <= (2^(2*k-3)) then
map(peanotransform1,[seq(peanopoint(j,k-1),j=0..(2^(2*k-
3)))])[(2^(2*k-3))-i+1];
else if i <= (2^(2*k-2)) then
map(peanotransform2,[seq(peanopoint(j,k-1),j=0..(2^(2*k-
3)))])[i-(2^(2*k-3))+1];
else if i <= 3*(2^(2*k-3)) then
map(peanotransform3,[seq(peanopoint(j,k-1),j=0..(2^(2*k-
3)))])[i-(2^(2*k-2))+1];
else
map(peanotransform4,[seq(peanopoint(j,k-1),j=0..(2^(2*k-
3)))])[(2^(2*k-1))-i+1];
fi; fi; fi; fi; fi; end;

peanopoint ,i kproc () :=
option ;remember

 = k 1 []peanopoints1 + i 1if then
else

 = i 0 [],0 0if then

else
 ≤ i ^2 ()× − 2 k 3 map peanotransform1,(if then

[]()seq ,()peanopoint ,j − k 1 = j .. 0 ^2 ()× − 2 k 3)
 − + ^2 ()× − 2 k 3 i 1]

else
 ≤ i ^2 ()× − 2 k 2 map peanotransform2,(if then

[seq ,()peanopoint ,j − k 1 = j .. 0 ^2 ()× − 2 k
 − + i ^2 ()× − 2 k 3 1]

else
 ≤ i ×3 ^2 ()× − 2 k 3 map peanotransform3(if then

[(seq ,()peanopoint ,j − k 1 = j .. 0 ^2 (2 k
 − + i ^2 ()× − 2 k 2 1]

map peanotransform4,(else
[(seq ,()peanopoint ,j − k 1 = j .. 0 ^2 (2 k

 + ^2 ()× − 2 k 1 i 1]
end if

end if
end if

end if
end if

end proc

 := peanopointset → k []()seq ,()peanopoint ,i k = i .. 0 2
() − 2 k 1



, ,






,

[

] [

]) [

]) [

()3)

,
× −

× −

)3)

)3)
−



 [],0 0

1
2

1
2 [],1 0

Again, this algorithm is recursive and is based on the four transformations. Given an i
and a k, this algorithm gives the ith peano point of the kth function in our sequence, the
order in which the algorithm gives our points being in the order that we later will want to
connect them. Here is how it works, one can check that at each step k, there are 2^(2k-
1)+1 peano points. What we do is divide the task of finding the current peano points from
the previous set into five jobs. To get the peano points at the kth step, we start by setting
the first point (at i=0) to (0,0). Then, we get the first fourth of the remaining points by
taking the points at the step k-1, applying the first transformation, and then taking those
points in reverse order. We then get the second, third and last fourth of the points by
applying the second, third and fourth transformations respectively to the points from step
k-1, and also taking them in reverse order.

At this point, we can again write a procedure which lists out all of the points at a step:
> peanopointset:=(k)->[seq(peanopoint(i,k),i=0..(2^(2*k-
1)))];

and now we list the points for several k:
> peanopointset(1);

> peanopointset(2);







, , , , , , , ,[],0 0 






,

1
4

1
4







,0

1
2







,

1
4

3
4







,

1
2

1
2







,

3
4

3
4







,1

1
2







,

3
4

1
4 [],1 0

> peanopointset(3);

[],0 0 





,

1
8

1
8







,

1
4 0 






,

3
8

1
8







,

1
4

1
4







,

3
8

3
8







,

1
4

1
2







,

1
8

3
8







,0

1
2







,

1
8

5
8







,0

3
4







,

1
8

7
8, , , , , , , , , , , ,










,

1
4

3
4







,

3
8

7
8







,

1
2

3
4







,

3
8

5
8







,

1
2

1
2







,

5
8

5
8







,

1
2

3
4







,

5
8

7
8







,

3
4

3
4







,

7
8

7
8







,1

3
4, , , , , , , , , , ,







,

7
8

5
8







,1

1
2







,

7
8

3
8







,

3
4

1
2







,

5
8

3
8







,

3
4

1
4







,

5
8

1
8







,

3
4 0 






,

7
8

1
8 [],1 0, , , , , , , , , 




> peanopointset(4);

[],0 0 





,

1
16

1
16







,0

1
8







,

1
16

3
16







,

1
8

1
8







,

3
16

3
16







,

1
4

1
8







,

3
16

1
16







,

1
4 0 






,

5
16

1
16, , , , , , , , ,










,

,

3
8 0 






,

7
16

1
16







,

3
8

1
8







,

7
16

3
16







,

3
8

1
4







,

5
16

3
16







,

1
4

1
4







,

5
16

5
16







,

3
8

1
4, , , , , , , , ,







,

7
16

5
16







,

3
8

3
8







,

7
16

7
16







,

3
8

1
2







,

5
16

7
16







,

1
4

1
2







,

3
16

7
16







,

1
4

3
8







,

3
16

5
16, , , , , , , , ,







,

1
8

3
8







,

1
16

5
16







,0

3
8







,

1
16

7
16







,0

1
2







,

1
16

9
16







,

1
8

1
2







,

3
16

9
16







,

1
8

5
8, , , , , , , , ,







,

3
16

11
16







,

1
8

3
4







,

1
16

11
16







,0

3
4







,

1
16

13
16







,0

7
8







,

1
16

15
16







,

1
8

7
8







,

3
16

15
16, , , , , , , , ,







,

1
4

7
8







,

3
16

13
16







,

1
4

3
4







,

5
16

13
16







,

1
4

7
8







,

5
16

15
16







,

3
8

7
8







,

7
16

15
16







,

1
2

7
8, , , , , , , , ,







,

7
16

13
16







,

1
2

3
4







,

7
16

11
16







,

3
8

3
4







,

5
16

11
16







,

3
8

5
8







,

5
16

9
16







,

3
8

1
2







,

7
16

9
16, , , , , , , , ,







,

1
2

1
2







,

9
16

9
16







,

5
8

1
2







,

11
16

9
16







,

5
8

5
8







,

11
16

11
16







,

5
8

3
4







,

9
16

11
16







,

1
2

3
4, , , , , , , , ,







,

9
16

13
16







,

1
2

7
8







,

9
16

15
16







,

5
8

7
8







,

11
16

15
16







,

3
4

7
8







,

11
16

13
16







,

3
4

3
4







,

13
16

13
16, , , , , , , , ,







,

3
4

7
8







,

13
16

15
16







,

7
8

7
8







,

15
16

15
16







,1

7
8







,

15
16

13
16







,1

3
4







,

15
16

11
16







,

7
8

3
4, , , , , , , , ,







,

13
16

11
16







,

7
8

5
8







,

13
16

9
16







,

7
8

1
2







,

15
16

9
16







,1

1
2







,

15
16

7
16







,1

3
8







,

15
16

5
16, , , , , , , , ,







,

7
8

3
8







,

13
16

5
16







,

3
4

3
8







,

13
16

7
16







,

3
4

1
2







,

11
16

7
16







,

5
8

1
2







,

9
16

7
16







,

5
8

3
8, , , , , , , , ,







,

9
16

5
16







,

5
8

1
4







,

11
16

5
16







,

3
4

1
4







,

11
16

3
16







,

5
8

1
4







,

9
16

3
16







,

5
8

1
8







,

9
16

1
16, , , , , , , , ,







,

5
8 0 






,

11
16

1
16







,

3
4 0 






,

13
16

1
16







,

3
4

1
8







,

13
16

3
16







,

7
8

1
8







,

15
16

3
16







,1

1
8, , , , , , , , ,







,

15
16

1
16 [],1 0, 




and we also plot them:

> pointplot(peanopointset(1),color=red);

> pointplot(peanopointset(2),color=red);

> pointplot(peanopointset(3),color=red);

> pointplot(peanopointset(4),color=red);

> pointplot(peanopointset(5),color=red);

What one expects from these plots is to be convinced that the peano points at the kth step
include all of the peano points for all of the previous steps. Furthermore, the union over
all k of the peano points at k is a dense set in the unit square. Lastly and more
importantly, each of our curves in our sequence goes through the peano points for all of
the steps before it, so that our limiting function must take as its values the union over k of
all of the peano points, which is a dense set on [0,1]x[0,1]. Now, the Peano Curve will be
continuous, and so must take the compact set [0,1] to a compact and hence closed subset
of [0,1]x[0,1]. However, a dense set is part of its image, which is the set of all peano
points. This loosely shows that our Peano Curve is onto the unit square.

 Given our peano point algorithm, it is now an easy business to construct our sequence of
functions. Since our sequence of functions are merely straightlines pieced together, we
repeat our trick of first defining each piece seperately for each step. This results in:
> peanocurvepart:=(t,i,k)->(peanopoint(i+1,k)-
peanopoint(i,k))*t+peanopoint(i,k);
peanocurvepart :=

 → (), ,t i k + () − ()peanopoint , + i 1 k ()peanopoint ,i k t ()peanopoint ,i k

With each piece defined as above, we will not be able to simply sum each piece to get our
kth function. Thus, we will now illustrate the second solution in defining a sequence of
piecewise defined functions, which involves using a do loop. Here is our algorithm:
> peanocurve:=proc(t,k)
if t=1
then [1,0] else
for i from 0 to (2^(2*k-1)) do

if (i/(2^(2*k-1))) <= t and t < ((i+1)/(2^(2*k-1))) then
peanocurvepart((t*(2^(2*k-1)))-i,i,k); break; else fi; od;
fi; end;
Warning, `i` is implicitly declared local to procedure `peanocurve`

peanocurve ,t kproc () :=
local ;i

 = t 1 [],1 0if then
i 0 ^2 ()× − 2 k 1for from to doelse

 and ≤ /i ^2 ()× − 2 k 1 t < t ()/ + i 1 ^2 ()× − 2 k 1if then
;()peanocurvepart , , − ×t ^2 ()× − 2 k 1 i i k break

else
end if

end do
end if

end proc

This algorithm works as follows, we are given a t and a k, and we want to evaulate the
kth function in our sequence at t. Now, the kth function in our sequence is composed of
2^(2k-1) straight lines which are consecutive peano points joined together. What this
algorithm does is divide the unit interval [0,1] into 2^(2k-1) pieces. Then in a do loop,
this algorithm determines in which of these pieces t lies in. Once it has determined that t
lies in the ith interval, it assigns to it the value corresponding to the line connecting the
ith and i+1th peano point. Let us see the algorithm at work and graph some curves. First
we must define:
> peanocurve1:=(t,k)->peanocurve(t,k)[1];

 := peanocurve1 → (),t k ()peanocurve ,t k
1

> peanocurve2:=(t,k)->peanocurve(t,k)[2];
 := peanocurve2 → (),t k ()peanocurve ,t k

2

So that we can parametrically graph our curves. Let us see the curves for k up to six:
> plot(['peanocurve1(t,1)','peanocurve2(t,1)',t=0..1]);

> plot(['peanocurve1(t,2)','peanocurve2(t,2)',t=0..1]);

> plot(['peanocurve1(t,3)','peanocurve2(t,3)',t=0..1]);

>
plot(['peanocurve1(t,4)','peanocurve2(t,4)',t=0..1],numpoin
ts=200);

>
plot(['peanocurve1(t,5)','peanocurve2(t,5)',t=0..1],numpoin
ts=513);

>
plot(['peanocurve1(t,6)','peanocurve2(t,6)',t=0..1],numpoin
ts=2049);

We note that after k=3, our functions are no longer injective, and where one curve in our
sequence failed to be injective, the curves after it also failed. Thus, our limiting function
will not be injective. We also note the increasing amount of iterations needed to produce
a respectable graph.

Hopefully, one is convinced from the graphs that the Peano Curve will be onto and
continuous. However, is it differentiable? The answer is in the extreme negative. The
Peano Curve as it turns out, is nowhere differentiable.
Our next example of a space-filling curve is due to Hilbert. It can also be constructed as
the limit of a sequence of function. Like the Peano Curve, the Hilbert Curve will be
continuous and nowhere differentiable, and onto but not injective. Let us explore the
algorithm derived to produce the Hilbert Curve.

Hilbert's Space Filling Curve
As in the Peano Curve, we first start with a small set of points:
>
hilbertpoints1:=[[0,0],[1/2,1/2],[0,1/2],[1/2,1],[1/2,0],[1
,1/2],[1/2,1/2],[1,1]];

 := hilbertpoints1 





, , , , , , ,[],0 0 






,

1
2

1
2







,0

1
2







,

1
2 1 






,

1
2 0 






,1

1
2







,

1
2

1
2 [],1 1

Now, if we connect these points in order we will get the first function in our sequence of
functions leading up to the Hilbert Curve. Let us plot the points:
> with(plots):
> pointplot(hilbertpoints1,color=red);

Now, let us define the following three transformations:
> hilberttransform1:=(x)->(1/2)*x+[0,1/2];

 := hilberttransform1 → x +
1
2 x 






,0

1
2

> hilberttransform2:=(x)->(1/2)*x+[1/2,0];

 := hilberttransform2 → x +
1
2 x 






,

1
2 0

> hilberttransform3:=(x)->(1/2)*x+[1/2,1/2];

 := hilberttransform3 → x +
1
2 x 






,

1
2

1
2

Using these transformations, define the following algorithm:
> hilbertpoint:=proc(i,k)
option remember;
if k=1 then (hilbertpoints1)[i]
else
if i <= 2^(2*k-1)
then ((1/2)*[seq(hilbertpoint(j,k-1),j=1..(2^(2*k-1)))])[i]
;
else
if i <= 2^(2*k)
then map(hilberttransform1,[seq(hilbertpoint(j,k-
1),j=1..(2^(2*k-1)))])[i-(2^(2*k-1))] ;
else

if i <= 3*(2^(2*k-1))
then map(hilberttransform2,[seq(hilbertpoint(j,k-
1),j=1..(2^(2*k-1)))])[i-(2^(2*k))] ;
else
map(hilberttransform3,[seq(hilbertpoint(j,k-
1),j=1..(2^(2*k-1)))])[i-(3*(2^(2*k-1)))] ;
fi; fi; fi; fi; end;

]

]

] [

]

hilbertpoint ,i kproc () :=
option ;remember

 = k 1 [hilbertpoints1 iif then
else

 ≤ i ^2 ()× − 2 k 1if then
×/1 2 (seq hilbertpoint

else
 ≤ i ^2 ()×2 kif then

seq hilbertpoint
 − i ^2 ()× − 2 k 1]

else
 ≤ i ×3 ^2 (× −2 kif

seq
 − i ^2 (×2 k

map(else
seq
 − i ×3 ^2 (2

end if
end if

end if

[][),(),j − k 1 = j .. 1 ^2 ()× − 2 k 1 i

map hilberttransform1,(
[](),(),j − k 1 = j .. 1 ^2 ()× − 2 k 1)[

) 1 map hilberttransform2,(then
[(),()hilbertpoint ,j − k 1 = j .. 1 ^2 ()× − 2 k

)]
hilberttransform3,

[(),()hilbertpoint ,j − k 1 = j .. 1 ^2 ()× − 2 k
)× − k 1]

1)

1)[end if
end proc

One can compare this algorithm with the algorithm for the Peano points, and note the
great similarities. We start with a small set of points, then we basically divide the unit
square into quadrants, and apply transformations to our first set of points to get some sort
of image of them into each of the subdivisions of the square. We then proceed
inductively. Thus, at each k, hilbertpoint defines a sequence of points from applying
transformations to the set of points at the k-1th step. We first start with the set I manually
defined as hilbertpoints1. For the curious, let us list these points for some k:
> hilbertpointset:=(k)-
>[seq(hilbertpoint(i,k),i=1..(2^(2*k+1)))];

 := hilbertpointset → k []()seq ,()hilbertpoint ,i k = i .. 1 2
() + 2 k 1

> hilbertpointset(1);






, , , , , , ,[],0 0 






,

1
2

1
2







,0

1
2







,

1
2 1 






,

1
2 0 






,1

1
2







,

1
2

1
2 [],1 1

> hilbertpointset(2);

[],0 0 





,

1
4

1
4







,0

1
4







,

1
4

1
2







,

1
4 0 






,

1
2

1
4







,

1
4

1
4







,

1
2

1
2







,0

1
2







,

1
4

3
4







,0

3
4







,

1
4 1, , , , , , , , , , , ,










,

1
4

1
2







,

1
2

3
4







,

1
4

3
4







,

1
2 1 






,

1
2 0 






,

3
4

1
4







,

1
2

1
4







,

3
4

1
2







,

3
4 0 






,1

1
4







,

3
4

1
4, , , , , , , , , , ,







,1

1
2







,

1
2

1
2







,

3
4

3
4







,

1
2

3
4







,

3
4 1 






,

3
4

1
2







,1

3
4







,

3
4

3
4 [],1 1, , , , , , , , 




The first point is always (0,0) while the last is always (1,1). Also, let us plot some of the
points:
> pointplot(hilbertpointset(1));

> pointplot(hilbertpointset(2));

> pointplot(hilbertpointset(3));

> pointplot(hilbertpointset(4));

Hopefully, one is convinced that as before, the union of all of these points is a dense set.
Thus, our Hilbert Curve which will be continuous and which will pass through all of
these points, will hence be onto [0,1]x[0,1].

Let us now define our sequence of curves leading up to the Hilbert Curve. As before, we
define our curves in a piecewise manner:
> hilbertcurvepart:=(t,i,k)->(hilbertpoint(i+1,k)-
hilbertpoint(i,k))*t+hilbertpoint(i,k);
hilbertcurvepart :=

 → (), ,t i k + () − ()hilbertpoint , + i 1 k ()hilbertpoint ,i k t ()hilbertpoint ,i k

So that then we can employ the do-loop method to define a sequence of functions that are
piecewise linear:
> hilbertcurve:=proc(t,k)
if t=1
then [1,1] else
for i from 1 to ((2^(2*k+1))-1) do
if ((i-1)/((2^(2*k+1))-1)) <= t and t < (i/((2^(2*k+1))-1))
then
hilbertcurvepart((t*((2^(2*k+1))-1))+1-i,i,k); break; else
fi; od;
fi; end;
Warning, `i` is implicitly declared local to procedure `hilbertcurve`

hilbertcurve ,t kproc () :=
local ;i

 = t 1 [],1 1if then
i − ^2 ()× + 2 k 1 1for to doelse

 and ≤ ()/() − i 1 − ^2 ()× + 2 k 1 1 t < t /()i − ^2 ()× + 2 k 1 1if then
;()hilbertcurvepart , , + − ×t () − ^2 ()× + 2 k 1 1 1 i i k break

else
end if

end do
end if

end proc

So, using:
> hilbertcurve1:=(t,k)->hilbertcurve(t,k)[1];

 := hilbertcurve1 → (),t k ()hilbertcurve ,t k
1

> hilbertcurve2:=(t,k)->hilbertcurve(t,k)[2];
 := hilbertcurve2 → (),t k ()hilbertcurve ,t k

2

We can now finally present what our Hilbert Curves look like:
> plot(['hilbertcurve1(t,1)','hilbertcurve2(t,1)',t=0..1]);

> plot(['hilbertcurve1(t,2)','hilbertcurve2(t,2)',t=0..1]);

>
plot(['hilbertcurve1(t,3)','hilbertcurve2(t,3)',t=0..1],num
points=300);

>
plot(['hilbertcurve1(t,3)','hilbertcurve2(t,3)',t=0..1],num
points=500);

>
plot(['hilbertcurve1(t,4)','hilbertcurve2(t,4)',t=0..1],num
points=1000);

>
plot(['hilbertcurve1(t,5)','hilbertcurve2(t,5)',t=0..1],num
points=2000);

The Hilbert Curve is in some sense more efficient than the Peano Curve, for it fills out
the unit square out faster.

The setup for the Hilbert Curve is exactly the same as for the Peano Curve. We start by
defining a sequence of lists of points, each list including the points from all previous lists,
whose union is a dense set in the unit square. We obtain these lists by recursively
applying transformations to previous lists. From each list, we define a function by
connecting the points in order. Then, our space filling curve will just be the limiting
function.
So far what we have done is map the unit segment onto the unit square. Now, we will
map the unit segment onto the unit cube. As mentioned before, since we can map the
Cantor Set onto the unit segment, then the amazing result is that we can map the Cantor
Set onto the unit cube! Let us see an example of a cube filling curve.

Hilbert also presented the idea of a cube-filling curve. Just like the Peano Curve and
Hilbert's other curve, this one will also be continuous and nowhere differentiable. Let us
now describe this curve.

Hilbert's Cube Filling Curve
Having mastered the tools and techniques used in the construction of the previous curves,
programming Hilbert's cube filling curve is routine. As before, we start with an initial list
of points, and then define lists of points recursively from this initial list through
transformations. Then, we define a sequence of curves from these lists by merely
connecting the points in the lists in order. Our Hilbert Cube Curve will then be the limit
of this sequence of curves.

We start with the following points in three dimensional space:
>
hilbertcubepoints1:=[[1/4,1/4,1/4],[1/4,3/4,1/4],[3/4,3/4,1
/4],[3/4,1/4,1/4],[3/4,1/4,3/4],[3/4,3/4,3/4],[1/4,3/4,3/4]
,[1/4,1/4,3/4]];

hilbertcubepoints1 :=







, , , , , , ,






, ,

1
4

1
4

1
4







, ,

1
4

3
4

1
4







, ,

3
4

3
4

1
4







, ,

3
4

1
4

1
4







, ,

3
4

1
4

3
4







, ,

3
4

3
4

3
4







, ,

1
4

3
4

3
4







, ,

1
4

1
4

3
4

Let us graph them:
> with(plots):
Warning, the name changecoords has been redefined

>
pointplot3d([[1/4,1/4,1/4],[1/4,3/4,1/4],[3/4,3/4,1/4],[3/4
,1/4,1/4],[3/4,1/4,3/4],[3/4,3/4,3/4],[1/4,3/4,3/4],[1/4,1/
4,3/4]],axes=boxed,symbol=circle,symbolsize=24,color=red);

As we can see, they occupy the four vertices of a cube. Now, if we connect these four
points in the order listed we will get the first function in our sequence, which looks like a
clamp:

This curve starts on the bottom far corner, and ends at the top. Now, we introduce eight
transformations. Much to my chagrin, these transformations are listed on pages 27-28 of
Sagan's "Space Filling Curves." These transformations are nothing more than reflection
and rotation followed by scaling and translation. For example, the first transformation
takes a point in three space, rotates it about the x-axis by a right angle, reflects it with
respect to the xy-plane, and then scales the result by 1/2. The rest are similar in spirit:
> hilbertcubetransform1:=(x)-
>(1/2)*[x[1],x[3],x[2]]+(1/2)*[0,0,0];

 := hilbertcubetransform1 → x 





, ,

1
2 x1

1
2 x3

1
2 x2

> hilbertcubetransform2:=(x)-
>(1/2)*[x[3],x[2],x[1]]+(1/2)*[0,1,0];

 := hilbertcubetransform2 → x 





, ,

1
2 x3 +

1
2

1
2 x2

1
2 x1

> hilbertcubetransform3:=(x)-
>(1/2)*[x[1],x[2],x[3]]+(1/2)*[1,1,0];

 := hilbertcubetransform3 → x 





, , +

1
2

1
2 x1 +

1
2

1
2 x2

1
2 x3

> hilbertcubetransform4:=(x)->(1/2)*[x[3],-x[1],-
x[2]]+(1/2)*[1,1,1];

 := hilbertcubetransform4 → x 





, , +

1
2

1
2 x3 −

1
2

1
2 x1 −

1
2

1
2 x2

> hilbertcubetransform5:=(x)->(1/2)*[-x[3],-
x[1],x[2]]+(1/2)*[2,1,1];

 := hilbertcubetransform5 → x 





, , − 1

1
2 x3 −

1
2

1
2 x1 +

1
2

1
2 x2

> hilbertcubetransform6:=(x)-
>(1/2)*[x[1],x[2],x[3]]+(1/2)*[1,1,1];

 := hilbertcubetransform6 → x 





, , +

1
2

1
2 x1 +

1
2

1
2 x2 +

1
2

1
2 x3

> hilbertcubetransform7:=(x)->(1/2)*[-x[3],x[2],-
x[1]]+(1/2)*[1,1,2];

 := hilbertcubetransform7 → x 





, , −

1
2

1
2 x3 +

1
2

1
2 x2 − 1

1
2 x1

> hilbertcubetransform8:=(x)->(1/2)*[x[1],-x[3],-
x[2]]+(1/2)*[0,1,2];

 := hilbertcubetransform8 → x 





, ,

1
2 x1 −

1
2

1
2 x3 − 1

1
2 x2

As before, we will recursively define a sequence of lists by applying these
transformations to previous lists. Essentially, we start with the unit cube and the four
points in hilbertcubepoints1. What will then occur is that we will divide the unti cube

into eight equal cubes. Then, we will take our four points and apply the first
transformation to them, the result being that we will get four new points which lie
inteirely in one of the small cubes. Thus, we will continue applying transformations to
hilbertcubepoints1 until each of the small cubes has a set of four points inside of them.
These points will then be the second list of points, to which we will divide the unit cube
again into eight pieces and apply our eight transformations again to this new list of
points. So, consider the following algorithm:
> hilbertcubepoint:=proc(i,k)
option remember;
if k=1 then (hilbertcubepoints1)[i]
else
if i <= 2^(3*k-3) then
map(hilbertcubetransform1,[seq(hilbertcubepoint(j,k-
1),j=1..(2^(3*k-3)))])[i]
else
if i <= 2^(3*k-2) then
map(hilbertcubetransform2,[seq(hilbertcubepoint(j,k-
1),j=1..(2^(3*k-3)))])[i-(2^(3*k-3))]
else
if i <= 3*(2^(3*k-3)) then
map(hilbertcubetransform3,[seq(hilbertcubepoint(j,k-
1),j=1..(2^(3*k-3)))])[i-(2^(3*k-2))]
else
if i <= 2^(3*k-1) then
map(hilbertcubetransform4,[seq(hilbertcubepoint(j,k-
1),j=1..(2^(3*k-3)))])[i-(3*(2^(3*k-3)))]
else
if i <= 5*(2^(3*k-3)) then
map(hilbertcubetransform5,[seq(hilbertcubepoint(j,k-
1),j=1..(2^(3*k-3)))])[i-(2^(3*k-1))]
else
if i <= 3*(2^(3*k-2)) then
map(hilbertcubetransform6,[seq(hilbertcubepoint(j,k-
1),j=1..(2^(3*k-3)))])[i-(5*(2^(3*k-3)))]
else
if i <= 7*(2^(3*k-3)) then
map(hilbertcubetransform7,[seq(hilbertcubepoint(j,k-
1),j=1..(2^(3*k-3)))])[i-(3*(2^(3*k-2)))]
else
map(hilbertcubetransform8,[seq(hilbertcubepoint(j,k-
1),j=1..(2^(3*k-3)))])[i-(7*(2^(3*k-3)))]
fi; fi; fi; fi; fi; fi; fi; fi; end;

hilbertcubepoint ,i kproc () :=
option ;remember

 = k 1 []hilbertcubepoints1 iif then
else

 ≤ i ^2 ()× − 3 k 3 map hilbertcubetransform1,(if then
[seq ,()hilbertcubepoint ,j − k 1 = j .. 1 ^2 (× −3 k

else
 ≤ i ^2 ()× − 3 k 2 map hilbertcubetransform2(if then

[(seq ,()hilbertcubepoint ,j − k 1 = j .. 1 ^2 (
 − i ^2 ()× − 3 k 3]

else
 ≤ i ×3 ^2 ()× − 3 k 3 map hilbertcubetransform3(if then

[(seq ,()hilbertcubepoint ,j − k 1 = j ..
 − i ^2 ()× − 3 k 2]

else
 ≤ i ^2 ()× − 3 k 1 map(if then

[(seq ,()hilbertcubepoint ,j − k 1 j
 − i ×3 ^2 ()× − 3 k 3]

else
 ≤ i ×5 ^2 ()× − 3 k 3 map(if then

(seq hilbertcubepoint ,j − k
]) − i ^2 ()× − 3 k 1[]

else
 ≤ i ×3 ^2 ()× − 3 k 2if then

hilbertcubetransform6,
hilbertcubepoint ,j − k
]) − i ×5 ^2 ()× − 3 k 3[]

else
 ≤ i ×7 ^2 ()× − 3 k 3if

hilbertcubetransform7
hilbertcubepoint j
 = j .. 1 ^2 (× − 3 k 3
 − i ×3 ^2 (× − 3 k

map hilbertcubetransform8(else
hilbertcubepoint j
 = j .. 1 ^2 (× − 3 k
 − i ×7 ^2 (× − 3 k

end if
end if

end if

]

]) [

]) [

])

)

()) 3) i[]

,
)× − 3 k 3)

,
1 ^2 (× − 3 k

hilbertcubetransform4
 = .. 1 ^2 (3 k

hilbertcubetransform5
,()1 = j .. 1 ^2 (

map(
seq([
,()1 = j .. 1 ^2 (

map(then
seq([,

(), − k 1 ,
))])[

)2]
[,

(), − k 1 ,
)3)])[

)3]

)3)

,
)× −

× −3 k

× −3 k

seq(

3)[

[,
) 3

) 3)

end if
end if

end if
end if

end if

 := hilbertcubepointset → k seq



 ,





, ,

end proc

hilbertcubepoint

, , ,

1
4

1
4

1
4







, ,

1
4

3
4

1
4







, ,

3
4

3
4

1
4







, ,

3
4

1
4

1
4





Define:
> hilbertcubepointset:=(k)-
>[seq(hilbertcubepoint(i,k),i=1..(2^(3*k)))];

[](),(),i k = i .. 1 2
()3 k

So now let us list our points for some k=1,2:
> hilbertcubepointset(1);



, , ,


, ,

3
4

1
4

3
4







, ,

3
4

3
4

3
4







, ,

1
4

3
4

3
4







, ,

1
4

1
4

3
4

> hilbertcubepointset(2);






, ,

1
8

1
8

1
8







, ,

1
8

1
8

3
8







, ,

3
8

1
8

3
8







, ,

3
8

1
8

1
8







, ,

3
8

3
8

1
8







, ,

3
8

3
8

3
8







, ,

1
8

3
8

3
8







, ,

1
8

3
8

1
8, , , , , , , ,










, ,

1
8

5
8

1
8







, ,

1
8

7
8

1
8







, ,

1
8

7
8

3
8







, ,

1
8

5
8

3
8







, ,

3
8

5
8

3
8







, ,

3
8

7
8

3
8







, ,

3
8

7
8

1
8







, ,

3
8

5
8

1
8, , , , , , , ,







, ,

5
8

5
8

1
8







, ,

5
8

7
8

1
8







, ,

7
8

7
8

1
8







, ,

7
8

5
8

1
8







, ,

7
8

5
8

3
8







, ,

7
8

7
8

3
8







, ,

5
8

7
8

3
8







, ,

5
8

5
8

3
8, , , , , , , ,







, ,

5
8

3
8

3
8







, ,

5
8

3
8

1
8







, ,

5
8

1
8

1
8







, ,

5
8

1
8

3
8







, ,

7
8

1
8

3
8







, ,

7
8

1
8

1
8







, ,

7
8

3
8

1
8







, ,

7
8

3
8

3
8, , , , , , , ,







, ,

7
8

3
8

5
8







, ,

7
8

3
8

7
8







, ,

7
8

1
8

7
8







, ,

7
8

1
8

5
8







, ,

5
8

1
8

5
8







, ,

5
8

1
8

7
8







, ,

5
8

3
8

7
8







, ,

5
8

3
8

5
8, , , , , , , ,







, ,

5
8

5
8

5
8







, ,

5
8

7
8

5
8







, ,

7
8

7
8

5
8







, ,

7
8

5
8

5
8







, ,

7
8

5
8

7
8







, ,

7
8

7
8

7
8







, ,

5
8

7
8

7
8







, ,

5
8

5
8

7
8, , , , , , , ,







, ,

3
8

5
8

7
8







, ,

3
8

7
8

7
8







, ,

3
8

7
8

5
8







, ,

3
8

5
8

5
8







, ,

1
8

5
8

5
8







, ,

1
8

7
8

5
8







, ,

1
8

7
8

7
8







, ,

1
8

5
8

7
8, , , , , , ,







, ,

,

1
8

3
8

7
8







, ,

1
8

3
8

5
8







, ,

3
8

3
8

5
8







, ,

3
8

3
8

7
8







, ,

3
8

1
8

7
8







, ,

3
8

1
8

5
8







, ,

1
8

1
8

5
8







, ,

1
8

1
8

7
8, , , , , , , 




Also, let's plot the sets for several k:
>
pointplot3d(hilbertcubepointset(1),axes=boxed,symbol=circle
,symbolsize=24,color=red);

>
pointplot3d(hilbertcubepointset(2),axes=boxed,symbol=circle
,symbolsize=24,color=red);

>
pointplot3d(hilbertcubepointset(3),axes=boxed,symbol=circle
,symbolsize=18,color=red);

>
pointplot3d(hilbertcubepointset(4),axes=boxed,symbol=circle
,symbolsize=18,color=red);

As before, these points are starting to get dense in the unit cube, and so we expect that
our Hilbert Cube Curve will be continuous. Thus, let us now program our sequence of
functions, again, simply by connecting the above points in order:
> hilbertcubecurvepart:=(t,i,k)->(hilbertcubepoint(i+1,k)-
hilbertcubepoint(i,k))*t+hilbertcubepoint(i,k);
hilbertcubecurvepart (), ,t i k → :=

 + () − ()hilbertcubepoint , + i 1 k ()hilbertcubepoint ,i k t ()hilbertcubepoint ,i k

> hilbertcubecurve:=proc(t,k)
if t=0
then hilbertcubepoint(1,k) else
for i from 1 to ((2^(3*k))-1) do
if ((i-1)/((2^(3*k))-1)) < t and t <= (i/((2^(3*k))-1))
then
hilbertcubecurvepart((t*((2^(3*k))-1))+1-i,i,k); break;
else fi; od;
fi; end;
Warning, `i` is implicitly declared local to procedure
`hilbertcubecurve`

hilbertcubecurve ,t kproc () :=
local ;i

 = t 0 ()hilbertcubepoint ,1 kif then
i − ^2 ()×3 k 1for to doelse

 and < ()/() − i 1 − ^2 ()×3 k 1 t ≤ t /()i − ^2 ()×3 k 1if then

;()hilbertcubecurvepart , , + − ×t () − ^2 ()×3 k 1 1 i i k break
else
end if

end do
end if

 := hilbertcubecurve1 → (),t k ()hilbertcubecurve ,t k
1

 := hilbertcubecurve2 → (),t k ()hilbertcubecurve ,t k
2

 := hilbertcubecurve3 → (),t k ()hilbertcubecurve ,t k
3

end proc

Finally, lets draw the curves:
> hilbertcubecurve1:=(t,k)->hilbertcubecurve(t,k)[1];

> hilbertcubecurve2:=(t,k)->hilbertcubecurve(t,k)[2];

> hilbertcubecurve3:=(t,k)->hilbertcubecurve(t,k)[3];

>
spacecurve(['hilbertcubecurve1(t,1)','hilbertcubecurve2(t,1
)','hilbertcubecurve3(t,1)'],t=0..1,thickness=2);

>
spacecurve(['hilbertcubecurve1(t,2)','hilbertcubecurve2(t,2
)','hilbertcubecurve3(t,2)'],t=0..1,thickness=2,numpoints=5
00);

>
spacecurve(['hilbertcubecurve1(t,3)','hilbertcubecurve2(t,3
)','hilbertcubecurve3(t,3)'],t=0..1,thickness=2,numpoints=1
200);

>
spacecurve(['hilbertcubecurve1(t,4)','hilbertcubecurve2(t,4
)','hilbertcubecurve3(t,4)'],t=0..1,thickness=1,numpoints=5
000);

Hopefully we are convinced that the Hilbert Cube Curve will actually fill out the unit
cube. Like the Peano Curve and the Hilbert Space Curve, this curve will also be
continuous, nowhere differentiable, and will fail to be injective. However, unlike the
Peano Curve and the othe Hilbert Curve, each sequence of curves leading up to the
Hilbert Cube Curve does not fail to be injective. There are many interesting patterns in
the Hilbert Cube Curve construction. Indeed, by looking at a particular face in this
sequence, where the starting point and the enpoint are on the front face and to the left::

Now, think of the above graphs as being the graphs of a sequence curves from [0,1] into
the unit square. Then we can see that these curve will converge to a curve that lies on a
face mapped out by the Hilbert Cube Curve, and as such, must be onto the unit square.

Thus, the Hilbert Cube Curve has given us another space filling curve.
We have thus managed to map the unit interval onto the unit square and cube, and with
some thinking one can see how we can map the cantor set on the unit cube and square.
Much more is possible, in fact Felix Hausdorff showed that every compact in R^n is a
continuous image of some function defined on the Cantor Set. The proof is by
construction, and by getting a general feel for these space filling curves we can see that
this construction will have to be a recursive one.

The three last examples have all been attacked through the same method. We start with a
small set of data which we input by hand, and then we recursively define what we need
by applying transformations to this small set. Now, we return to the Cantor Set and apply
the same method to it.

Cantor Set Revisited
We shall now introduce an alternative way of computing the cantor points. Our original
way was a very direct approach, where the cantor steps at the kth step directly depended
on the cantor points at the step k-1. However, we can get another algorithm for the cantor
points by defining the cantor points at the first step by hand and then applying two
transformations to it recursively. So, define:
> fractalcantorpoints1:=[0,1/3,2/3,1];

 := fractalcantorpoints1 





, , ,0

1
3

2
3 1

Now, the idea is that to get the cantor points at the step k, we get the cantor points of the
previous step, shrink then by a third, and then make two copies. We draw one copy on the
first third of the unit segment, and the second copy on the last third. Thus, define:
> cantortransform1:=x->(1/3)*x;

 := cantortransform1 → x 1
3 x

> cantortransform2:=x->(1/3)*x+(2/3);

 := cantortransform2 → x +
1
3 x 2

3

Then our second algorithm for the cantor points, which we call fractalcantorpoint for its
use of mirroring, is given by:
> fractalcantorpoint:=proc(i,k)
option remember;
if k=1 then fractalcantorpoints1[i]
else
if i <= 2^k then
(map(cantortransform1,[seq(fractalcantorpoint(j,k-
1),j=1..2^(k))]))[i];
else (map(cantortransform2,[seq(fractalcantorpoint(j,k-
1),j=1..2^(k))]))[i-2^k];
fi ; fi ; end ;

fractalcantorpoint ,i kproc () :=
option ;remember

 = k 1 [fractalcantorpoints1 iif then
else

 ≤ i ^2 kif then
map ,cantortransform1 seq
i[]

map ,cantortransform2 seqelse
 − i ^2 k[]

end if
end if

end proc

]

)])

)])

]

([(,()fractalcantorpoint ,j − k 1 = j .. 1 ^2 k

([(,()fractalcantorpoint ,j − k 1 = j .. 1 ^2 k

Let us list out some points to convince ourselves this algorithm is correct:
> fractalcantorsequence:=(k)->
[seq(fractalcantorpoint(i,k),i=1..2^(k+1))];

 := fractalcantorsequence → k [()seq ,()fractalcantorpoint ,i k = i .. 1 2
() + k 1

> fractalcantorsequence(1);






, , ,0

1
3

2
3 1

> fractalcantorsequence(2);






, , , , , , ,0

1
9

2
9

1
3

2
3

7
9

8
9 1

> fractalcantorsequence(3);






, , , , , , , , , , , , , , ,0

1
27

2
27

1
9

2
9

7
27

8
27

1
3

2
3

19
27

20
27

7
9

8
9

25
27

26
27 1

> fractalcantorsequence(4);

0
1
81

2
81

1
27

2
27

7
81

8
81

1
9

2
9

19
81

20
81

7
27

8
27

25
81

26
81

1
3

2
3

55
81

56
81

19
27

20
27

61
81

62
81

7
9

8
9

73
81, ,




74
81

25
27

26
27

79
81

80
81 1, , , , , 




At this point one can also rewrite the General Cantor Set algorithm, but lets not be
pedantic.
Another point of interest is that of similarity dimension. In each curve we constructed we
always started with a sequence of lists of points which were constructed inductively.
There were interesting patterns in all of them. As such, there is a way to assign a number
to these sequences of sets which rates the complexity of each sequence. An example of
this is the similarity dimension, which to put it technically is the ratio of the logarithm of
the number of transformations used in the construction of the object, over the logarithm
of the inverse of the reduction ratio. So for example, if we inductively construct a list of
points where each time we reduce the points by a scale of r, and then apply n

transformations to these points, then the similarity dimension of our end result is
ln(n)/ln(1/r). As the similarity dimension gets bigger, we say that the object is more
complex.

So consider the list of points constructed by peanopoint and hilbertpoint. In each case, we
had four transformations and at each step, we shrunk the points from the previous step by
1/2. Thus, our similarity dimension is ln(4)/ln(1/1/2) which is 2. For the
hilbertcubepoints, we had eight transformations and a reduction ratio of 1/2, and so one
can check that we will get a dimension of 3. Thus, whereas the Hilbert Space Filling
Curve and the Peano Curve are just as complex as one another, the Hilbert Cube Curve is
more complex than these two, as is to be expected. The Cantor Set has similarity
dimension ln(2)/ln(3).

We have thus managed to explore several interesting examples of sets and functions. We
first discussed the Cantor Set, an uncountable compact set of measure zero, which we
later generalized. After, we explored and approximated the Devil's Staircase, an
increasing function whose derivative is zero almost everywhere. After giving an example
of a nowhere differentiable but everywhere continuous function, we then explored the
subject of space-filling curves. We were able to fill out the unit square and unit cube with
continuous but nowhere differentiable functions. Along the way, we solved some key
programming issues. We learned two techniques to how to define a sequence of functions
which are piecewisely defined. One method was using sums, while another was through
do-loops. We also mastered the technique of using transformations to recursively define a
sequence of lists.

	Cantor Set
	General Cantor Set
	Van der Waerden Nowhere Differentiable Function
	Peano's Space Filling Curve
	Hilbert's Space Filling Curve
	Hilbert's Cube Filling Curve
	Cantor Set Revisited

