Leobardo Rosales
Final
math 107B

This project is concerned with several examples of sets and functions which can be
constructed iteratively. These sets and functions are important ones, for they have been
the source of examples and counter-examples for analysts and topologists. As such, this
project deals not only with the technical challenges of reproducing the construction of
these examples, but we will also discuss their relevance.

We start with an interesting example, the Cantor Set and function.

Cantor Set

The Cantor Set is a subset of the interval [0,1] which was discovered by Georg Cantor
and presented in the appendix of a paper written in 1883. The set is constructed as
follows, we start with the interval [0,1]. We remove the open middle segment (1/3,2/3)
from thisinterval, and we are left with two closed segements, [0,1/3] and [2/3,1]. We
grab each of these segments and remove the middle thirds from them, so that we are | ft
with the union of the closed intervals [0,1/9],[2/9,1/3],[2/3,7/9], and [8/9,1]. We then
continue this process. What is left is what we call the Cantor Set.

This set has remarkable properties. Firstly, we should remark that this set is non-empty.
We always remove the middle thirds of intervalsin constructing the set, and as such, we
will never remove the endpoints of any segment from the previous step of the
construction. Thus, the points 0,1/9,2/9,1/3 and so on will be in the Cantor Set. However,
much more is left than just these endpoints, in fact so much isleft over asto make the
Cantor Set uncountable. The proof is simple, once we identify that the Cantor Set isthe
set of al number in [0,1] whose ternary decimal expansion contains only O'sand 1's. Such
a set is uncountable by a diagonalization argument. For supposing that we had such an
enumeration of numbers, then we could list them as a sequence of points a(n) in their
ternary represenation as follows:

a(0)= .020200020020...
a(1)= .220220020000...
a(2)= .000022222022...

and so forth. However, then by letting A be the number whose nth decimal placeisaO if
the nth decimal place of a(n) is 2, and vice versa, we get that A isin the Cantor Set but is
different from any a(n) in our enumeration. Thus, the Cantor Set must be uncountable.

The Cantor Set is also compact, perfect, and its closure has an empty interior. That the
Cantor Set iscompact is easy to see, for it is the countable intersection of the compact
sets[0,1/3], [2/3,1], [0,1/9], [2/9,1/3], [2/3,7/9], [8/9,1], and so forth. The Cantor Set is
also totally disconnected, meaning that we cannot find two distinct points in the Cantor



Set that can be connected by a continuous function on [0,1] whose image liestotally
inside the Cantor Set. Thus, the Cantor Set isin some respects very meaty. However, in
other respects the Cantor Set is also very thin, in particular with respect to measure which
we shall discuss later.

Now, how can we use maple to better understand the Cantor Set? My first goal wasto
devise an agorithm which given and i and ak, gives the ith point which is an endpoint of
asegment removed at the kth step of the construction of the Cantor Set. The algorithm
isasfollows:
>cantorpoint:= proc(i, k)
option renenber ;
if i=1 then O else
if i mod2 =0
then cantorpoint(i-1,k)+(1/(3"k)) ;
el se cantorpoint(i-1,k)+((3"((ifactors(i-1)[2][1][2])-
1))1(3%k))
fi fi end;
cantorpoint := proc (i, k)
option remember;
if i =1then O
ese
if i mod 2 =0then cantorpoint(i —1, k) + 1/3"k
ese cantorpoint(i — 1, k) + 3*(ifactorg(i —1)[2][1][2] —1)/3"k
end if
end if
end proc

The algorithm is recursive. Theith point is given by adding an appropriate amount to the
previous point, what you add depends highly on the divisibility of i by 2. In this
algorithm, for each k, i ranges from 1 to 2"(k+1).

To verify the validity of this agorithm, let us make alist of the cantor points:
>cant or sequence: =(k) - >
[ seq(cantorpoint(i,k),i=1..2"k+1))];

cantorsequence:= k — [seq(cantorpoint(i, k),i =1.. 2(k+l)

)]

and let us thus list the points used in the construction of the cantor set for the steps 1,2,3:
>cant or sequence(1);
12,
k) 31 3! é

121278,

>cant or sequence( 2);
) 9l 9) 3! 3’ 91 9!

>cant or sequence( 3);



1 2127 8121920782526 1
272799272713 3 2727’9 9 27 27 %

Thisall checks out. We see that on the second step of the construction, for example, after

having removed the segment (1/3,2/3), we then remove (1/9,2/9) and (7/9,8/9). Thus

cantor sequence(2) gives al of the important points of our construction, including 0 and

1. So, now let us make a procedure that gives us what is left at the kth step of the Cantor

Set construction. Specifically, given k=1 this procedure will tell us that we have removed

the segment (1/3,2/3) from [0,1], leaving us with the union of the closed segments [0,1/3]

and [2/3,1]. We will do so by making a procedure that spits out alist of listswhichisto

represent aunion of closed intervals. Thusin the case for k=1, this procedure will give

[[0,1/3], [2/3,1]] asthe answer. So:

>cantorset: =(k)->[seq([cantorpoint(2*i-

1, k), cantorpoint(2*i,k)],i=1..(2"k))];

cantorset := k — [seq([ cantorpoint(2i — 1, k), cantorpoint(21i, k)],i =1 .. 2]

and now let us see what is |eft after steps 1,2,3,and 4:
>cantorset(1);
1
385 1
> cant orset (3)

bl
B ol ol ik s 2 =
:

[T

>cantorset (2);

Ol
Wl
[T ]

[CIILT ]

\‘

[T

00 \

7otz
>cantorset (4);

Pafrziza 81’35% a1 o 271 o sl 1 3 e
2 For o1 o of o e b 27 e e

Now we may illustrate another remarkable fact about the Cantor Set, which isthat it has
L ebesgue measure zero. We can see this most readibly by investigating the measure of
the complement of the Cantor Set on [0,1]. In the first step of the construction, we
remove the open interval (1/3,2/3), which has measure 1/3. At the second step, we
remove two digoint intervals of length 1/9, each of which is digoint from the first
interval removed. We proceed, at each kth step removing 2*(k-1) digoint intervals that
are also digoint from anything else removed, that are of length 3"k. Since all of the
segments are mutually digoint, we may get the measure of the complement of the Cantor
Set by adding al of the measures of each of the removed segments, which in light of my
previous statements, can be evaluated as the infinite sum starting from 1 of 2°(k-1)/3"k.
Thisis ageometric series which evaluates to 1, the measure of [0,1], so that the Cantor
Set must have zero measure.



Let ustest thisthrough data. First, we write a program which given a digoint union of
sets represented by a list of two element lists, will give the measure of that set by merely
subtracting endpoints and totalling the results:

>neasure: = proc(Xx)

L: =0 ;

for i froml to nops(x) do L:=L+(x)[1][2]-(x)[i][1] od ;

L

end;

Warning, 'L is inplicitly declared |local to procedure " neasure’
Warning, “i° is inplicitly declared |local to procedure " neasure’

measure := proc(X)
local L,i;
L:=0;foritonops(x)doL:=L+x[i][2] —x[i][1] enddo ;L
end proc
Then by calculating some examples, we can see the behavior of the measure of each step

of the construction, which should go to zero:
>measure(cantorset(1));

2
3
>neasur e(cantorset (2));
4
9
>neasur e(cantorset (3));
8
27
>eval f (measure(cantorset(4)));
1975308642
>eval f (measure(cantorset (8)));
03901844231

>eval f (nmeasure(cantorset (15)));
.002283658261

Now we would like away to visualize the steps taken in constructing the Cantor Set. We
would like to construct afunction such that given ak, thisfunction is 1 on the segments

removed up to the kth step of the construction of the Cantor Set, and is zero everywhere

else.

Conceptually thisis no problem at all, given that we have already devised a program
which gives the cantor points. Theideaisthat at each step k, what is removed lies
between cantor point(i,k) and cantor point(i+1,k) for each i between 1 and 2\(k+1)-1



that is even. Thus, ideally we should define our function, which we shall call
ComplementFunction(x,k) as

ComplementFunction(x,k)= 1 if for some eveni between 1 and 2"(k+1)-1,
cantor point(i,k) < x < cantor point(i+1,k)
0 everywhere else.

Now iswhere we run into some difficulties. Basically, we are attempting to define a
sequence of functions that are defined piecewise. However, the number of pieces varies
with k. Even though maple does provide one with immediate tools in order to define
piecewise functions, it does not allow for the piecesto vary. In other words, we can only
define functions where the pieces are set and definite.

This nothwithstanding, there are two methods we can use to get around this obstruction.
Oneisinvolving sums, which iswhat we will use now, and the other involves do-loops.
What we can do is define afunction of x,i, and k whichis 1 if cantorpoint(2*i,k) <x <
cantor point(2*i+1,k). In essence, for afixed k, this function draws each of the pieces
where our ComplementFunction will be 1, individually. Everywhere else this
complementfunction will be zero.

>conpl enment functi on: = proc(x,i, k)

if cantorpoint(2*i,k) < x and x < cantorpoint(2*i +1, k)

then 1 else O

fi end ;

complementfunction := proc (X, i, k)

if cantorpoint(2xi, k) <xand x < cantorpoint(2xi +1, k) then 1 else 0 end if
end proc
So, for example, for k=1 we only removed one segment, and so there will be only one

piceto graph at i=1:
>pl ot (' conpl ementfunction(x,1,1)"',x=0..1,discont = true );



0.5

0.5

0.4 1

.21

L 02 04 06 0B 1
X
Up to step k=2, we removed three segments. So complementfunction should draw three
heightsat i=1,2 and 3:
>pl ot (' conpl ement function(x,1,2)",x=0..1,discont = true );

-‘I_

0.5 1

0.5

0.4

0.2




>pl ot (' conpl enent function(x,2,2)',x=0..1,discont =true );

-‘I-

0.5

0.5

0.4 1

0,21

0" o2 o4 0B 08
X
>pl ot (' conpl enment function(x,3,2)",x=0..1,discont = true );

-‘I_ [

0.5

0.5

0.4 1

0.21

0" "p2 04 0B 08 1
H
Notice that the graph at i=2,k=2 isthe same for i=1,k=1.



Now, to get ComplementFunction, we do the clever thing and sum
complementfunction for all the values of i that give us al of the even numbers between
1 and 2*(k+1)-1. This gives:
> Conpl enent Function: = (x, k) ->
sun(' conmpl enent function(x,i,k)", "i"'=1..((2"k)-1));

M-
ComplementFunction := (x, k) - z ‘complementfunction(x, i, k)’

=1

To make an analogy, what we have doneis build the four walls of a house seperately, and
then join them together in the end. Let us plot ComplementFunction for several k:
>pl ot (' Conpl enent Function(x,1)',x=0..1,discont = true );

"I_

0.6
D.E'_
0.4-

D.E:

ot 2 o os 08 1
¥
>pl ot (' Conpl enent Function(x, 2)',x=0..1,discont = true );



0.8

UEj

0.4

UE:

0ot o2 o4 os 08 1
K

>pl ot (* Conpl enent Function(x, 3)',x=0..1,discont = true );

-‘I_ J—

0.6

UEj

0.4

UE:

ot o2 o4 o0s 08 1
)
>pl ot (' Conpl enent Functi on(x, 4)',x=0..1,discont = true);



0.8

D.E'_

0.4

D.E:

0" " o2 04 05 G
X

Aswe can seg, the cantor set occupies less and less space on theinterval [0,1], as
advertised.

Our next topic of interest is the Cantor Function. This function is obtained from alimit of
a sequence of functions directly obtained from the construction of the Cantor Set. The
construction is as follows, we start with the first step of the construction of the Cantor Set
where we have removed the middle third of the interval [0,1]. We define our first
function to be 1/2 on that segment removed, (1/3,2/3). We define this function to be O at
x=0, and 1 at x=1. For the rest of the values, we simple make the straight line
connections, so that our function looks like:



0.5

0.5

0.4 1

.21

. 02 04 06 08 1

K
Thisisthefirst function in our sequence. For the next function, we consider all of the
segments removed up to the second step of the Cantor Set construction, which are
(1/9,2/9),(1/3,2/3), and (7/9,8/9). We define our function to be 1/4 on the first segment,
1/2 on the second, and 3/4 on the third. WeletitbeOat O and 1 at 1, and make the
straight line connections everywhere else, so that our function looks like:



0.5

0.5

0.4 1

.21

. 02 04 06 08 1

K
We then proceed as such. What we will get is a sequence of uniformly convergent
continuous functions that must converge to a continuous function. We call thislimiting
function the Cantor Function, which has very interesting properties. We have constructed
our sequence of functions so that at the kth step of the construction of the Cantor Set, all
of our functions after this step are all fixed constants on each segment removed up to the
kth step of the construction. Thus, our limiting function will be constant on all of the
segments removed in the construction of the Cantor Set, which has measure 1. On each of
these segments, the Cantor Function is differentiable and has derivative zero. Thus, the
Cantor Function is differentiable amost everywhere on [0,1] with derivative zero.
However, the Cantor Function isalimit of increasing functions, and so must be non-
decreasing. In fact, each function in our sequence leading up to the Cantor Function has
valueOat 0 and 1 at 1, thus the value of the Cantor FunctionisOat O and 1 at 1. Thus, we
have managed to produce a function that is differentiable amost everywhere on [0,1]
with derivative 0, and yet it manages to climb up from 0 all the way up to one! As Jason
Leeremarked, if you blink on a set of measure zero, the Cantor Function is up there.

Let us now write a program which gives us our sequence of functions which lead up to
the Cantor Function. The main obstacle is the same as the one in the program for the
ComplementFunction, which is that our sequence of functions are defined piecewise but
how many pieces and where they start and end changes at each step. However, we use the
same technique of using sums here as was used in ComplementFunction.

Thus, firstly we make a function which accounts for the places where our sequence of
functions are constant:
>cfsteps: =proc(x,i, k)



if cantorpoint(2*i,k) < x and x <= cantorpoint(2*i +1, k)
then i/(2”"k) else O
fi end ;
cfsteps := proc(x, i, K)
if cantorpoint(2xi, k) <xand x < cantorpoint(2xi + 1, k) then i/2"k
else 0
end if
end proc

for each k, cfsteps draws each individual piece of our kth function where it is constant.
To get afunction that is constant on all of the appropriate segements, we simply do as
before and take a sum:
>cfallsteps:= (x,k) -> sum('cfsteps(x,i,k)', "i"'=1..((2"K)-
1))

Mg

cfallsteps := (x, k) — z 'cfsteps(x, i, k)'

=1

Now, for afixed k, we must make al of the straight line connections. Again, we make
each piece seperately. Since each pieceisaline, we can readibly come up with aformula
based on the cantor points. First we make some preliminary definitions:
>cflinepartl: = (x,i,k) -> ((3"k)/((2"k) (cant or poi nt ( 2*i , k) -
cantorpoint(2*i-1,k))))*x

3¢x
(2%)(cantorpoint(2 i, k) — cantorpoint(2i — 1, k))

cflinepartl := (x, i, k) -

>cflinepart2:= (i, k) ->
(3*k)*(((i-1)*cantorpoint(2*i,k)-i*cantorpoint(2*i-

1,k))/ ((2"k) (cantorpoi nt(2*i,k)-cantorpoint(2*i-1,k))));
3%((i — 1) cantorpoint(2i, k) —i cantorpoint(2i — 1, k))

(2%)(cantorpoint(2i, k) - cantorpoint(2i — 1, k))

cflingpart2 := (i, k) -

and now we define each line:
>cfline:=proc(x,i,Kk)
if cantorpoint(2*i-1,k) < x and x <= cantorpoint(2*i, k)
then cflinepartl(x,i,k)+cflinepart2(i,k) else 0
fi end ;
cfline := proc(x, i, K) end proc
if cantorpoint(2xi —1, k) <xand x < cantorpoint(2xi, k) then
cflinepartl(x, i, k) + cflinepart2(i, k)
ese 0
end if

We are now ready to define our sequence. We define Cantor Function(x,k) to be our
seguence of functions, and we use the same trick of using sums:



> Cant or Functi on: =(x, k) -
>sunm('cfline(x,i,k)","i"=1..(2"(k)))+ cfallsteps(x,k)’
2k
CantorFunction := (x, k) - %Z ‘cfline(x, i, k)'§+ ‘cfallsteps(x, k)’
i"=1

Let us plot thisfor several k:
>pl ot (" Cantor Function(x, 1)', x=0..1);

"I_
0.6

EI.E'_

0.4

D.Ej

0" o2 o4 05 08
X
>pl ot (' Cant or Function(x, 2)',x=0..1);



0.8

D.Ej

0.4

D.E:

0" " o2 04
X

>pl ot (* Cant or Function(x, 3)', x=0..

-‘I_

0.6

D.Ej

05

1);

0.4

D.E:

0.8

—_

o oz o4
H

>pl ot (' Cant or Function(x, 4)"', x=0..

05

1);

0.8



0.8

D.Ej

0.4

D.E:

0" " o2 04
X

>pl ot (* Cant or Functi on(x,5)"', x=0..

-‘I_

0.6

D.Ej

05

1);

0.4

D.E:

0.8

—_

o oz o4
H

>pl ot (' Cant or Function(x, 6)"', x=0..

05

1);

0.8



0.8

D.Ej

0.4

D.E:

0" " o2 04
X

>pl ot (" Cant or Function(x, 7)"', x=0..

-‘I_

0.6

D.Ej

05

1);

0.4

D.E:

0.8

—_

o oz o4
H

>pl ot (' Cant or Function(x, 8)', x=0..

05

1);

0.8



0.8

D.E'_

0.4

D.E:

0" " o2 04 05 o8 1
X

the Cantor Function is also referred to as the devil's staircase, and we can see why.
Graphically we can aso be convinced that these curves are converging uniformly.
Indeed, each successive curve will be constant where the previous one was, so that the
maximum difference between one function in our sequence and another after it must
occur somewhere in between the places where the first curve is constant. As such, then it
isonly amatter of getting our straight line connections to be sufficiently close to each
other, which pictorially we can see is not such afar-fetched thing to do.

One can now contemplate what would happen if instead of removing the middle thirds
in the construction of the Cantor Set, we remove some other length strictly between 0 and
1. If we do this, we get what is called the General Cantor Set. These sets have interesing
properties aswell. They are all uncountable, perfect, compact, and are totally
disconnected. However, it is possible to construct a General Cantor Set that has positive
measure if we allow how much we remove at each step change. Moreover, given any
number strictly between 0 and 1, we can produce a general cantor set that has that value
asitsmeasure. Let usinvestigate the General Cantor Set.

General Cantor Set

Our task will be to produce an algorithm which gives us the points in the construction of
the General Cantor Set. More specifically, given ani,k and ab, this agorithm will give
us the ith point used in the kth step of the construction of the cantor set according to the
rule that we remove the middle b of each segment. For now, we regard the b as fixed at
every step, and b isaways strictly between 0 and 1.



This algorithm will be adoubly recursive one. We will first manually produce the four
points that are used in the first step of the general construction, which will directly
depend on b. Then we will build on these points to get all the other points for every step
beyond the first step. As such, the first set of pointsis given by:
>firstgencantset: = proc(b) [0,(1/2)*(1-b),(1/2)*(1+b), 1]
end;

firstgencantset := proc(b) [ 0, —1/2xb + 1/2, 1/2 + 1/2xb, 1] end proc

one can check that the segment ((1/2)* (1-b),(1/2)* (1+b)) has length b. Now we define a
preliminary function, which we also used in the original Cantor Set, but that we describe
explicitly here for simplicity.
>factorsoftwo: = (i)-> ifactors(i)[2][1]]2];

factorsoftwo :=1 - ifactorg(i )2

12

Now we define our points:
>gencant poi nt: =proc(i, k, b)
if k=0 then 1 ; else
if k=1 then (firstgencantset(b))[i] ; else
if 1=1 then O else
if i mod 2 = 0 then
if factorsoftwo(i)=1 then gencantpoint(i-1,k,b)+(((1/2)*(1-
b)) "k)
el se gencant point (i*(2"(1-factorsoftwo(i))), k+1-
factorsoftwo(i),b) ; fi
else if factorsoftwo(i-1)=1 then gencant point (i-
1, k,b)+b*(((1/2)*(1-b))"(k-1)) ;
el se gencantpoint((i-1)*(2"(1-factorsoftwo(i-1)))+1, k+1-
factorsoftwo(i-1),b) ;
fi ; fi ; fi ; fi ; fi ; end ;

gencantpoint := proc (i, k, b)
if k=0then 1
dse
if k=1 then firstgencantset(b)[i]
ese
if i=1then O
else
if i mod2 =0 then
if factorsoftwo(i) =1 then
gencantpoint(i — 1, k, b) + (1/2 — 1/2xb)"k



else gencantpoint(ix2"(1 - factorsoftwo(i)),
k + 1 — factorsoftwa(i), b)
end if
else
if factorsoftwo(i —1) =1 then
gencantpoint(i — 1, k, b) + bx(1/2 - 1/2xb)*k - 1)
else gencantpoint( (i — 1)x2"(1 —factorsoftwo(i —1)) +1,
k + 1 — factorsoftwo(i — 1), b)
end if
end if
end if
end if
end if
end proc

Thisis aformidable agorithm, one that uses a heavy recursion. In order to get the ith
point used in the kth step, this algorithm not only investigates the the nature of thei, but
it aso looks at the divisibility of i-1 by 2, and then draws on the points used in the
previous step of the construction.

Now we define as before, a procedure which lists out the sets that are left over at each
step in our construction:

>gencant set: =proc(k, b) [seq([gencant poi nt (2*i -

1, k, b), gencant poi nt (2*i,k,b)],i=1..(2"k))] end;

gencantset := proc (k, b)

[ seq([ gencantpoint(2xi —1, k, b), gencantpoint(2xi, k, b)],i =1 .. 2*k)]
end proc

Now we can check that algorithm is correct, by putting in the value of b=1/3. This should
give usthe regular Cantor Set, and we list gencantset and cantor set for several values of

k to verify this:
>gencant set (1, 1/ 3); L
B 5
ke
e
HEli

LTI

>cantorset(1,1/3);

[CIETT ]

>gencant set (2, 1/ 3);

&
Wl
CILTT ]
HiHH

>cantorset (2);

5
5

Ei3

[TETT ]



>gencant set (4, 1/ 3)

sl e 2] a1 o ol o 11 oy v e o 3
St 27 r o1 b a1 5 278 o 1 o1 1

2 8 6
%e@%@%%ﬁa%%ﬁg%% a1l b 27 B st b e
6 19 0 2 74 25 6

51 278 B o1 o o B 1 B 2 Bl o 1
It seems to check out. Now out of curiosity, let us put in b=1/2 and list some of the steps:
>gencantset (1, 1/2);

0E
2l
>gencantset (2, 1/ 2);
5 10fifie 485 soiiEie 1
' 16 ' 16 6’

> gencant set ( 3, 1/ 2)

19 o o 50 i 1 b 1 e 01 e 360 s st oo 1

3 3 5 61 063 1
%’ 256%% 64 % 256%% 16%% 256%% %4’256%%’4%
193 5 1 205 207 5 241 243 3 253
%’256%%@’64 %4 256 gﬁs 16 %@ 256 gﬁ 64%% 256
o 1
56’

Now, let us measure take the measure the intervals left in each step of this construction:
>measure(gencantset (1,1/2));

>gencantset (3, 1/ 3);
LAE2 19 Tgas g2 ge Taes gt
’27§%’9§ ’27% 7’3% 1278 7’9% ' 27 7 %
>cantorset (3);
LA 18 Tggt 1o ge Taef 2t
’27§%’9§ ’27%%’3% ' 278 7’9% ’7% 7 %

D]E]]]

LTI

-IM
[CIETT ]

[ IILIII I

IILIII I

>measure(gencantset (2,1/2));



N

>measure(gencantset (3,1/2));

>neasur e(gencantset (4, 1/ 2));
1

16

We see that the measure of this cantor set will be zero. Indeed, any general cantor set will
have measure zero when b is fixed. Thisis again more apparent when we investigate the
measure of the compleement of such ageneral cantor set on [0,1]. The length of the first
interval removed isb. We are left with two intervals of length (1/2)* (1-b). At the second
step, we remove two intervals each of length b* (1/2)* (1-b). All of the segments removed
are digoint. Assuch, at the kth step, we remove 2"k segments of length b* ((1/2)* (1-
b))*k. All of these segements will be digoint, so to get the measure of the complement of
this Cantor Set, we sum the lengths of each of the pieces. Including the first step, we get
the sum from O to infinity of (2°k)*b*((1/2)* (1-b))"k. The summand simplifies to b* (1-
b)"k. Thisis again ageometric series, which will sumto 1.

At this point one can continue as in the Cantor Set and define a general Devil's Staircase
based on the General Cantor Set.

Our next example deals with a classic question which comes to the mind of most
undergraduate mathematics students. Is every continuous function differentiable? The
answer is no, since the absolute value function is continuous at zero but not differentiable
there. However, we can ask, is there a function which is continuous everywhere but
differentiable nowhere? The answer isin the affirmative, and we now explore an example
of such afunction.

Van der Waerden Nowher e Differentiable Function

Our example of a continuous nowhere differentiable function is due to Bartel Leendert
van der Waerden, and it will be obtained from taking the sum of a sequence of functions.
This sequence of functions is best described through graphs. The first function isasimple
sawtooth:



0.5

0.4 1

|:|.3j

0.2

D.“I:

0 0.2 0.4 0.6 0.8 1
W
the second function is another saw tooth, with four teeth:

0.251

0.2
III.‘IE-f
0.1

0.051

0 o2 04 08 08 1
X

However, the height of each sawtooth is reduced by a half to 1/4. We proceed as such, at
each kth step getting afunction that has 2"k sawteeth, each of height 1/2"k. The sum of



these functions is uniformly convergent by the Welerstrauss M-test, since the kth
function is bounded by 1/2”k. Thus, we call the resulting sum the Van der Waerden
Function, and it is continuous since it is the uniformly convergent sum of a sequence of
continuous functions. However, it fails to be differentiable anywhere on [0,1]. | shall give
some reasoning why later.

Now let uswrite a program that gives us the nth partial sum of our sequence of sawtooth
functions. First, we must get this sequence of functions. Thistask is easy enough given
our strategies. We first define each of the pieces of each sawtooth, and then sum them all
in the end:
>nowher edi ffeven: = proc(x,i, k)
if 2*i/(2"(k+1)) <= x and x < (2*i+1)/(2"(k+1))
then 2*x-(2*i/(2"k)) else O
fi end ;
nowherediffeven := proc (X, i, K)
if 2xi/2M(k+1) <xand x<(2xi +1)/2"(k + 1) then 2xx — 2xi/2"k
ese 0
end if
end proc

>nowher edi ffodd: = proc(x,i, k)
if (2¥i+1)/(2"(k+1)) <= x and x < (2*i+2)/(2"(k+1))
then -2*x+((2*i+2)/(2"k)) else 0
fi end ;
nowherediffodd := proc(x, i, k) end proc
if (2xi +1)/2(k+1) <xand x <(2xi +2)/2"(k + 1) then
—2XX + (2xi +2)/2"k
else 0
end if

These describe the left and right pieces of each sawtooth. Now, we add all the pieces up
using our sum technique:
>nowher edi f f seq: = proc(x, k)

if k=1

then if x <= 1/2 then x else -x+1 fi

el se sun(' nowheredi ffeven(x,i,k)', 1=0...(2"k)-
1) +sum(’ nowher edi ffodd(x,i,k)', 1=0...(2"k)-1)

fi end ;

nowher ediffseq := proc (X, k) end proc

if k=21then if x<1/2then xelse -x + 1 end if
else sum(‘nowherediffever(x, i, k), i =0.. 2"k — 1)
+ sum('nowherediffodd(x, i, k), 1 =0.. 2"k — 1)
end if
Let us plot our sequence:
>pl ot (' nowheredi ffseq(x,1)',x=0..1);



0.5

0.4 1

.57

0.2 1

0.1 1

>pl ot (" nowheredi ffseq(x,2)',x=0..1);

0,254
0.2
0157
0.1
.05+

>pl ot (' nowheredi ffseq(x,3)',x=0..1);



>pl ot (" nowheredi ffseq(x,4)',x=0..1);

ot AVAVAVAVAVAVAVAVAVAVAVAVAYAVAVA
0.4 0.6 0.5 1

>pl ot (' nowheredi ffseq(x,5)',x=0..1);



0.2 0.4 0.6 0.5 1

Aswe can see, each successive function has more peaks. We now define the nth partial
sum of these functions, which shall approximate the Van der Waerden Function:
>nowheredi ff:=(x, N)-> sun(' nowheredi ffseq(x, k)", k=1..N);

N

nowherediff := (x, N) - Z 'nowherediffseq x, k)'
k=1

Let us plot this function:
>pl ot (' nowheredi ff(x,1)"',x=0..1);



0.5

0.4 1

D.Ej

0.2

D.1:

>pl ot (' nowheredi ff(x,2)",x=0..

0.6
D.E-f
D.d—f
III.H-E
D.z—f

0.1

N Y

Hi
1);

05

08

>pl ot (' nowheredi ff(x,3)",x=0..

U 02 04

¥
1);

05

0.8



D'FE
I:I.E-f
I:I.E-f
I:I.d-f
I:I.H-E
I:I.Eé

0.1

02 04 0B 0B

K
>pl ot (' nowheredi ff(x,3)",x=0..1);

0.71
D.E—f
0.5—5
D.a—f
D.S—f
III.E-E

0.1

0.2 0.4 0B 0.8

—

X
>pl ot (' nowheredi ff(x,4)',x=0..1);

—



III.?'-;
III.E-;
III.E-E
m—f
D.a—f
D.z—f

0.1

>pl ot (' nowheredi ff(x,5)",x=0..

III.?'-;
III.E-;
III.E-;
D.A-f
III.3-§
III.E-;

0.1

0 02 04

H
1);

05

0.8

—

>pl ot (' nowheredi ff(x,6)",x=0..

U 02 04

¥
1);

05

0.8

—t



EI.?'-;
I:I.E-;
I:I.E-;
El.d-;
I:I.H-i
I:I.E-;

0.1

>pl ot (' nowheredi ff(x,7)",x=0..

EI.?'-;
EI.E-;
I:I.E-;
I:I.fl-;
I:I.H-i
III.E-;

0.1

0 02 04

H
1);

05

0.8

—

>pl ot (' nowheredi ff(x,9)", x=0..

U 02 04

¥
1);

05

0.8

—t



I:I.Tf'-i
EI.E-;
EI.E-?
I:I.fl-;
I:I.H-i
I:I.E-;

0.1

. 0.2 0.4 0B i 1
K
So why does the Van der Waerden Function fail to be differentiable? The mainideais
that at each step of the sum, we add more peaks. The function will certainly not be
differentiable at the top of each of these peaks. However, for any other point, what occurs
isthat we add so many peaks which occur on smaller and smaller intervals that we can
get this point to be between two peaks, so just like the absolute value function at 0, the
difference quotient at this point will have different limits depending on whether we take it
from the left or the right.
We now change gears and move on to the topic of space filling curves. We know the
interval of points[0,1] isan uncountable set. As such, it isimpossible to find afunction
defined on the natural numbers that is onto the unit interval. However, it isasimple task
to come up with afunction that maps the unit interval onto the whole real line. We could
take:

f(x):= —cot(Tx)
with f(0)=f(1)=1.

This shows that the cardinality of the unit segment is the same as the real number line.
Now the question is, can we find a map from the unit segment [0,1] that is onto the unit
square [0,1]x[0,1]? The answer isin the affirmative, as was shown by Giuseppe Peano
and David Hilbert. The remarkable conclusion isthat [0,1] and [0,1]x[0,1] are of the
same size. Furthermore, through our discussion of the Cantor Function, it istrivial to see
that Cantor Set can be mapped onto [0,1]. Thus, our misleadingly thin set the Cantor Set
in reality has so many pointsin it that we can map the set onto [0,1]x[0,1]!



Such acurve that maps the unit interval onto the unit square is called a space-filling
curve, and for good reason. However, Eugen Netto proved that any continuous map from
[0,1] to [0,1]x[0,1] (or the unit cube) that is onto must fail to be injective. All of our
examples will be onto and continuous, and we will readily see how they fail to be
injective.

Peano's Space Filling Curve

Peano gave awondeful example of a space-filling curve. Like the Cantor Function, the

Peano Curve can be constructed as the limit of a sequence of curves. Thefirst curvein
the sequence maps [0,1] onto:

159
D.d-;
0.3
0.2

0.1

again, we reiterate that thisis a vector-valued function, so that the above red lineisthe
image of our function. The image of the second function in our sequenceis:



D.F-i
05
0.5
0.4
0.3
02

0.1

or " g2 0.4 0.6 0.8 1

What we have done is taken the unit square and divided it into four squares. We then took
the image of our original function, halfed it, then we rotated it 90 degrees clockwise and
drew it on the first square. This gives usthe first one fourth of our above image. To get
the second fourth, we again half the size of our first image, and this time translate the
image up by ahalf. We get the last two fourths again by tranglations and rotations of the
first image.

To get the image of the next function, we apply the same transformations to the second
image. We will get:



0.5

0.5 1

0.4 1

0.2 1

0" g2 o4 05 08 1

One will note that the first fourth of thisimage is the previous one rotated clockwise by a
right angle.

If we proceed as such, we will get a sequence of continuous functions which will
converge uniformly to another continuous function. This limiting function, which we will
call the Peano Curve, will turn out to be onto the unit square.

Our task now isto come up with an algorithm which will allow usto graph the sequence
of functions which lead up to the Peano Curve. Our strategy is simple, we will first derive
aprocedure which lists for us the "peano points.” We note from above that our sequence
of functions consist of straight lines pieced together at a number of vertices. We call this
sequence of vertices the peano points. If we can come up with a procedure that at k will
list out the peano points at k, then producing the kth function in our sequence is merely
connecting each of these vertices in the right order. We start by first manually producing
the peano points for the first step:

>peanopoi ntsl:=[[0,0],[1/2,1/2],[1,0]];

peanopointsl := %O, 0], % ;% [1,0] %

let us plot these points and see that indeed, if we join them in order we get the first
function in our sequence:

>w th(plots):

> poi nt pl ot (peanopoi nts1, col or=red);



0.41
03]
0.2

0.1

. 0.2 0.4 0.5 0. 1
Now, to get the next set of peano points, we merely apply the four transformations to the
previous points. We define these transformations now using:

>rotate: =(x,y)->[(x[1])*(cos(y))-

(x[2])*(sin(y)), (x[1])*(sin(y))+(x[2])*(cos(y))];

rotate := (x,y) — [Xx cos(y) =X, sin(y), X, sin(y) +X, cos(y)]

so that:
>peanotransforml: =(x)->(1/2)*rotate(x,-Pi/2)+[0,1/2];

=y 1 _1 1
peanotransforml := x — rotate%g 5 né+ é;) 2%

>peanot ransfornR: =(x)->(1/2)*x+[ 0, 1/ 2] ;

peanotransform2 := x — ;x + %} ;E

>peanot ransfornB: =(x)->(1/2)*x+[ 1/ 2, 1/ 2] ;

peanotransform3 := X — ;x + % ;E

>peanotransformi: =(x)->(1/2)*rotate(x, Pi/2)+[1,0];
peanotransformé := x — ;rotate%, ; n§+ [1,0]
As acheck, we apply the first transformation to the first peano points, which should give

us the first three vertices of the second function in our sequence:
> poi nt pl ot (map( peanotransf or nil, peanopoi ntsl), col or=red);



0.5

0.4+

0.31

0.21

0.1 1

Now, let me display my agorithm:
>peanopoi nt : =proc(i, k)

option renenber;

if k=1 then (peanopointsl)[i+1];
else if 1=0 then [0, 0];

else if i <= (2*(2*k-3)) then

map( peanot ransf or i, [ seq( peanopoi nt (j,

3)))1)[(27(2*k-3)) -1 +1];
else if i <= (2*(2*k-2)) then

map( peanot r ansf or n2, [ seq( peanopoi nt (j,

AN -(27(2%k-3)) +1] ;
else if i <= 3*(27(2*k-3)) then

map( peanot r ansf or n8, [ seq( peanopoi nt (j,

3?))])[i-(2“(2*k-2))+1];
el se
map( peanot r ansf or mi, [ seq( peanopoi nt (j

3)))1)[(27(2*k-1)) -1 +1] ;
fi; fi; fi; fi; fi; end;
peanopoint := proc (i, k)
option remember;
if k=1 then peanopointsl[i +1]
ese
if i =0then [0, O]

0" 0050101502025

k-1),] =0. .
k-1),] =0. .
k-1),] =0. .

,k-1),j=0..

(27 (2*k-

(27 ( 2% k-

(27 ( 2% k-

(27 ( 2% k-



else
if i <27(2xk —3) then map( peanotransforml,
[ seq(peanopoint(j, k—1),j =0.. 2%(2xk = 3))])I
2M2xk =3) —i +1]
ese
if i <27(2xk —2) then map( peanotransformz,
[ seq(peanopoint(j, k- 1), =0..2%(2xk - 3))])I
i —2N(2xk —3) +1]
else
if i <3x27(2xk —3) then map( peanotransform3,
[ seq(peanopoint(j, k—1),j =0..2"(2xk —=3))])[
I —2N(2xk —2) +1]
else map( peanotransformd,
[ seq(peanopoint(j, k—1),j =0..2%(2xk - 3))])I
2M2xk =1) =i +1]
endif end proc
end if
end if
end if
end if

Again, thisalgorithm is recursive and is based on the four transformations. Given an i
and ak, this algorithm gives the ith peano point of the kth function in our sequence, the
order in which the algorithm gives our points being in the order that we later will want to
connect them. Here is how it works, one can check that at each step k, there are 2\(2k-
1)+1 peano points. What we do is divide the task of finding the current peano points from
the previous set into five jobs. To get the peano points at the kth step, we start by setting
thefirst point (at i=0) to (0,0). Then, we get the first fourth of the remaining points by
taking the points at the step k-1, applying the first transformation, and then taking those
points in reverse order. We then get the second, third and last fourth of the points by
applying the second, third and fourth transformations respectively to the points from step
k-1, and also taking them in reverse order.

At this point, we can again write a procedure which lists out all of the points at a step:
> peanopoi nt set : =(k) - >[ seq( peanopoi nt (i, k), i1=0..(2"(2*k-
DI

peanopointset := k — [ seq(peanopoint(i, k),i =0.. 2(2k-1)

)]

and now we list the points for severa k:

> peanopoi nt set (1) ;
oo 3o

> peanopoi nt set (2) ;



™~ 10 miikilm)

1&%32 =9

- o il I il il il kil
™I mﬂﬁmﬁﬁ _@n@mHﬁGEG QQDEE Quﬁﬂm QQDBE D@DEG DHEliG Quﬁ
ﬂ@ﬁmﬁﬁ] ™ ™ N~ - MO -0 |© o
e S LD ot S e 2L s S iy BL iy UL e 202
wio TP = %%%%%%%%%%%%ﬂﬁﬂ%
Topy [ OO uamsfmsmogfm7,8576121763417135077%_1,837%

(I | © Prt i
IR - - — O L0 [© L0 |[©

S o~ P T:&@u@ﬁ@@uﬁmmﬁﬂu@m&@%%%@@%%

i P 0D O omL”@ o~ |8 R |9 o |8 S (S rms~ |8 e[S o

— <t — |\ N~ |0 - M M < — |\ -

- — |0
- - © . —|© 0 [©

AT oo PERRHE  Gie T T TR T P P e S R e o Do

3,.,4.1:.@0 3761@/_97m7,.0057m5.0017m7m037m1m/_ 77777 ﬁm_
A~ <IN TP o (9 0 THD o (PD @5@16@%56%516@%36
— g 19 ¥ qmzwﬁ D@DlG Dﬁﬁli6 %5176 Quﬁliﬁ D@DEG Dﬁﬁoi6
3,,4 360_.@%@% 145, —|© 0o |¢ -« |© -0 |© N o)
oW o}%hﬂ?ﬂ% 18%%%%%%%_35_Tﬂ_ﬁ_:fﬂ_ﬂaugj_:rﬂ_n}%
S0 SR opvel T GgoN Cger 080T og o 880N K8 0T g
SATE ﬂaﬂjmﬁmmﬁm m|© o Tt _ io P 0 P o 0 P 19 10 T o i0 PiD o (70
O o100 AN S =R o T %%%%%%Qﬂﬁ%gﬁ%
™ I< i P Lo MI_L”@ o~ |8 ormg (9 DH__DliG DH:DliG DH:DQiG D@DEG

- «— |00

- o™ |00 - - -
T SO GRS S0 oS e ) i D e 2S mie BS o S, pi

N /t\O T (lwﬂEEEEEErEErEErEErEErEErEEEEEEEErEErEEEEEEEL
m = mIR N g o @%1 1&%3 T o, o %36%36@%16[
Als Seaio PR Fn S 6%%%%%%%%%%%%%%
3 Dﬁ%%ﬁ%mmﬁoﬂ D.m_%ﬂ D@DEG Dﬁﬁli6 %5176 Quﬁliﬁ D@DLG Dﬁﬁi6 Quﬁlim_
- - [ [ [ [ ™ |© © ©
5 mo Qﬁgﬁmnuj%iﬁj%ﬁﬂj%iﬁi?iﬁi#iﬁi%iﬂiiiﬁ
o o (@]

Cmio 9 oo ~ O

and we also plot them:



> poi nt pl ot (peanopoi ntset (1), col or=red);

05- .
0.41
03]
0.2

0.1

: 0.2 0.4 06 0.8

> poi nt pl ot (peanopoi nt set (2), col or=red);
: " s

0.7
0.6
D.Eﬂf ¢
04
0.3
D.z-f

0.1

0" o2 os 0B 08

> poi nt pl ot (peanopoi ntset (3), col or=red);



L L+ L
0.5
< L <
1 £ ) £
0.6
o L L+
D.a‘l'_ . . .
] <& &
0.2
b L b
I:I ' ' T ' I ' T ' ' I T ' ' ' 1 ' ' ' T I ' T
0.2 0.4 0.k 0.5 1
> poi nt pl ot (peanopoi ntset (4), col or=red);
L L < L L < <
E L < o L B <
|:| B_ L L < L L < <
L o L+ L L L+
L B < L B < L
i & & &
0.BA
4 L+ L L+ L+ L L+ L+
L < < L L <
b L+ L L+ L+ L L+ L+
D'd- L < o B <
L+ L L+ L+ L L+ L+
< o B <
D.E_ L L < L L < <
L L < o B <
L L < L L < <
|:| ' ' v ' I ' v ' ' I v ' ' ' 1 ' ' ' v I ' T
0.2 0.4 0.k 0.8 1

> poi nt pl ot (peanopoi nt set (5), col or=red);



O
N A
N S A
+ o o & & @ o T
l o o & & & & & s & 4 & & & w4 b
nsd ¢ & & & & & & &

: N N
S S N N A A S S
lo o & & & 2 & o o o & & 2 o o o
§ & o o N A S e e e @

E N S A
PR PR S PR, PR
OBd « « =+ =« ¢ & = & ¢ <+ @ & & & @& 4
R E e A S O .
N O
N N A
A
1 = E A S F A S &
044 ¢ ¢ ¢ & + & ¢ & & & & & & & & &
S S e @ P & & o o o
N N N A N
. T E O
A
] & P PR &

T N S S A
U234 "« & & & 2 & = A A
e o & & & & s & & & & & s s 4 B
I e @ P & & o o o
N N N A N
& E A O Y F A &
A
0 —i—r .D,E. — I|:||,-_1“ — .,D,Ei. — .D.B. —ir *i

What one expects from these plots isto be convinced that the peano points at the kth step
include all of the peano points for al of the previous steps. Furthermore, the union over
all k of the peano points at k is a dense set in the unit square. Lastly and more
importantly, each of our curvesin our sequence goes through the peano points for all of
the steps before it, so that our limiting function must take as its values the union over k of
all of the peano points, which is adense set on [0,1]x[0,1]. Now, the Peano Curve will be
continuous, and so must take the compact set [0,1] to a compact and hence closed subset
of [0,1]x[0,1]. However, a dense set is part of itsimage, which isthe set of all peano
points. Thisloosely shows that our Peano Curve is onto the unit square.

Given our peano point algorithm, it is now an easy business to construct our sequence of
functions. Since our sequence of functions are merely straightlines pieced together, we
repeat our trick of first defining each piece seperately for each step. Thisresultsin:
>peanocurvepart:=(t,i, k)->(peanopoi nt (i +1, k) -
peanopoi nt (i, k)) *t +peanopoi nt (i, k) ;

peanocurvepart :=

(t,1, k) - (peanopoint(i +1, k) — peanopoint(i, k)) t + peanopoint(i, k)

With each piece defined as above, we will not be able to simply sum each piece to get our
kth function. Thus, we will now illustrate the second solution in defining a sequence of
piecewise defined functions, which involves using a do loop. Here is our algorithm:
>peanocurve: =proc(t, k)

if t=1

then [1,0] else

for i fromO to (2*(2*k-1)) do



if (i/(2°(2*k-1))) <=t and t < ((i+1)/(2~(2*k-1))) then

peanocurvepart ((t*(2"(2*k-1)))-i,i,k); break; else fi; od;
fi; end,
Warning, i~ is inplicitly declared local to procedure " peanocurve’

peanocurve := proc (t, k)
local i;
if t=1then [1, 0]
else for i from Oto 2°(2xk —1) do
if i/27(2xk —1) <tand t <(i +1)/2"(2xk —1) then
peanocurvepari(tx2*(2xk - 1) =i, i, k); break end proc
else
end if
end do
end if

This algorithm works as follows, we are given at and ak, and we want to evaulate the
kth function in our sequence at t. Now, the kth function in our sequence is composed of
2"\(2k-1) straight lines which are consecutive peano points joined together. What this
algorithm does is divide the unit interval [0,1] into 2*(2k-1) pieces. Then in ado loop,
this algorithm determines in which of these piecest liesin. Once it has determined that t
liesintheith interval, it assigns to it the value corresponding to the line connecting the
ith and i+1th peano point. Let us see the algorithm at work and graph some curves. First
we must define:
>peanocurvel: =(t, k) - >peanocurve(t, k)[1];

peanocurvel ;= (t, k) — peanocurvet, k)1

>peanocurve2: =(t, k) - >peanocurve(t, k)[2];
peanocurve? := (t, k) - peanocurvet, k)2

So that we can parametrically graph our curves. Let us see the curves for k up to six:
>plot([' peanocurvel(t,1)',"' peanocurve2(t,1)',t=0..1]);



0.5
n4-
D.H-i
III.E-;

0.1

>pl ot ([' peanocurvel(t,?2)',' peanocurve2(t,2)',t=0..1]);

07
III.E-;
III.E-;
D.d-;
I:I.H-;
I:I.E-;

0.1

0" s 0.4 0.5 IR

>pl ot ([' peanocurvel(t, 3)',"' peanocurve2(t,3)',t=0..1]);



0.5 1

0.5 1

0.4 1

0,21

0" " g2 o4 0of o8 1
>

pl ot ([' peanocurvel(t,4)',' peanocurve2(t,4)',t=0..1], nunpoin
t s=200) ;

0.5
06
0.4-

021




>
pl ot ([' peanocurvel(t,5)', "' peanocurve2(t,5)',t=0..1], nunpoin

ts=513);
PrOTETETLTE LTS
D.a;g * * *
6l X SO XSO
; &
D.d-::g y

% O
02 04 | I

0 05 0.8

>
pl ot ([' peanocurvel(t,6)',' peanocurve2(t,6)',t=0..1], nunpoin
t s=2049) ;



. 02 04 06 0B 1

We note that after k=3, our functions are no longer injective, and where one curve in our
sequence failed to be injective, the curves after it also failed. Thus, our limiting function
will not be injective. We also note the increasing amount of iterations needed to produce
arespectable graph.

Hopefully, one is convinced from the graphs that the Peano Curve will be onto and
continuous. However, isit differentiable? The answer isin the extreme negative. The
Peano Curve asit turns out, is nowhere differentiable.

Our next example of a space-filling curve is due to Hilbert. It can also be constructed as
the limit of a sequence of function. Like the Peano Curve, the Hilbert Curve will be
continuous and nowhere differentiable, and onto but not injective. Let us explore the
algorithm derived to produce the Hilbert Curve.

Hilbert's Space Filling Curve

Asin the Peano Curve, we first start with a small set of points:
>

hi | bertpoi ntsl:=[[0,0],[1/2,1/2],[0,1/2],[1/2,1],[1/2,0],[1
J1/2],[1/2,1/2],[1,1]]:

hilbertpointsl := %o, 0], %;% é}i% % 1% % o% @12% %,;%[1, 1]%

Now, if we connect these pointsin order we will get the first function in our sequence of
functions leading up to the Hilbert Curve. Let us plot the points:

>wi th(plots):

>poi nt pl ot (hi |l bertpoi ntsl, col or=red);



1 - s o
08
06
L] L
0.4
0.21
0 0.2 0.4 0.6 0.8 1

Now, let us define the following three transformations:
>hil berttransfornml: =(x)->(1/2)*x+[0, 1/ 2];

hilberttransforml := x — ;x + B,

NI =

>hil berttransforn®: =(x)->(1/2)*x+[ 1/ 2, 0];
hilberttransform2 := x — ;x+ % 0

>hil berttransfornB: =(x)->(1/2)*x+[ 1/ 2,1/ 2];

hilberttransform3 := x — }x+ % 1%
2 2

Using these transformations, define the following algorithm:
> hi | bertpoint:=proc(i, k)
option renenber;
if k=1 then (hilbertpointsl)[i]
el se
if i <= 27M(2*k-1)
then ((1/2)*[seq(hilbertpoint(j,k-1),j=1..(2"(2*k-1)))])[i]

el se

if i <= 27(2*Kk)

then map(hil berttransforml, [ seq(hil bertpoint(j, k-
1?,j=1--(2“(2*k-1)))])[i-(2“(2*k-1))]

el se



if i <= 3*(27(2*k-1))

then map(hil berttransforn®, [seq(hil bertpoint(j, k-
1),j=1..(2"(2*k-1))) ) [1-(27(2*k)) ] ;

el se

map( hi | berttransfornB,[seq(hilbertpoint(j,k-
1),j=1..(2"(2*k-1))) 1) [1-(3*(27(2*k-1)))]

fi; fi; fi; fi; end;

hilbertpoint := proc (i, k)
option remember;
if k=21then hilbertpointsl[i]

else
if i <27(2xk —1) then
[ V2xseq(hilbertpoint(j, k—1),j =1 ..2°2xk = 1))][i]
else
if i <27(2xk) then map(hilberttransformi,
[ seq(hilbertpoint(j, k—1),j =1 ..2°(2xk = 1))])[
i —2N(2xk -1)]
else
if i <3x27(2xk —1) then map( hilberttransform2,
[ seq( hilbertpoint(j, k—1),j =1.. 2"(2xk = 1))])[
i —2™N(2xK)]
else map( hilberttransform3,
[ seq( hilbertpoint(j, k—1),j =1.. 2"(2xk = 1))])[ end if
| —3x2\(2xk —1)] end proc
end if
end if
end if

One can compare this algorithm with the algorithm for the Peano points, and note the
great similarities. We start with a small set of points, then we basically divide the unit
sguare into quadrants, and apply transformations to our first set of pointsto get some sort
of image of them into each of the subdivisions of the square. We then proceed
inductively. Thus, at each k, hilbertpoint defines a sequence of points from applying
transformations to the set of points at the k-1th step. Wefirst start with the set | manually
defined as hilbertpointsl. For the curious, let us list these points for some k:

>hi |l bertpointset: =(k)-

>[ seq(hilbertpoint(i,k),i=1..(2"(2*k+1)))];

hilbertpointset := k — [seq(hilbertpoint(i, k), i =1.. H(2k+1)
>hil bertpointset(1);

goon B 2 28 BB BB 2R 201 v



oo 0 JHEL 9E o 201k L o S5
4250 0 2 o A B 2
%%%’3%3%%4 e @13%4%“’”%

Thefirst point is always (0,0) while the last is always (1,1). Also, let us plot some of the
points:
>poi ntpl ot (hil bertpointset(1));

14 % >

W
MW

I
:

]

0
=l

NI =

NN
PN

(L)

I\)\H -b\l—‘

0.8
06
0.41

0.2

0 0.2 0.4 0.5 0.8 1
> poi nt pl ot (hi | bert pointset(2));



14 @ ¢ @
0.5

J & s &
06

L+ L] L+
0.4

; o & L+
UEj

0 0.2 0.4 0.6 0.8
>poi nt pl ot (hi | bertpointset(3));

1 & o & % <% &

q L] L+ o L] L+ L+
0.8

E & o L+ & - L+

06 [

ks & L+ ks - L+

0.41 o " 2 " & %

4 L] L+ o L] L+ L+
UEj

d L] L+ o L] L+ L+

0 0.2 0.4 0.6 0.8

>poi ntpl ot (hil bertpointset(4));



L S T R - - S - R SR
L D T CEE - B IR R S
L - I - I e
L I S
L R - - B - R - R - B R TR R - B+
LR B - - T - - B - T - T - B - E - SR - T - B+
L S T R - - S - R SR
L D T CEE - B IR R S
L - I - I e
L - I - I e
L R - - B - R - R - B R TR R - B+
L R - - B - R - R - B R TR R - B+
LR B - - T - - B - T - T - B - E - SR - T - B+
LR B - - T - - B - T - T - B - E - SR - T - B+
L - I - I e
L R R O R I -

—_—

. 0.2 0.4 0.5 0.9
Hopefully, oneis convinced that as before, the union of all of these pointsis a dense set.
Thus, our Hilbert Curve which will be continuous and which will pass through all of
these points, will hence be onto [0,1]x[0,1].

L et us now define our sequence of curves leading up to the Hilbert Curve. As before, we
define our curves in a piecewise manner:
>hil bertcurvepart:=(t,i,k)->(hilbertpoint(i+1,K)-
hi | bert point(i,k))*t+hil bertpoint(i,Kk);
hilbertcurvepart :=
(t,i, k) - (hilbertpoint(i + 1, k) — hilbertpoint(i, k)) t + hilbertpoint(i, k)

So that then we can employ the do-loop method to define a sequence of functions that are
piecewise linear:

>hil bertcurve: =proc(t, k)

if t=1

then [1, 1] else

for i fromlto ((2"(2*k+1))-1) do

if ((i-1/7((27(2*k+1))-1)) <=t and t < (i/((2"(2*k+1))-1))

t hen

hi |l bertcurvepart ((t*((2"(2*k+1))-1))+1-i,i,k); break; else
fi; od;
fi; end,

Warning, i~ is inplicitly declared local to procedure " hilbertcurve’



hilbertcurve := proc(t, k)
local i
if t=1then [1, 1]
ese for ito 28(2xk +1) —1do
if (Ii—1)/(2N2xk+1)-1)<tand t<i/(2(2xk +1) —1) then
hilbertcurvepart(tx(2™(2xk +1) =1) +1 -1, 1, k); break end proc

else
end if
end do
end if
So, using:

>hil bertcurvel: =(t, k)->hilbertcurve(t,k)[1];
hilbertcurvel := (t, k) — hilbertcurvet, k)1

>hil bertcurve2: =(t, k)->hilbertcurve(t,k)[2];
hilbertcurve2 := (t, k) — hilbertcurve(t, k)2

We can now finally present what our Hilbert Curveslook like:
>plot(["hilbertcurvel(t,1)',"hilbertcurve2(t,1)',t=0..1]);

-‘I_

0.6

061

D.ﬂj

D.Ej

. 02 04 0B 0B 1
>plot(["hilbertcurvel(t,2)',"'hilbertcurve2(t,2)',t=0..1]);



0.8

061

|:|.:'1:

UEj

. 02 04 06 0B 1
>
plot(["hilbertcurvel(t,3)',"hilbertcurve2(t,3)',t=0..1], num

poi nt s=300) ;

-‘I-

0.6

0.6 /
D.d:/

D.E:




>
plot(["hilbertcurvel(t,3)', " hilbertcurve2(t,3)',t=0..1], num
poi nt s=500) ;

) /

0.6

061

0.4- /
/
021 /
/

0 0.2 0.4 0.5 0.8 1

>
plot(["hilbertcurvel(t,4)', ' hilbertcurve2(t,4)',t=0..1], num
poi nt s=1000) ;



0.8 /

0.6 ]

|:|.:'1:

/]

0 0.2 0.4 0.5 0.8 1

>
plot(["hilbertcurvel(t,5)", " hilbertcurve2(t,5)',t=0..1], num
poi nt s=2000) ;

19 A 41 Il P
l
7
1
08447 5 s fé
] i
i
05 ﬂﬁ Pl
4
[ ] Ed
L
|
0.4 -
1 A
A 2 &
5 &
024 Z 2
. o
.-_.1
&
ral
7 17 il 7




The Hilbert Curve isin some sense more efficient than the Peano Curve, for it fills out
the unit square out faster.

The setup for the Hilbert Curve is exactly the same as for the Peano Curve. We start by
defining a sequence of lists of points, each list including the points from all previouslists,
whose union is adense set in the unit square. We obtain these lists by recursively
applying transformations to previous lists. From each list, we define a function by
connecting the points in order. Then, our space filling curve will just be the limiting
function.

So far what we have done is map the unit segment onto the unit square. Now, we will
map the unit segment onto the unit cube. As mentioned before, since we can map the
Cantor Set onto the unit segment, then the amazing result is that we can map the Cantor
Set onto the unit cube! Let us see an example of acubefilling curve.

Hilbert also presented the idea of a cube-filling curve. Just like the Peano Curve and
Hilbert's other curve, this one will also be continuous and nowhere differentiable. Let us
now describe this curve.

Hilbert's Cube Filling Curve

Having mastered the tools and techniques used in the construction of the previous curves,
programming Hilbert's cube filling curve is routine. As before, we start with an initial list
of points, and then define lists of points recursively from thisinitial list through
transformations. Then, we define a sequence of curves from these lists by merely
connecting the points in the lists in order. Our Hilbert Cube Curve will then be the limit
of this sequence of curves.

We start with the following points in three dimensiona space:
>

hi | bert cubepointsl:=[[1/4,1/4,1/4],[1/4,3/4,1/4],[3/4,3/4,1
14],[3/4,1/4,1/4],[3/4,1/4,3/4],[3/4,3/4,3/4],[1/ 4,34, 3/ 4]
,[1/4,1/4,3/4]];

hilbertcubepointsl :=

gilggslgeslanling o s s s sais

L et us graph them:
>w th(plots):
War ni ng, the name changecoords has been redefined

>
pointplot3d([[1/4,1/4,1/4],[1/4,3/4,1/4],[3/4,3/4,1/4],[3/4
,1/4,1/4),[3/4,1/4,3/4],[3/4,3/4,3/4],[1/4,3/4,3/4],[1/ 4,1/
4,3/ 4]], axes=boxed, synbol =ci rcl e, synbol si ze=24, col or =red);



0.3

0.7 0.7

Aswe can see, they occupy the four vertices of a cube. Now, if we connect these four
points in the order listed we will get the first function in our sequence, which looks like a
clamp:



This curve starts on the bottom far corner, and ends at the top. Now, we introduce eight
transformations. Much to my chagrin, these transformations are listed on pages 27-28 of
Sagan's " Space Filling Curves." These transformations are nothing more than reflection
and rotation followed by scaling and transation. For example, the first transformation
takes a point in three space, rotates it about the x-axis by aright angle, reflects it with
respect to the xy-plane, and then scales the result by 1/2. Therest are similar in spirit:
>hi | bert cubetransfornml: =(x) -
>(1/2)*[x[1],x[3],x[2]]+(1/2)*[0,0,0];

. 1 1
hilbertcubetransforml ;= x - %xl, 5% Xz%
> hi | bertcubet ransforn®: =(x) -
>(1/2)*[x[ 3], x[2],x[1] ]+(1/2)*[0, 1, 0];
. . 11 1
hilbertcubetransform2 := x — % Xy 5 +§ Xy 5 xlé
> hi | bertcubetransfornB: =(x) -
>(1/2)*[x[1],x[ 2], x[3]]1+(1/2)*[1,1,0];
: . 1
hilbertcubetransform3 := x — %+2 = 2x2 2&%

>hil bertcubetransformd: =(x)->(1/2)*[x[3],-x[1], -
x[2]]1+(21/2)*[1,1,1];

hllbertcubetransform4::x~% 5% 2 2 1,2 szé
>hi | bertcubetransfornb: =(x)->(1/2)*[-x[3], -
x[1],x[2]]1+(1/2)*[2, 1, 1]

hilbertcubetransform5 := x ﬁél 5% 5 E 2X2§

> hi | bert cubetransfornt: =(x) -
>(1/2)*[x[ 1], x[ 2], x[3]1+(1/2)*[1,1,1];
. . 1 11 11
hilbertcubetransformé := x — %+2 x1,§+§x2,§+§ x@
>hil bertcubetransfornv: =(x)->(1/2)*[-x[3],x[2], -
x[1]]1+(1/2)*[1,1, 2] ;
hilbertcubetransform? := x L }+}x 1—1x
X BTN 2% 21%

>hil bertcubetransfornB: =(x)->(1/2)*[x[1],-x[3], -
x[2]]1+(2/2)*[0, 1, 2];

. . 11 1

hilbertcubetransform8:= x — %Xr 575 Xy 1 ~5 Xz%
Asbefore, we will recursively define a sequence of lists by applying these

transformations to previous lists. Essentially, we start with the unit cube and the four
pointsin hilbertcubepointsl. What will then occur is that we will divide the unti cube



into eight equal cubes. Then, we will take our four points and apply the first
transformation to them, the result being that we will get four new points which lie
inteirely in one of the small cubes. Thus, we will continue applying transformations to
hilbertcubepointsl until each of the small cubes has a set of four points inside of them.
These points will then be the second list of points, to which we will divide the unit cube
again into eight pieces and apply our eight transformations again to this new list of
points. So, consider the following algorithm:

> hi | bert cubepoi nt: =proc(i, k)

option renenber;

if k=1 then (hilbertcubepointsl)[i]

el se

if i <= 27(3*k-3) then

map( hi | bertcubetransformtl, [ seq(hil bertcubepoint(j, k-
1),j=1..(2"(3*k-3))) 1) [i]

el se

if i <= 27(3*k-2) then

map( hi | bert cubetransforn®, [seq(hil bertcubepoint(j, k-
1),j=1..(27(3*k-3))) 1) [1-(2"(3*k-3))]

el se

if i <= 3*(2"(3*k-3)) then

map( hi | bertcubetransfornB, [ seq(hil bertcubepoint(j, k-
1),j=1..(2"(3*k-3))) 1) [i-(27(3*k-2))]

el se

if i <= 27(3*k-1) then

map( hi | bert cubetransformi, [ seq(hil bertcubepoint(j, k-
1),j=1..(27(3*k-3))) 1) [1-(3*(2"(3*k-3)))]

el se

if i <= 5%(2"(3*k-3)) then

map( hi | bert cubetransfornb, [ seq(hil bertcubepoint(j, k-
1),j=1..(2"(3*k-3))) 1) [i-(27(3*k-1))]

el se

if i <= 3*(2"(3*k-2)) then

map( hi | bert cubetransfornd, [ seq(hil bertcubepoint(j, k-
1),j=1..(2"(3*k-3))) 1) [1-(5*(27(3*k-3))) ]

el se

if i <= 7%(2"(3*k-3)) then

map( hi | bert cubetransfornv, [seq(hil bertcubepoint(j, k-
1),j=1..(27(3*k-3))) 1) [1-(3*(2"(3*k-2)))]

el se

map( hi | bertcubetransfornB, [ seq(hil bertcubepoint(j, k-
1),j=1..(27(3*k-3))) ) [1-(7*(2"(3*k-3)))]

fi; fi; fi; fi; fi; fi; fi; fi; end;



hilbertcubepoint := proc (i, k)
option remember;
if k=1then hilbertcubepointsl|i]
ese
if i <27(3xk —3) then map( hilbertcubetransformi,
[ seq( hilbertcubepoint(j, k —=1),j =1 .. 28(3xk =3))])[i]
ese
if i <27(3xk —2) then map( hilbertcubetransform?2,
[ seq(hilbertcubepoint(j, k —1),j =1 .. 28(3xk —=3))])[
i —27(3xk = 3)]
ese
if i <3x27(3xk —3) then map( hilbertcubetransform3,
[ seq( hilbertcubepoint(j, k—=1),j =1.. 28(3xk —=3))])[
| —2™N(3xk —2)]
else
if i <27(3xk —1) then map( hilbertcubetransformy,
[ seq(hilbertcubepoint(j, k—=1),j =1..2"(3xk —=3))])[
i —3x2"N(3xk —3)]
else
if i <5x27(3xk —3) then map( hilbertcubetransforms, [
seq( hilbertcubepoint(j, k—1),j =1 .. 2"(3xk —=3))
DI —27(3xk -1)]
dse
if i <3x27(3xk —2) then map(
hilbertcubetransformé, [ seq(
hilbertcubepoint(j, k—1),j =1 .. 2*(3xk —3))
DI —5x27(3xk —3)]
ese
if i <7x27(3xk —3) then map(
hilbertcubetransform?, [ seq(
hilbertcubepoint(j, k —1),
j=1..27(3xk =3))]I
I —3x2(3xk —2)]
else map( hilbertcubetransforms, [ seq(
hilbertcubepoint(j, k —1),
j=1..2°3xk=3N])[
I —7x2"(3xk —3)]
end if
end if
end if



end if end proc
end if
end if
end if
end if
Define:

> hi | bert cubepoi ntset: =(k) -
>[ seq( hi | bertcubepoint(i,k),i=1..(2"(3*k)))];

hilbertcubepointset := k — [ seq(hilbertcubepoint(i, k), i =1..2°)]

So now let uslist our points for some k=1,2:
>hi | bert cubepoi ntset(1);

110 310@B 3103 1108 1308330l 334l 13
ey 2 2B 4 e 2 a0 o 405 2 40 B 2 40 2 40 7 40
>hi | bert cubepoi ntset(2);
1101 13981303 11083108330l 33531
55 5H|b 500 500 9 81| b 90l 5 o 5 8 ol
510 710 730 53985303 730B7 10851
ool oo 5 o ol osll B o ool B 5 ol s
51057107 7 100/ 5 1007 5307 7 305 7 305 5 3
661 o011 b 5 501 01| o a1 & o) o' o b o1
3305315115137 1307 1107 3147 33
5ol s el b osh s ol e el b sl ool e o
73507 370 1797 15 15 17 37 35
S50l s ol s b ool 5 o ok o o bs sl sl
5 50 750/ 75g So5gl S5 7g 77 77 57
S50l ibs ol oo ool b o B s o b ol s
5 7Q 77 75 55 55 75 77 57
S0 adib ol b ool s ook s ol b sl st
3 7Q 35 35 37 17 15 15 17
58550 5ol o ol e o e o e o e ol

Also, let's plot the sets for several k:
>
poi nt pl ot 3d( hi | bert cubepoi ntset (1), axes=boxed, synbol =circl e

, synbol si ze=24, col or=red);

e



0.3

0.3
0.4

0B 0.5

0.7 07 0.6

>
poi nt pl ot 3d( hi | bert cubepoi nt set (2), axes=boxed, synbol =circl e
, synmbol si ze=24, col or =red);




>

poi nt pl ot 3d( hi | bert cubepoi nt set (3), axes=boxed, synbol =circl e
, synbol si ze=18, col or=red);

0.5
0.5 1
0.4 4

5 D 0 0 0 0
PP PFF

o 4

0.2

O O B & & 4

o

k)

¢

* I.' I._.I I,.!-II ."- _'.I'i:...'.l'..ll'- ...
# ¥ &
&

>

poi nt pl ot 3d( hi | bert cubepoi nt set (4), axes=boxed, synbol =circl e
, synbol si ze=18, col or =red);



1o
b -
&
o
o
-
&
-3
EL-
159
ﬂ K
&
(=]

B OOOOCGEaEE OO

As before, these points are starting to get dense in the unit cube, and so we expect that
our Hilbert Cube Curve will be continuous. Thus, et us now program our sequence of
functions, again, ssmply by connecting the above pointsin order:

>hi | bertcubecurvepart: =(t,i,k)->(hil bertcubepoint (i+1, k) -
hi | bert cubepoi nt (i, k))*t+hil bertcubepoint (i, Kk);
hilbertcubecurvepart:= (t, i, k) -

(hilbertcubepoint(i + 1, k) — hilbertcubepoint(i, k)) t + hilbertcubepoint(i, k)

>hi | bertcubecurve: =proc(t, k)

if t=0

then hil bertcubepoint(1,k) else

for i fromlto ((22(3*k))-1) do

if ((i-1)/7((27(3*k))-1)) <t and t <= (i/((2"(3*k))-1))
t hen

hi | bert cubecurvepart ((t*((2"(3*k))-1))+1-i,i,k); break;
el se fi; od;

fi; end;

Warning, i~ is inplicitly declared local to procedure

“hil bertcubecurve’

hilbertcubecurve:= proc(t, k)
local i;
if t =0then hilbertcubepoint(1, k)
ese for i to 2*(3xk) —1do
if (i—21)/(2M3xk) —1)<tand t<i/(2(3xk) — 1) then



hilbertcubecurvepari(tx(2*(3xk) —1) + 1 —i, i, k); break end proc
ese
end if
end do
end if
Finally, lets draw the curves:

>hi | bertcubecurvel: =(t, k)->hil bertcubecurve(t, k)[1];
hilbertcubecurvel := (t, k) — hilbertcubecurvet, k)1

>hi | bertcubecurve2: =(t, k) ->hi | bertcubecurve(t, k)[2];
hilbertcubecurve2:= (t, k) — hilbertcubecurvet, k)2

>hi | bertcubecurve3: =(t, k)->hil bertcubecurve(t,k)[3];
hilbertcubecurve3:= (t, k) — hilbertcubecurvet, k)3

>
spacecurve([' hil bertcubecurvel(t,1)',"'hil bertcubecurve2(t, 1
)", " hilbertcubecurve3(t,1)'],t=0..1,thickness=2);

\\

\

>

spacecurve([' hil bertcubecurvel(t,2)'," hil bertcubecurve2(t, 2
)", " hilbertcubecurve3(t,2)'],t=0..1,thickness=2, nunpoi nt s=5
00);



>

spacecurve(["' hil bertcubecurvel(t,3)',"' hil bertcubecurve2(t, 3
)", " hilbertcubecurve3(t,3)'],t=0..1,thi ckness=2, nunpoi nt s=1
200) ;



>

spacecurve([' hil bertcubecurvel(t,4)',' hilbertcubecurve2(t, 4
)" ," hil bertcubecurve3(t,4)'],t=0..1,thi ckness=1, nunpoi nt s=5
000) ;



Hopefully we are convinced that the Hilbert Cube Curve will actually fill out the unit
cube. Like the Peano Curve and the Hilbert Space Curve, this curve will also be
continuous, nowhere differentiable, and will fail to be injective. However, unlike the
Peano Curve and the othe Hilbert Curve, each sequence of curves leading up to the
Hilbert Cube Curve does not fail to be injective. There are many interesting patternsin
the Hilbert Cube Curve construction. Indeed, by looking at a particular face in this
sequence, where the starting point and the enpoint are on the front face and to the left::






L E_':_C‘n’?f]}
I E_.' e a
N Bl E T E
ywilla F""_._C}_‘j
— T s
by B ES 3 5
i y
. g
> s B

Now, think of the above graphs as being the graphs of a sequence curves from [0,1] into
the unit square. Then we can see that these curve will converge to a curve that lieson a
face mapped out by the Hilbert Cube Curve, and as such, must be onto the unit square.



Thus, the Hilbert Cube Curve has given us another space filling curve.

We have thus managed to map the unit interval onto the unit square and cube, and with
some thinking one can see how we can map the cantor set on the unit cube and square.
Much moreis possible, in fact Felix Hausdorff showed that every compact in R*nisa
continuous image of some function defined on the Cantor Set. The proof is by
construction, and by getting ageneral feel for these space filling curves we can see that
this construction will have to be arecursive one.

The three last examples have all been attacked through the same method. We start with a
small set of data which we input by hand, and then we recursively define what we need
by applying transformations to this small set. Now, we return to the Cantor Set and apply
the same method to it.

Cantor Set Revisited

We shall now introduce an alternative way of computing the cantor points. Our original
way was a very direct approach, where the cantor steps at the kth step directly depended
on the cantor points at the step k-1. However, we can get another algorithm for the cantor
points by defining the cantor points at the first step by hand and then applying two
transformations to it recursively. So, define:

>fractal cantorpointsl: =[0,1/3,2/3,1];

fractal cantorpointsl := é) é :23 1%

Now, the ideais that to get the cantor points at the step k, we get the cantor points of the
previous step, shrink then by athird, and then make two copies. We draw one copy on the
first third of the unit segment, and the second copy on the last third. Thus, define:
>cantortransfornl: =x->(1/3) *x;

1
cantortransforml := x — 3 X

>cantortransforn®: =x->(1/3)*x+(2/ 3);

cantortransform2 := x — éx +§

Then our second algorithm for the cantor points, which we call fractalcantor point for its
use of mirroring, is given by:

>fractal cant or poi nt: =proc(i, k)

option renmenber;

if k=1 then fractal cantorpointslfi]

el se

if i <= 27k then

(map(cantortransforml, [ seq(fractal cant orpoint(j, k-
1),j=1..27(k))1))[1];

el se (map(cantortransforn®, [seq(fractal cantorpoint(j, k-
1),j=1..27(k))1))[i-2"K];

fi ; fi ; end ;



fractal cantorpoint := proc (i, k)
option remember;
if k=1then fractalcantorpointsl]i]
ese
if i <2"kthen
map( cantortransforml, [ seq(fractalcantorpoint(j, k—1),j =1.. 2*k)])
[i]
else map( cantortransform2, [ seq(fractalcantorpoint(j, k—1),j =1 .. 2*k)])
[i —27K]
end if
end if
end proc
Let uslist out some points to convince ourselves this algorithm is correct:

>fractal cant or sequence: =(k) - >
[ seq(fractal cantorpoint(i,k),i=1..2"k+1))];

fractal cantor sequence := k — [ seq(fractalcantorpoint(i, k),i =1.. 2

12
,3,3'1§
>fractal cant or sequence(2);
121278 1@

(k+1)

)]

>fractal cant or sequence(1);

)9! 9) 3! 3’ 91 9!

>fractal cant or sequence(3);
1 2127 8 1219207825261§

212799 2r2r33271'2r9 9 27 27

>fractal cant or sequence(4);
1 2 1 2 7 81219207 8 252612555619 2061627873

'81'81'27'27°81'81'9'9'81'81'27'27°81'81'3'3'81'81'27' 2781’81’ 9' 9’ 81’

74 25 26 79 80 1

81' 27 27' 81’ 81 %
At this point one can also rewrite the General Cantor Set algorithm, but lets not be
pedantic.
Another point of interest isthat of similarity dimension. In each curve we constructed we
always started with a sequence of lists of points which were constructed inductively.
There were interesting patternsin all of them. As such, there is away to assign a number
to these sequences of sets which rates the complexity of each sequence. An example of
thisisthe similarity dimension, which to put it technically is the ratio of the logarithm of
the number of transformations used in the construction of the object, over the logarithm
of the inverse of the reduction ratio. So for example, if we inductively construct alist of
points where each time we reduce the points by a scale of r, and then apply n



transformations to these points, then the similarity dimension of our end result is
In(n)/In(1/r). Asthe similarity dimension gets bigger, we say that the object is more
complex.

So consider the list of points constructed by peanopoint and hilbertpoint. In each case, we
had four transformations and at each step, we shrunk the points from the previous step by
1/2. Thus, our similarity dimension isIn(4)/In(1/1/2) which is 2. For the
hilbertcubepoints, we had eight transformations and a reduction ratio of 1/2, and so one
can check that we will get adimension of 3. Thus, whereas the Hilbert Space Filling
Curve and the Peano Curve are just as complex as one another, the Hilbert Cube Curveis
more complex than these two, asis to be expected. The Cantor Set has similarity
dimension In(2)/In(3).

We have thus managed to explore several interesting examples of sets and functions. We
first discussed the Cantor Set, an uncountable compact set of measure zero, which we
later generalized. After, we explored and approximated the Devil's Staircase, an
increasing function whose derivative is zero amost everywhere. After giving an example
of anowhere differentiable but everywhere continuous function, we then explored the
subject of space-filling curves. We were able to fill out the unit square and unit cube with
continuous but nowhere differentiable functions. Along the way, we solved some key
programming issues. We learned two techniques to how to define a sequence of functions
which are piecewisely defined. One method was using sums, while another was through
do-loops. We aso mastered the technique of using transformations to recursively define a
sequence of lists.



	Cantor Set
	General Cantor Set
	Van der Waerden Nowhere Differentiable Function
	Peano's Space Filling Curve
	Hilbert's Space Filling Curve
	Hilbert's Cube Filling Curve
	Cantor Set Revisited

