
Latin Squares

Objective:
To test if a given matrix is a latin square, to produce all possible latin
squares of a given dimension and to investigate the connections between
latin squares and group theory.

Introduction:
An nxn square matrix is a latin square of dimension n if the elements of the
matrix are arranged in such a
way that each is present exactly once in each row and each column. The
elements of a latin square can be almost anything, including: numbers,
letters, symbols and colored boxes. For this project, the scope will
be limited to the integers from 1...n, where n is the dimension of the matrix.
The following worksheet provides a means for checking whether or not a
matrix is a latin square and discusses methods used to produce latin squares
and their connection to group theory.

Discussion:

Part I: Testing a given matrix
The first step of the project consisted of writing a program that tests if an
inputted matrix is a latin square. The program simply considers a matrix and
returns a true if the matrix is a latin square or a false if it is not. The
program tests if the integers (1...n) are all used and if each occurs exactly
once in every row and column.

The program:

> islatin := proc(A)
 local i, n, v;
 if not type(A, 'matrix(integer, square)') then
 ERROR(`invalid arguments`)
 end if;

 n := linalg[rowdim](A);

 for v in [linalg[row](A, 1 .. n), linalg[col](A, 1
.. n)] do
 if convert(v, set) <> {seq(i, i = 1 .. n)} then
 RETURN(false)

 end if;
 end do;
 RETURN(true)
end proc:

To use this procedure, a matrix must be inputted first with a name, and then
checked using this program.

> a := matrix([[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4,
1, 2, 3]]);

 := a

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

> islatin(a);
true

Therefore, this is an example of a matrix that is a latin square.

An example of a matrix that is not a latin square:

> b:= matrix([[4,4,3,3],[4,4,1,1],[3,3,1,1],[1,1,4,4]]);

 := b

4 4 3 3
4 4 1 1
3 3 1 1
1 1 4 4

> islatin(b);
false

Matrix(b) above returns a false because every integer from 1 to n (here n=4)
is not used and each integer is not limited to only one appearance in each
row and column.

A non-square matrix returns an error because the dimensions do not fulfill
the definition of a latin square.

> c:= matrix([[1, 2, 3],[3, 1, 2]]);

 := c

1 2 3
3 1 2

> islatin(c);

Error, (in islatin) invalid arguments

>

back to top

Part II: Producing all possible latin squares
The second part of the project consisted of writing a program that produces
all possible latin squares of a given dimension, narrowing the vast number of
possibilities by fixing the first row and column as 1...n in sequential order.
As the dimension n gets larger, the number of possible latin squares grows
rapidly. Without fixing the first row and column, there is one possible latin
square for n=1, two possibilities for n=2, 12 possibilities for n=3, 576
possibilities for n=4, 161,280 possibilities for n=5, and so on
(http://mathworld.wolfram.com/LatinSquare.html). The code that follows
produces all of the latin squares with the first row and column set as 1...n.
The above number of possibilities for each dimension of latin squares comes
from the number of possibilities with the first row and column set multiplied
by the number of permutations of the rows and columns. Thus, the number
of latin squares produced by the following code multiplied by (n!)(n-1!)
equals the total number of latin squares possible. Working backwards, this
would indicate how many latin squares the following code should produce.
If n=3 has a total of 12 latin squares, dividing that by (3!)(2!) would mean
that the following program with n=3 would give just one latin square. For
n=4, 576/((4!)(3!)) = 4, so the program should produce four latin squares.
For n=5, 161,280/((5!)(4!)) = 56, so there should be 56 latin squares for the
program's result. As you will see, this is true. Thus, the following program
gives all of the latin squares with the first row and column set.

To make the program less difficult to follow, the actual procedure is broken
down into smaller procedures. Thus, there are three smaller programs
written that are used in the final procedure that produces the latin squares.
These smaller programs only make sense in the context of the entire code, so
here they are:

> listunion := proc(li)
 local C, i, L, m, set1, set2, set3;
 L := [];
 m := nops(li);
 for i from 1 to m do
 set1 := convert(L, set);
 set2 := convert(li[i], set);
 set3 := set1 union set2;

 L := convert(set3, list);
 end do;
 return L;
end proc:
> listminus := proc(list1, list2)
 convert(convert(list1, set) minus convert(list2, set),
list);
end proc:
> lsquare := proc(n, i, j)
 local B, C, d, k, r, x, z;
 B := matrix(n);
 x := linalg[rowdim](B);
 B[i,j] := [seq(k, k=1..x)];
 B[i,j] := listminus (B[i,j], linalg[row](n, i));
 B[i,j] := listminus (B[i,j], linalg[col](n,j));
 if B[i,j] = [] then
 return []
 end if;
 z := nops(B[i,j]);
 C := [seq(matrix(n), t=1..z)];
 for r from 1 to z do
 C[r][i,j] := B[i,j][r];
 end do;
 return C;
end proc:
Here is the complete program that produces the latin squares, using the
above three smaller procedures:

> latin := proc(n)
n=row/column dimension
local C, g, i, j, x, z;
 x := matrix(n,n,0);
 for i from 1 to n do x[1,i] := i end do;
 for i from 1 to n do x[i,1] := i end do;
 C := [x];
 for i from 2 to n do
 for j from 2 to n do
 g := [seq(0, k=1..nops(C))];
 for z from 1 to nops(C) do
 g[z] := lsquare(C[z], i, j);
 end do;
 C := listunion(g);
 end do;
 end do;
 return C;
end proc:

To produce the latin squares of a certain dimension n, use latin(n):
> latin(2);

1 2
2 1

> latin(3);

1 2 3
2 3 1
3 1 2

> latin(4);

, , ,

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

These are all latin squares because the integers 1...n have all been used, and
each integer appears exactly once in each row and column. The number of
resulting latin squares corresponding with their dimension matches the
predicted results from the opening comments. The above latin squares are
all of the possible latin squares of their given dimension with the first row
and column set. There is a problem with finding the latin squares of any
dimension greater than 4, however.

> latin(5);
Error, (in latin) assigning to a long list, please use arrays

Based on preliminary calculations, this result should consist of 56 distinct
latin squares. However, this is too much data for MAPLE to include in a
list, so latin squares of dimension greater than 4 need to have their own
special provisions made to the latin(n) procedure. This is difficult to do, so
only latin(5) is rewritten here to show that it is possible. Anything beyond
n=5 is really too big for MAPLE to handle using the methods used here with
lists. It may be possible or more efficient to use arrays, but here the scope is
limited to the possibilities while using lists.

For n=5, the procedure needs to be broken into parts. The first step within
this new code uses latin(n) but changes the indices so the program just
produces the possible squares with the first three rows completed. After this
is done, new added steps run a loop through each of these possible latin
squares individually to fill in the remaining rows. The procedure has been
renamed latin5 so as not to confuse the two procedures.

> latin5 := proc()
 local C, F, g, i, j, k, n, S, t, x, z;
 # n is the dimension
 n := 5;
 x := matrix(n,n,0);
 for i from 1 to n do x[1,i] := i end do;
 for i from 1 to n do x[i,1] := i end do;
 C := [x];
 for i from 2 to 3 do
 for j from 2 to n do
 g := [seq(0, k=1..nops(C))];
 for k from 1 to nops(C) do
 g[k] := lsquare(C[k], i, j);
 end do;
 C := listunion(g);
 end do;
 end do;
 S := [];
for z from 1 to nops(C) do
 F := [C[z]]:
 for i from 4 to n do
 for j from 2 to n do
 g := [seq(0, k=1..nops(F))];
 for k from 1 to nops(F) do
 g[k] := lsquare(F[k], i, j);
 end do;
 F := listunion(g);
 end do;
 end do;
 S := [op(S), F];
end do;
 C := listunion(S);
end proc:
To produce all possible latin squares of dimension 5, use the command
latin5(). Because there are going to be so many latin squares, and because it
is important to know how many are actually produced to check this against
preliminary calculations, naming the results "F" will help for later reference.
> F := latin5();

F

1 2 3 4 5
2 5 1 3 4
3 4 2 5 1
4 3 5 1 2
5 1 4 2 3

1 2 3 4 5
2 5 4 1 3
3 1 5 2 4
4 3 1 5 2
5 4 2 3 1

1 2 3 4 5
2 3 5 1 4
3 5 4 2 1
4 1 2 5 3
5 4 1 3 2

1 2 3 4 5
2 5 4 3 1
3 4 1 5 2
4 1 5 2 3
5 3 2 1 4

, , , ,

 :=

1 2 3 4 5
2 5 4 1 3
3 4 2 5 1
4 1 5 3 2
5 3 1 2 4

1 2 3 4 5
2 3 4 5 1
3 1 5 2 4
4 5 2 1 3
5 4 1 3 2

1 2 3 4 5
2 5 4 1 3
3 1 5 2 4
4 3 2 5 1
5 4 1 3 2

1 2 3 4 5
2 5 4 3 1
3 1 5 2 4
4 3 1 5 2
5 4 2 1 3

, , , ,

1 2 3 4 5
2 5 1 3 4
3 4 5 2 1
4 1 2 5 3
5 3 4 1 2

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

1 2 3 4 5
2 3 5 1 4
3 4 1 5 2
4 5 2 3 1
5 1 4 2 3

1 2 3 4 5
2 1 4 5 3
3 4 5 2 1
4 5 1 3 2
5 3 2 1 4

, , , ,

1 2 3 4 5
2 4 5 3 1
3 5 4 1 2
4 1 2 5 3
5 3 1 2 4

1 2 3 4 5
2 4 5 1 3
3 5 4 2 1
4 3 1 5 2
5 1 2 3 4

1 2 3 4 5
2 1 5 3 4
3 4 2 5 1
4 5 1 2 3
5 3 4 1 2

1 2 3 4 5
2 4 1 5 3
3 5 4 1 2
4 3 5 2 1
5 1 2 3 4

, , , ,

1 2 3 4 5
2 4 5 3 1
3 1 4 5 2
4 5 1 2 3
5 3 2 1 4

1 2 3 4 5
2 3 4 5 1
3 5 2 1 4
4 1 5 3 2
5 4 1 2 3

1 2 3 4 5
2 3 1 5 4
3 4 5 1 2
4 5 2 3 1
5 1 4 2 3

1 2 3 4 5
2 4 5 1 3
3 5 1 2 4
4 3 2 5 1
5 1 4 3 2

, , , ,

1 2 3 4 5
2 4 5 3 1
3 5 1 2 4
4 1 2 5 3
5 3 4 1 2

1 2 3 4 5
2 1 5 3 4
3 5 4 1 2
4 3 2 5 1
5 4 1 2 3

1 2 3 4 5
2 1 5 3 4
3 4 1 5 2
4 5 2 1 3
5 3 4 2 1

1 2 3 4 5
2 3 5 1 4
3 4 2 5 1
4 5 1 3 2
5 1 4 2 3

, , , ,

1 2 3 4 5
2 4 5 3 1
3 1 4 5 2
4 5 2 1 3
5 3 1 2 4

1 2 3 4 5
2 4 5 3 1
3 5 2 1 4
4 3 1 5 2
5 1 4 2 3

1 2 3 4 5
2 5 4 1 3
3 4 1 5 2
4 3 5 2 1
5 1 2 3 4

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

, , , ,

1 2 3 4 5
2 3 5 1 4
3 4 2 5 1

1 2 3 4 5
2 5 1 3 4
3 4 5 1 2

1 2 3 4 5
2 5 4 1 3
3 1 2 5 4

1 2 3 4 5
2 5 1 3 4
3 4 5 1 2, , , ,

4 5 1 2 3
5 1 4 3 2

4 1 2 5 3
5 3 4 2 1

4 3 5 2 1
5 4 1 3 2

4 3 2 5 1
5 1 4 2 3

1 2 3 4 5
2 4 1 5 3
3 5 4 2 1
4 3 5 1 2
5 1 2 3 4

1 2 3 4 5
2 5 1 3 4
3 1 4 5 2
4 3 5 2 1
5 4 2 1 3

1 2 3 4 5
2 5 4 1 3
3 4 5 2 1
4 3 1 5 2
5 1 2 3 4

1 2 3 4 5
2 3 1 5 4
3 5 4 2 1
4 1 5 3 2
5 4 2 1 3

, , , ,

1 2 3 4 5
2 4 1 5 3
3 5 4 2 1
4 1 5 3 2
5 3 2 1 4

1 2 3 4 5
2 3 4 5 1
3 5 1 2 4
4 1 5 3 2
5 4 2 1 3

1 2 3 4 5
2 3 4 5 1
3 5 2 1 4
4 1 5 2 3
5 4 1 3 2

1 2 3 4 5
2 4 1 5 3
3 5 2 1 4
4 3 5 2 1
5 1 4 3 2

, , , ,

1 2 3 4 5
2 3 1 5 4
3 5 4 1 2
4 1 5 2 3
5 4 2 3 1

1 2 3 4 5
2 5 4 3 1
3 4 5 1 2
4 1 2 5 3
5 3 1 2 4

1 2 3 4 5
2 5 4 3 1
3 1 2 5 4
4 3 5 1 2
5 4 1 2 3

1 2 3 4 5
2 1 5 3 4
3 5 4 2 1
4 3 1 5 2
5 4 2 1 3

, , , ,

1 2 3 4 5
2 4 1 5 3
3 5 2 1 4
4 1 5 3 2
5 3 4 2 1

1 2 3 4 5
2 4 5 1 3
3 1 2 5 4
4 5 1 3 2
5 3 4 2 1

1 2 3 4 5
2 3 1 5 4
3 4 5 2 1
4 5 2 1 3
5 1 4 3 2

1 2 3 4 5
2 4 5 1 3
3 1 4 5 2
4 5 2 3 1
5 3 1 2 4

, , , ,

1 2 3 4 5
2 3 4 5 1
3 1 5 2 4
4 5 1 3 2
5 4 2 1 3

1 2 3 4 5
2 5 1 3 4
3 4 2 5 1
4 1 5 2 3
5 3 4 1 2

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

1 2 3 4 5
2 4 1 5 3
3 1 5 2 4
4 5 2 3 1
5 3 4 1 2

, , , ,

1 2 3 4 5
2 3 5 1 4
3 1 4 5 2
4 5 2 3 1
5 4 1 2 3

1 2 3 4 5
2 1 4 5 3
3 5 2 1 4
4 3 5 2 1
5 4 1 3 2

1 2 3 4 5
2 3 5 1 4
3 1 4 5 2
4 5 1 2 3
5 4 2 3 1

1 2 3 4 5
2 4 5 3 1
3 1 2 5 4
4 5 1 2 3
5 3 4 1 2

, , ,

56

To avoid having to count how many possibilities there are by hand, use the
nops() function which gives the number of elements in a list. Based on
earlier results, there should be 56.
> nops(F);

>
This shows that this program, although it had to be altered to work with the
large number of latin squares for dimension 5, does give all possible latin
squares of dimension 5 with the first row and column set.

back to top

Part III: Latin squares and group theory
Cayley tables are a huge part of group theory. These tables represent the
elements of a group and display the solutions of the operations placed upon

the group. Cayley tables, interestingly enough, have the same properties of
latin squares insofar as each element must be used and occurs exactly once
in each row and column. Actually, all Cayley tables are latin squares. The
question then arises: what is the relationship between latin squares and
groups?

Because every group can be written as a Cayley table, and all Cayley tables
are latin squares, it is implied that all groups can be represented by a latin
square. However, based on the fact that we know how many groups exist of
certain orders and the fact that there is such a vast number of latin squares, it
seems plausible that every possible latin square (whether or not distinct) may
not represent a different group. This mirrors the same idea in group theory,
where isomorphic Cayley tables represent the same group. So some latin
squares may represent the same groups as other latin squares, but does every
latin square represent a group?

Take the groups of order 3. There is only one, Z3. (There is only one group
of any order p where p is prime, namely Zp.) Once again limiting the scope
to the latin squares produced by the previous programs (where the first row
and column are set), it is necessary to determine whether or not the latin
square represents a group. In this case, the produced latin square of
dimension 3 does represent the group Z3.

Moving to the groups of order 4 -- there are two: Z4 and Z2xZ2. However,
there are four distinct latin squares produced by latin(4). Which, if any,
represent groups? If they all represent groups, it proves the point that some
distinct latin squares represent the same group. If any of them does not
represent a group, it proves the point that not all latin squares represent
groups. Upon further inspection, it is evident that all of these latin squares
represent groups of order 4. One of them represents Z2xZ2, while the others
represent Z4.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

 represents Z2xZ2 because all of the elements are of order 2.

The other latin squares of dimension 4 have elements of order 4 and order 2,
so they represent the cylic group Z4. Again, this investigation is limited to
the squares produced with the first row and column set. So, although there
may be latin squares of dimension 4 that do not represent groups, the squares

tested under these specifications all represent groups.

Given that 5 is prime, there is only one group of order 5, Z5. There are 56
possible latin squares of order 5 under these specifications, which all must
represent Z5 if they are going to represent a group. It would be difficult to
go through each one of these possible squares to determine which represent
Z5 and which, if any, do not, but it will suffice to show a few examples to
conclude that not all of these squares represent Z5.

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

 does not represent Z5 because 2 is not of order 5, and all

elements in Zp have to be of order p to be a Cayley table of Zp. Thus, this
latin square is not a Cayley table for Z5. Similarly,

1 2 3 4 5
2 3 5 1 4
3 4 1 5 2
4 5 2 3 1
5 1 4 2 3

 does not represent Z5 because 3 does not have order 5.

These examples prove that not all latin squares actually correspond to
groups. However, it is true that all groups have a latin square, for they all
can be represented by at least one Cayley table, which are by nature latin
squares.

Therefore, all groups can be represented by latin squares, but not all latin
squares represent their own unique group.

back to top

created by: Jamie Woods

	Discussion:
	Part I: Testing a given matrix
	back to top
	Part II: Producing all possible latin squares
	Part III: Latin squares and group theory

