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Introduction 
Cryptography is the art of secret writing. If one must send confidential information to 
some destination, then most likely he does not want others to have access to it. This is 
where cryptography comes in. If we could somehow manipulate the information, so that 
it didn't matter if anyone saw the data besides those who were suppose to in the first 
place, then we wouldn't have to worry about the sensitive data being compromised. 
 
Some key terms used in this presentation are: 
 
Encryption: This is the act of hiding the data. There are many methods of manipulating 
data   from one form to another so we will investigate a few.  
 
Decryption: This is the act of changing the manipulated data back to its original form. 
The whole idea of hiding the information is so that eventually, someone will be able to 
see it.  
 
Key: This is the piece of information that only those who are suppose to view the 
sensitive data have. It allows them to decrypt the encrypted data.  
 
> restart: with(StringTools): with(numtheory): with(combinat): 
Warning, the assigned name Group now has a global binding 
 
Warning, the protected name order has been redefined and unprotected 
 
Warning, the protected name Chi has been redefined and unprotected 
 

>  

Encryption  
Caesar    
 
 
Caesar encryption is a relatively simple one. It involves shifting letters of the alphabet. 
For example, if we moved every letter of the alphabet 1 to the right we would get a 
mapping like: 
 
A -> B 
B -> C 
Z -> A  



Etc. 
 
Using frequency analysis, this encryption becomes quite trivial to break. This should be 
intuitive with a little thought. One could easily calculate the frequencies of all the letter of 
a large piece of English text. They could then look at the cipher text and do the same 
thing. If they noticed there were many 'T's for example, they could then guess that E was 
mapped to T. We will look at a modification to this cipher  next to make it a bit more 
complex.  
 
In my implementation, I shift according the ASCII table. 
 
> Caesar := proc(plainText::string, offset::integer) 
 
# An example of Caesar encryption. This method just shifts  
# the data according to the ASCII chart by an offset given  
# as a parameter.  
# 
# Params: plainText - The plain text to encrypt. 
#         offset    - The number to shift the text. 
# 
# Returns: A list of the encrypted text and the offset to use for 
#          decryption. 
 
local cipher, i : 
 
cipher := "" :  
 
  for i in plainText do 
    # 
    # Since I use the mod operator, the offset can be anything! 
    # 
    cipher := cat(cipher, Char((Ord(i)+offset) mod 128)) :  
  end do :  
 
[cipher, offset]: 
 
end proc: 
> Caesar("Hello World, I am finally done with Finals!", 10); 
   ["Rovvy*ay|vn6*S*kw*psxkvv_*nyxo*_s~r*Psxkv}+", 10] 

> Caesar("We can even make the offset negative :-)", -50); 
   ["%3n1/<n3D3<n;/93nB63n=44A3Bn<35/B7D3n\b{w", -50] 

>  
 

Vigenere 
 
Vigenere is a slightly more complicated version of Caesar. The idea behind this 
encryption method is that you shift multiple letter of the plain text. This is done using a 
key that is provided by the user. Using this multiple shift idea, we can prevent people 
who try to use letter frequencies (explained above) to crack our code.  
 



 
 
> Vigenere := proc(plaintext::string, codeword::string) 
   
  # This is a program to encrypt a message using 
  # vigenere encryption. Notice the input restrictions 
  # 
  # Params: plaintext - The text to encrypt. Notice that for this  
  #                     I do not use the ASCII table for shifting,  
  #                     just the alphabet. Input must be capitol  
  #                     letters and no numbers or spaces. 
  #      
  # 
  #         codeword  - The string to shift for each letter, must also 
be 
  #                     all capitols..  
  # 
  # Returns: A list containing the encrypted text and the key word for  
  #          decryption.  
 
  local pLen, cLen, n, cipher, i, shift: 
 
  pLen := length(plaintext): cLen := length(codeword): 
 
  # Check if the length of the plain text is a multiple of the 
  # length of the code word, if its not adjust n by the difference.  
 
  if pLen mod cLen <> 0 then 
    n := pLen + (cLen - (pLen mod cLen)): 
  else n := pLen: 
  end if: 
 
  # Shift each letter of the plain text with a corresponding letter 
  # of the code word.  
 
  cipher := "": 
  for i from 1 to n do 
    cipher := cat(cipher, Char((Ord(plaintext[(i-1) mod pLen+1]) +  
                               Ord(codeword[(i-1) mod cLen+1])) mod 26 
+ 65)): 
  end do: 
 
  [cipher, codeword]: 
  
  end proc: 
> Vigenere("APICTUREISWORTHATHOUSANDWORDS", "BREAKME"); 
   ["BGMCDGVFZWWYDXIRXHYGWBEHWYDHTRTIMFY", "BREAKME"] 

> Vigenere("ITISFINALLYTIMEFORSUMMERTOBEGIN", "MATH"); 
      ["UTBZRIGHXLRAUMXMARLBYMXYFOULSIGP", "MATH"] 

> Vigenere("EVERYONEATUCSDSHOULDTAKEACOURSEONMAPLE", "CARBON"); 
["GVVSMBPERUIPUDJICHNDKBYRCCFVFFGOENOCNEVWSE", "CARBON"] 

>  

Rectangular Transposition 
Rectangular transposition uses a whole different idea of encoding. The idea here is to first 



write your plain text in rectangular form, literally. For example consider the plaintext: 
 
H  I  T  H  E  R  E  
H  O W A  R  E U 
 
Now, we have 7 columns of text. If we permuted the numbers 1-7 we could then pick out 
random columns to write our message with. Say we picked the permutation of:  
 
1, 3, 5, 7, 2, 4, 6 … Then our message would be 
 
HHTWEREUIOHARE. 
 
> RectTrans := proc(plainText::string, n::integer) 
 
  # This method encrypts the plain text according to the rectangular 
  # transposition method.  
  # 
  # Params: plainText - The text to be encrypted. Plain text is expeted  
  #                     to be all capitols.  
  #         n         - The number to permute to generate the  
  #                     encrypted text. 
  # Returns: A list of the encrypted text and the permuted numbers. 
 
  local tempSet, pList, temp, randGen, i, numRows, strLen, 
        j, cipher: 
 
  randGen := rand(n): 
  tempSet := {}: pList := []: 
 
  # Generate a random permutation of numbers from 1-n. We use the fact 
  # that sets in maple contain unique elements to know when to stop 
adding 
  # random numbers.  
  
  for i from 1 to n do 
    while(nops(tempSet) <> i) do 
      temp := randGen() + 1: 
      tempSet := {op(tempSet), temp}: 
    end do: 
 
    pList := [op(pList), temp]: 
  end do: 
 
  # Check to make sure the plaintext can be written as a rectangle. 
 
  strLen := length(plainText): 
  if(strLen mod n = 0) then numRows := strLen / n: 
  else numRows := floor(strLen / n + 1): 
  end if: 
 
  # After we write the plaintext as a rectangle, we go through the 
  # columns according to our random permutation and record the letters 
  # in that column. If we encounter the end of the plaintext, we just 
  # use the random letter Q, this is obviously arbitrary.  



 
  cipher := "": 
  for i from 1 to n do 
    temp := pList[i]: 
    for j from 1 to numRows do 
      if(temp > strLen) then 
        cipher := cat(cipher, "Q"): 
      else 
        cipher := cat(cipher, plainText[temp]): 
      end if: 
      temp := temp + n: 
    end do: 
  end do: 
 
  [cipher, pList]:    
  end proc: 
> RectTrans("INCITISEASYTOSHOOTYOURSELFINTHEFOOT", 5); 
["NSTORIFIIYOUFECEOTSNOIASYETOTSHOLHT", [2, 1, 3, 4, 5]] 

> 
RectTrans("CPPMAKESITHARDERTOSHOOTYOURSELFBUTWHENYOUDOYOUBLOWOFFYOURLEG
", 8); 
 ["SRYBOLUQMAHSHYFGPTOUTDWLCITOUUORPHSRWOOEKDOLNUYQAROEEOFQEETFYBOQ", 
[8, 4, 2, 1, 3, 6, 5, 7]] 

>  
 

ADFGVX 

The ADFGVX is quite a complicated system. It begins by having a keyword and an even 
number that will be permuted. You start by generating a matrix which looks like as 
follows: 

 
    A D F G V X 
A k  e  y  w o  r 
D d  a  b  c  f  g 
F h  i   j  l   m  n 
G p  q  s  t   u  v 
V x  z  0  1  2  3 
X 4  5  6  7  8  9 

 

So the keyword begins the matrix and then you fill it up with the rest of the alphabet and  
zero through nine. Now each letter has a coordinate system of the ADFGVX matrix. For 
example, the letter 'r' would be AX.  

 

Now we can write out our text in columns of N/2, N being the even number that you 
passed to this method. For each letter now, we can get a set of coordinates. We now have 
N columns of letters after getting two coordinates for each plain text letter.  



 

Using rectangular transposition, we can encode the resulting text of A's D's F's G's V's 
and X's. This will then only give us cipher text containing the letters of ADFGVX.  

 
> Index := proc(x, l::list) 
  # Helper method that returns the index of the element x in the 
  # passed list.  
 
  local i, n; 
  n := nops(l); 
  for i from 1 to n do if l[i] = x then return i; end if; end do; 
end proc: 
> LookUp := proc(x, matrix::list) 
  # Helper method to return us the coordinates of the passed element 
  # in the ADFGVX matrix.  
 
  local i,j; 
  for i from 1 to 6 do 
    if member(x, matrix[i], 'j') then return [i,j]; end if; 
  end do; 
 
  error("Plain text must be a capitol letter or 0-9"); 
end proc: 
> MakeMatrix := proc(codeword::string) 
# Makes the ADFGVX matrix with the codeword passed to it 
# as explained above.  
   
  local i,j, templist, matrix, len, n, l; 
 
  templist := []; 
  for i from "A" to "Z" do templist := [op(templist), i]; end do; 
  for i from 1 to 10 do templist := [op(templist), convert(i-1, 
string)];  
  end do; 
 
  matrix := []; len := length(codeword); n := 1;     
  for i from 1 to 6 do 
    l := [];  
    for j from 1 to 6 do 
      if n <= len then 
        if member(codeword[n], templist) then 
          l := [op(l), codeword[n]]; 
          templist := subsop(Index(codeword[n], templist)=NULL, 
                      templist); 
          n := n+1;  
        else  
          l := [op(l), templist[1]]; 
          templist := subsop(1=NULL, templist); 
          n := n+1;  
        end if; 
      else 
        l := [op(l), templist[1]]; 
        templist := subsop(1=NULL, templist); 



      end if; 
    end do; 
    matrix := [op(matrix), l]; 
  end do; 
  matrix; 
end proc: 

 
> ADFGVX := proc(plainText::string, N::integer, codeword::string) 
   
  # This progrm encrypts the text with the ADFGVX encryption.  
  # 
  # Param: plainText - The text to encode.  
  #        N         - The integer to permute with the ADFGVX encryption 
  #        codeword  - The word to use to help generate the ADFGVX matrix. 
  # 
  # Note: This method expexts all text to be capitol letters and numbers. 
  #  
  # Returns: A list of the encrypted text, the codeword, and the permuted set 
  #          of numbers. 
 
  local letter, cipher, matrix, len, n, i, l; 
   
  if N mod 2 <> 0 then error("N must be an even number!");  end if; 
 
  matrix := MakeMatrix(codeword); 
  n:= length(plainText);  
   
  if n mod N/2 <> 0 then 
    n := n + (N/2- (n mod N/2));  
  end if;     
 
  len := length(plainText); 
  letter := ["A", "D", "F", "G", "V", "X"]; 
  cipher := ""; 
  for i from 0 to n-1 do 
    l := LookUp(plainText[(i mod len)+1], matrix); 
    cipher := cat(cipher, letter[l[1]]); 
    cipher := cat(cipher, letter[l[2]]); 
  end do;       
 
  l := RectTrans(cipher, N); 
  [l[1], l[2], codeword];   
end proc: 
> 
ADFGVX("FEWARETHOSEWHOSEEWITHTHEIROWNEYSANDFEELWITHTHEIROWNHEARTSQEINST
EIN", 8, "SCOOBYDOO"); 
  
["ADGDGDGADGGGDGDDDDDAAGGGDFDGDGAGAFXFDAXVFXAFVXVDDFFFDFVDVXVGDXVFDAVXG
VXDFDXAFXFDVFXDDGGDA\ 
 
        DDAADFDDFGDGDDDAFXFDDVDFDXGAAVDGADDDDFADDDADAFD", [7, 3, 6, 2, 
8, 5, 4, 1], "SCOOBYDOO"] 

> ADFGVX("IDONTKNOWHOWANYONEFIGUREDOUTHOWTOCRACKTHIS", 12, "JRHASS"); 
  
["FAFGGDAFGVDGFGDVGDFDXXGGGDVAAVFFVGVVVAVFVDDFADDGDGFVFDAFDVGXVDADFFDFG
FFGDDFAAGFFAAAD", 
 



        [7, 5, 10, 2, 12, 6, 1, 8, 4, 3, 11, 9], "JRHASS"] 

>  

RSA 

The RSA code is still widely used today. It is also called public key cryptography. This 
code uses the fact that it is very difficult to factor large numbers as its strength in being 
unbreakable. Surprisingly, relative to some of the earlier codes, it is quiet easy to explain 
how this one works.  

 

Begin by picking two primes p1 and p2. These numbers are generally very large. 
Multiply them together to get an m, so: 

m = p1 * p2  

 

Now, we know that since m is the product of two primes, then phi(m) is going to equal: 

phi(m) = (p1-1) * (p2-1) 

 

Now we pick any e and d such that  

e*d = 1 mod phi(m) Note that it is integral that the e choosen is relatively prime to 
phi(m). The 

reasoning behind this will be explained later. 

 

e is going to be our encrypting key, d is going to be our decrypting key.  

d is what you want to keep private from the public.   

 

To generate the code, we need to first take our plain text and turn it into a representation 
of numbers. This can be done in any arbitrary way.  

 

To encode, we simply raise the numbers of our plain text to the power of e and take the 
modulus of m.  

So E1 = P1 ^ e mod m 

 

This gives us our encrypted text. To decode we simply raise an encrypted number to the 



power of d and take the modulus of m 

P1 = E1 ^ d mod m 

 
> RSA := proc(plainText::string, m_greaterThan::integer) 
   
  # This procedure takes a string an encodes it using the RSA  
  # encryption method.  
  # 
  # Params: plainTest     - The string to encode 
  #         m_greaterThan - This will ensure that the number we choose 
  #                         to take phi of will be the product of the 
  #                         next two primes after this number.  
  # 
  # Returns: This method returns a list of the encrypted text 
  #          and the 'e', 'd' and 'm' values used to decrypt the text 
    
  local phiM, p1, p2, m, e, d, dummy, randGen, cipher, i, 
        retVal; 
 
  p1 := nextprime(m_greaterThan); 
  p2 := nextprime(p1); 
  phiM := (p1-1)*(p2-1);  
  m := p1*p2; 
 
  randGen := rand(phiM); 
  e := randGen(); 
 
  # igcdex conveiently figurs out what 'd' is for us 
  while igcdex(e, phiM, 'd', 'dummy') <> 1 or d < 0 do e := randGen(); 
end do; 
 
  cipher := []; 
 
  # Now we just raise the plaintext to the power of e and mod it m.  
  # Notice the & operator used for large numbers.  
 
  for i in plainText do 
   cipher := [op(cipher), Ord(i) &^e mod m]; 
  end do; 
 
  [cipher, e, d, m]; 
 
  end proc: 
> 
RSA("ICANTBELIEVEITTAKESSOLITTLECODETOWRITETHISPOWERFULENCRYPTIONMETHOD
", 1000); 
  [[974625, 780057, 352236, 809104, 728719, 781436, 107027, 304770, 
974625, 107027, 414359, 
 
        107027, 974625, 728719, 728719, 352236, 122291, 107027, 501051, 
501051, 222175, 304770, 
 
        974625, 728719, 728719, 304770, 107027, 780057, 222175, 868136, 



107027, 728719, 222175, 
 
        34978, 86692, 974625, 728719, 107027, 728719, 341979, 974625, 
501051, 948810, 222175, 
 
        34978, 107027, 86692, 315801, 718934, 304770, 107027, 809104, 
780057, 86692, 690414, 
 
        948810, 728719, 974625, 222175, 809104, 321073, 107027, 728719, 
341979, 222175, 868136], 
 
        805813, 507613, 1022117] 

> 
RSA("LETSUPTHESIZEOFMALITTLEBITANDSEEHOWLONGITTAKESMAPLETODOTHECOMPUTAT
IONS", 2^20); 
  [[143006057764, 815676470467, 127160894710, 888760637646, 
1054921107533, 671668224542, 
 
        127160894710, 1049933171982, 815676470467, 888760637646, 
252520175739, 185949705342, 
 
        815676470467, 507670240547, 467159188463, 103450703643, 
57371389111, 143006057764, 
 
        252520175739, 127160894710, 127160894710, 143006057764, 
815676470467, 560846061432, 
 
        252520175739, 127160894710, 57371389111, 115667106036, 
704578425924, 888760637646, 
 
        815676470467, 815676470467, 1049933171982, 507670240547, 
1072224366698, 143006057764, 
 
        507670240547, 115667106036, 987773105173, 252520175739, 
127160894710, 127160894710, 
 
        57371389111, 311404227395, 815676470467, 888760637646, 
103450703643, 57371389111, 
 
        671668224542, 143006057764, 815676470467, 127160894710, 
507670240547, 704578425924, 
 
        507670240547, 127160894710, 1049933171982, 815676470467, 
55025816164, 507670240547, 
 
        103450703643, 671668224542, 1054921107533, 127160894710, 
57371389111, 127160894710, 
 
        252520175739, 507670240547, 115667106036, 888760637646], 
759060027323, 309386620403, 
 
        1099532599387] 

>  

Decryption 



Caesar 
To decrypt the Caesar code, it is actually quite trivial. All we have to do is to shift back 
the text the other way! Example: 
 
> CaesarDecrypt := proc(eText::string, offset::integer) 
 
  # This method decrypts a Caesar encrypted message 
  # 
  # Params: eText  - The encrypted text 
  #         offset - The offset it was encrypted with 
  #  
  # Returns: The original plain text 
 
  local n; 
 
  # Just shift backwards! 
 
  n := Caesar(eText, -offset); 
  n[1]; 
end proc: 
> e := Caesar("Gravity cannot be held responsible for people falling in 
love - Einstein", 100); 
     e := 
["+VEZMX]_GERRSX_FI_LIPH_VIWTSRWMFPI_JSV_TISTPI_JEPPMRK_MR_PSZI___)MRWX
IMR", 100] 

> CaesarDecrypt(e[1], e[2]); 
 "Gravity cannot be held responsible for people falling in love - 
Einstein" 

>  
 

Vigenere 
The same idea is used for Vigenere, except now we have to shift a different amount for 
each letter that is in the key (the codeword that was passed to the original function). 
 
> VigenereDecrypt := proc(eText::string, key::string) 
 
  # This method decrypts a message that was encrypted with the 
  # Vigenere method of encryption 
  #  
  # Params: eText - The encrypted text 
  #         key   - The key to decrypt with 
  #  
  # Returns: The plain text of the message 
   
  local n, i, pText, cl, kLen; 
 
  pText := ""; 
  n := length(eText); 
  kLen := length(key); 
 
  # Now shift according to the letter the plaintext was mapped to 
  # in the encrypting codword. 



 
  for i from 1 to n do  
    cl := Ord(eText[i]) - 65; 
    cl := cl - Ord(key[(i-1) mod kLen +1]); 
 
    while cl < 65 do cl := cl + 26; end do; 
    pText := cat(pText, Char(cl)); 
  end do; 
  pText; 
end proc: 
> e := Vigenere("ICANNOTBELIEVEIAMASENIORINCOLLEGEWHEREDIDTHETIMEGO", 
"BUGS"); 
    e := ["JWGFOIZTFFOWWYOSNUYWOCUJJHIGMFKYFQNWSYJAENNWUCSWHIOU", 
"BUGS"] 

> VigenereDecrypt(e[1], e[2]); 
 "ICANNOTBELIEVEIAMASENIORINCOLLEGEWHEREDIDTHETIMEGOIC" 

>  
 

Rectangular Transposition 
Rectangular transposition is a bit tricky to decrypt. Visually, one would want to make 
actual columns of text with the encrypted text. Then if they were given the permutation of 
the number that it was encrypted with, they can just put the columns in the correct order.  
 
Our method is going to find the position of the column we are looking for in the 
permutation list. We are then going to search the string of text and find which letter in a 
given column we need to append to the plain text string.  
 
> RectTransDecrypt := proc(eText::string, key::list) 
 
  # This method decrypts a string of text encoded with  
  # rectangular transposition. 
  #  
  # Params: eText - The encrypted text 
  #         key   - The permutation used to encrypt the text 
  #  
  # Returns: The plain text message 
 
  local rows, cols, pText, i, j, p; 
 
  pText := ""; 
  cols := nops(key); 
  rows := length(eText)/cols; 
 
  for i from 1 to rows do 
    for j from 1 to cols do 
      member(j, key, 'p'); 
      pText := cat(pText, eText[rows*(p-1)+i]); 
    end do; 
  end do; 
  pText; 
end proc: 
> e := 



RectTrans("WHENYOUSITWITHANICEGIRLFORTWOHOURSITSEEMSLIKETWOMINUTEWHENYO
USITONAHOTSTOVEFORTWOMINUTESITSEEMSLIKETWOHOURSTHATSRELATIVITY", 16); 
  e := 
["TRLNVTRYTOEUOEHQEEINAIELAOWITSTQSFMHTSOIIOSEOIUTIWKOFETQWIRMOOIRNUOTW
LSQHHTSRMAQWTIY\ 
 
        ESSQNGTUHNTAYISTOUWTULEWSEHVOREETTOIHCSINMKE", 
 
        [10, 13, 3, 15, 8, 9, 12, 1, 16, 14, 11, 4, 5, 7, 6, 2]] 

> RectTransDecrypt(e[1], e[2]); 
  
"WHENYOUSITWITHANICEGIRLFORTWOHOURSITSEEMSLIKETWOMINUTEWHENYOUSITONAHOT
STOVEFORTWOMINUTESIT\ 
        SEEMSLIKETWOHOURSTHATSRELATIVITYQQQQQQ" 

>  
 

ADFGVX 
 
As with the encryption scheme, the decryption scheme of ADFGVX is also a bit tricky. 
ADFGVX uses rectangular transposition inside of it. So we must also use the method to 
decrypt a rectangular transposition string first, and then continue from there. 
 
When we encrypted, we use an alphabet/number matrix to find 'coordinates' for each 
letter of the plain text. Now we will have to go back words, and for each pair of 
coordinates, find the corresponding letter to go with it.  
 
> ADecrypt := proc(eText::string, pList::list, key::string) 
 
  # This method decrypts a string that was encrypted with the 
  # ADFGVX method.  
  #  
  # Params: eText - The encrypted text 
  #         pList - The permutation of an even number used for 
encryption 
  #         key   - The key that was used to make the matrix. 
  # 
  # Returns: The original plain text 
 
  local matrix, n, letter, x, y, i, pText, EText; 
   
  EText := RectTransDecrypt(eText, pList); 
 
  pText := ""; 
  matrix := MakeMatrix(key); 
  n := length(eText); 
  letter := ["A", "D", "F", "G", "V", "X"]; 
 
  # Now just look up the plaintextin the matrix.  
 
  for i from 1 to n by 2 do 
    member(EText[i], letter, 'x'); 
    member(EText[i+1], letter, 'y'); 



    pText := cat(pText, matrix[x][y]); 
  end do; 
  
  pText; 
end proc: 
> e := 
ADFGVX("MYHATGOESOFFTOTHEPERSONTHATWASABLETOFIGUREOUTHOWTOBREAKTHIS", 
10, "PROGRAM"); 
  e := 
["VAFGDVGGFDVADADDGAAAADAGGAGADGGGGAFDDDGAFGFFAGDFAGVXAVVFDXXDXGDAVVGAF
VGADFDDXADFDFFA\ 
 
        AFVGFDXVGFDXAGADGADAGGAGVADDAGADDAAD", [8, 1, 9, 5, 2, 6, 10, 
4, 7, 3], "PROGRAM"] 

> ADecrypt(e[1], e[2], e[3]); 
       "MYHATGOESOFFTOTHEPERSONTHATWASABLETOFIGUREOUTHOWTOBREAKTHISM" 

>  
 

RSA 
RSA makes it very easy to decrypt with. As we noted earlier, we will need to raise the 
encrypted text to the inverse of e to get 
the plain text again... 
 
Why does this work though? As promised above, a little more in depth explanation of 
why this encrypytion works. 
 
We know that e and d are inverses of the phi(m). We also know that for some number 'a' 
(encrypted text say) 
that if gcd(a, m) = 1, then 
 
Euler-Fermat: 
a ^ phi(m) = 1 mod m 
 
Going through the encryption and decryption process looks like: 
(a^e)^d =  a^(ed) = a^phi(m) * a = 1 * a = a  
 
When we encrypt our text, we use a relatively prime number to raise the plaintext to.  
However, this does not guarantee that the output (a^e) will also be realtively prime to m. 
What happens then? 
 
We also have another theorem which states: 
 
For any primes p and q 
a ^ ( (p-1) * (q-1) ) = 1 mod pq 
 
How conveient! We know that m = pq and phi(m) is just (p-1) * (q-1). So no matter what 
number we use, raising it to the e and  
then to the d to decrypt is like 



 
a ^phi(m) * a^1 = 1 * a mod m ....and hence we have the RSA encryption method! 
 
 
> RSADecrypt := proc(eText::list, d::integer, m::integer) 
 
  # Decrypts text that was encoded with RSA.  
  #  
  # Parmas: eText - The encoded text 
  #         d     - The power to raise the the text to.  
  #         m     - The modulus of our original encryption 
  #  
  # Returns: The plain text 
 
  local pText, n, i; 
 
  pText := ""; 
  n := nops(eText); 
 
  for i from 1 to n do  
    pText := cat(pText, Char(eText[i] &^d mod m)); 
  end do; 
  pText; 
end proc: 
>  
> e := RSA("THEWHOLEISMORETHANTHESUMOFITSPARTS", 100); 
  e := [[4528, 4644, 537, 3925, 4644, 420, 2950, 537, 6476, 7617, 9941, 
420, 3599, 537, 4528, 
 
        4644, 9862, 10321, 4528, 4644, 537, 7617, 3464, 9941, 420, 
2217, 6476, 4528, 7617, 6417, 
 
        9862, 3599, 4528, 7617], 3311, 191, 10403] 

> RSADecrypt(e[1], e[3], e[4]); 
"THEWHOLEISMORETHANTHESUMOFITSPARTS" 

>  

Breaking RSA 
 Since RSA is quite a popular method of encryption, I wanted to run a test on it. I thought 
it would be interesting to see what values of 'm' would really make Maple stretch its 
limits. I wanted to write a program  that 'breaks' RSA. In other words given the 'e' and the 
'm' used to encrypt some text, it would figure out phi of m and compute the 'd' value to 
decrypt the text. The user can use this program to test how long certain values of 'm' take 
to break. 
  
> RSABreak := proc(eText::list, m::integer, e::integer) 
  
 # Method to break RSA encryption.  
 # 
 # Params - eText: The encrypted text 
 #        - m:     The 'm' value used to encrypt the text 
 #          d:     The 'e' value used to encrypt.  



 # 
 # Returns: A list of the amount of time it took in seconds to break 
this 
 #          code and the plaintext.   
 #  
  
 local i, d, phiM, pText, dummy; 
 
 i := time();  
 
 # Get phi of m 
 phiM := phi(m); 
 
 # Calculate 'd' 
 igcdex(e, phiM, 'd', 'dummy'); 
 
 # Just call the decryption method 
  
 [time()-i, RSADecrypt(eText, d, m)]; 
 
end proc:  
> e := RSA("LETSSEEJUSTHOWGOODMYRSABREAKPROGRAMWORKS", 10^14); 
  e := [[3724888604413458711426767461, 6737328814280586534989364762, 
 
        4300341883532271697091495663, 5034654887537417552733863639, 
5034654887537417552733863639, 
 
        6737328814280586534989364762, 6737328814280586534989364762, 
1650996902148804864778508989, 
 
        8006295798914207798552453896, 5034654887537417552733863639, 
4300341883532271697091495663, 
 
        5832955040175441781304660885, 3887130543486762767177147575, 
5496889111492290237718183953, 
 
        7710043740502374310744274641, 3887130543486762767177147575, 
3887130543486762767177147575, 
 
        2487417722040226111622734605, 6520201877869172144798349959, 
5815890771518950704812552100, 
 
        8163173596186561677310051100, 5034654887537417552733863639, 
7515641119381280734683399495, 
 
        1419613336676188540354543321, 8163173596186561677310051100, 
6737328814280586534989364762, 
 
        7515641119381280734683399495, 9046819417689160797820209955, 
9931607857338253908428292879, 
 
        8163173596186561677310051100, 3887130543486762767177147575, 
7710043740502374310744274641, 
 
        8163173596186561677310051100, 7515641119381280734683399495, 
6520201877869172144798349959, 



 
        5496889111492290237718183953, 3887130543486762767177147575, 
8163173596186561677310051100, 
 
        9046819417689160797820209955, 5034654887537417552733863639], 
 
        1145563350815952910580498897, 1761102265371312012921172533, 
 
        10000000000009800000000002077] 

> d := RSABreak(e[1], e[4], e[2]);  
d := [1.610, "LETSSEEJUSTHOWGOODMYRSABREAKPROGRAMWORKS"] 
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