Crypt ogr aphy

J.R. Hass

| ntroduction

Cryptography isthe art of secret writing. If one must send confidential information to
some destination, then most likely he does not want others to have accesstoit. Thisis
where cryptography comes in. If we could somehow manipulate the information, so that
it didn't matter if anyone saw the data besides those who were suppose to in the first
place, then we wouldn't have to worry about the sensitive data being compromised.

Some key terms used in this presentation are:

Encryption: Thisisthe act of hiding the data. There are many methods of manipulating
data from one form to another so we will investigate a few.

Decryption: Thisisthe act of changing the manipulated data back to its original form.
The wholeidea of hiding the information is so that eventually, someone will be able to
seeit.

Key: Thisisthe piece of information that only those who are suppose to view the
sensitive data have. It allows them to decrypt the encrypted data.

>restart: with(StringTools): w th(numtheory): wth(combinat):
War ni ng, the assigned name G oup now has a gl obal binding

Warni ng, the protected nane order has been redefined and unprotected
War ni ng, the protected nane Chi has been redefined and unprotected

>

Encryption

Caesar

Caesar encryption isarelatively simple one. It involves shifting letters of the alphabet.
For example, if we moved every letter of the alphabet 1 to the right we would get a
mapping like:

A->B
B->C
Z->A

Etc.

Using frequency analysis, this encryption becomes quite trivial to break. This should be
intuitive with alittle thought. One could easily calculate the frequencies of al the letter of
alarge piece of English text. They could then look at the cipher text and do the same
thing. If they noticed there were many "T's for example, they could then guess that E was
mapped to T. We will look at a modification to this cipher next to makeit abit more
complex.

In my implementation, | shift according the ASCII table.

> Caesar := proc(plainText::string, offset::integer)

An exanpl e of Caesar encryption. This nethod just shifts

the data according to the ASCII chart by an offset given

as a paraneter.

#

Params: plainText - The plain text to encrypt.

of f set - The nunber to shift the text.

#

Returns: Alist of the encrypted text and the offset to use for
decryption.

[ocal cipher, i

ci pher :=""
for i in plainText do
#
Since | use the nod operator, the offset can be anything!
#

ci pher := cat(cipher, Char((Od(i)+offset) nod 128))
end do :

[cipher, offset]:

end proc:

>Caesar("Hello Wrld, | amfinally done with Finals!", 10);
["Rovvy*ay| vn6* S* kw* psxkvv_*nyxo* _s~r*Psxkv}+", 10]

> Caesar ("W can even neke the offset negative :-)", -50);
["98nl/ <n3D3<n; / 93nB63n=44A3Bn<35/ B7D3n\ b{w', -50]

>

Vigenere

Vigenereisadightly more complicated version of Caesar. The idea behind this
encryption method is that you shift multiple letter of the plain text. Thisisdone using a
key that is provided by the user. Using this multiple shift idea, we can prevent people
who try to use letter frequencies (explained above) to crack our code.

>\Vigenere := proc(plaintext::string, codeword::string)

This is a programto encrypt a nessage using
vigenere encryption. Notice the input restrictions

#

Parans: plaintext - The text to encrypt. Notice that for this

I do not use the ASCII table for shifting,

just the al phabet. |nput nust be capito

letters and no nunbers or spaces.

#

#

codeword - The string to shift for each letter, nust also
be

all capitols..

#

Returns: A list containing the encrypted text and the key word for

decryption.

| ocal pLen, clLen, n, cipher, i, shift:

pLen := length(plaintext): cLen := |ength(codeword):

Check if the length of the plain text is a nultiple of the
length of the code word, if its not adjust n by the difference.

if pLen nod cLen <> 0 then

n := pLen + (cLen - (pLen nod cLen)):
el se n := pLen:
end if:

Shift each letter of the plain text with a corresponding letter
of the code word.

ci pher : = :
for i froml to n do
ci pher := cat(cipher, Char((Od(plaintext[(i-1) nod pLen+l1l]) +
Ord(codeword[(i-1) nod cLen+1])) nod 26
+ 65)):
end do:

[ci pher, codeword]:

end proc:

> Vi gener e(" APl CTUREI SWORTHATHOUSANDWORDS", " BREAKME")
[" BGMCDGVFZWAYDXI RXHYGABEHWYDHTRTI MFY", " BREAKMVE"]

> Vi genere("| TI SFI NALLYTI MEFORSUMVERTOBEG N', " NATH');
[" UTBZRI GHXLRAUMXVARLBYMXYFQULSI GP*, " MATH']

> Vi gener e(" EVERYONEATUCSDSHOUL DTAKEACOURSEONVAPLE" , " CARBON")
[" GVYWSMBPERUI PUDJ | CHNDKBYRCCFVFFGOENCCNEVWSE", " CARBON']
>

Rectangular Transposition
Rectangular transposition uses awhole different idea of encoding. The idea hereisto first

write your plain text in rectangular form, literally. For example consider the plaintext:

HITHERE
HOWAREU

Now, we have 7 columns of text. If we permuted the numbers 1-7 we could then pick out
random columns to write our message with. Say we picked the permutation of:

1,3,5/7,2,4,6 ... Then our message would be
HHTWEREUIOHARE.

>Rect Trans : = proc(plainText::string, n::integer)

This nmethod encrypts the plain text according to the rectangul ar

transposition nethod.

#

Parans: plainText - The text to be encrypted. Plain text is expeted
to be all capitols.

n - The nunber to pernmute to generate the

encrypted text.

Returns: Alist of the encrypted text and the pernuted nunbers.

| ocal tenmpSet, pList, tenp, randGen, i, nunRows, strlLen
j, cipher:

randGen : = rand(n):

tenpSet := {}: pList :=1]]:

Generate a random pernutation of numbers from1l-n. W use the fact

that sets in maple contain unique elenents to know when to stop
addi ng

random nunbers.

for i froml to n do
whi | e(nops(tenpSet) <> i) do
tenp := randCGen() + 1:
tenpSet := {op(tenpSet), tenp}:
end do:

pList := [op(pList), tenp]:
end do:

Check to make sure the plaintext can be witten as a rectangl e.

strLen := length(plainText):

if(strLen nod n = 0) then nunRows := strLen / n:
el se nunRows := floor(strLen / n + 1):

end if:

After we wite the plaintext as a rectangle, we go through the

columms according to our random pernutation and record the letters
in that colum. If we encounter the end of the plaintext, we just
use the randomletter Q this is obviously arbitrary.

ci pher :=""
for i froml to n do
temp := pList[i]:
for j from1l to nunRows do
if(tenp > strlLen) then
ci pher := cat(cipher, "Q"):

el se
ci pher := cat(cipher, plainText[tenmp]):
end if:
temp (= tenp + n:
end do:
end do:

[ci pher, pList]:
end proc:

> Rect Trans(" | NClI TI SEASYTOSHOOTYOURSELFI NTHEFOOT", 5) ;
["NSTORI FI | YOUFECEOTSNO ASYETOTSHOLHT", [2, 1, 3, 4, 5]]

>

Rect Tr ans(" CPPMAKESI THARDERTOSHOOT YOURSEL FBUTWHENYOUDOYOUBL ONOFFYOURLEG
! ’ 8) ;

[" SRYBOLUQVAHSHYFGPTOUTDW.Cl TOUUORPHSRWOOEKDOL NUYQAROCEECFQEETFYBOQ'
[8 4, 2, 1, 3, 6, 5 7]]
>

ADFGVX

The ADFGV X is quite acomplicated system. It begins by having a keyword and an even
number that will be permuted. Y ou start by generating a matrix which looks like as
follows:

ADFGVX
Akeywor

So the keyword begins the matrix and then you fill it up with the rest of the aphabet and
zero through nine. Now each letter has a coordinate system of the ADFGV X matrix. For
example, the letter 'r' would be AX.

Now we can write out our text in columns of N/2, N being the even number that you
passed to this method. For each letter now, we can get a set of coordinates. We now have
N columns of |etters after getting two coordinates for each plain text letter.

Using rectangular transposition, we can encode the resulting text of A'sD'sFsG'sV's
and X's. Thiswill then only give us cipher text containing the letters of ADFGV X.

>1ndex := proc(x, |::list)
Hel per method that returns the index of the elenment x in the
passed list.

local i, n;

n := nops(l);

for i fromltondoif I[i] =x then returni; end if; end do;
end proc:
>LookUp : = proc(x, matrix::list)

Hel per nethod to return us the coordinates of the passed el ement
in the ADFGVX matri Xx.

local i,j;
for i from1l to 6 do

if nmenber(x, matrix[i], "j') then return [i,j]; end if;
end do;

error("Plain text nmust be a capitol letter or 0-9");
end proc:
> MakeMatrix : = proc(codeword::string)
Makes the ADFGVX matrix with the codeword passed to it
as expl ai ned above.

local i,j, tenplist, matrix, len, n, I|;

templist :=1[];
for i from"A" to "Z" do tenplist := [op(tenmplist), i]; end do

for i from1l to 10 do tenplist := [op(tenmplist), convert(i-1
string)];

end do;

matrix :=[]; len := length(codeword); n :=1

for i froml to 6 do
o= 11,
for j from1l to 6 do
if n<=1len then
i f menber (codeword[n], tenplist) then
| :=[op(l), codeword[n]];

tenplist := subsop(lndex(codeword[n], tenplist)=NULL
tenplist);
n := n+l;
el se

I :=TJop(l), tenplist[1]];
tenmplist := subsop(1=NULL, tenplist);
n := n+l;
end if;
el se
I :=TJop(l), tenplist[1]];
tenplist := subsop(1=NULL, tenplist);

end if;
end do;
matrix := [op(matrix), I];
end do;
matri x;
end proc:

> ADFGVX : = proc(plainText::string, N :integer, codeword::string)

This progrmencrypts the text with the ADFGVX encrypti on.

#

Param plai nText - The text to encode.

N - The integer to pernute with the ADFGVX encryption
codeword - The word to use to help generate the ADFGVX matri X.
#
#
#
#
#

Note: This nethod expexts all text to be capitol letters and nunbers.

Returns: A list of the encrypted text, the codeword, and the pernuted set
of nunbers.

| ocal letter, cipher, matrix, len, n, i, |;
if Nnod 2 <> 0 then error("N nmust be an even nunber!"); end if;

matrix := MakeMatri x(codeword);
n: = | engt h(pl ai nText);

if nmod NN2 <> 0 then
n:=n+ (N2- (n nod N2));

end if;

len := length(plainText);

letter := ["A", "D', "F', "G, "V', "X'];
ci pher :="";

for i fromO to n-1 do
| = LookUp(plainText[(i nod |en)+1], matrix);

ci pher := cat(cipher, letter[I[1]]);
ci pher := cat(cipher, letter[I[2]]);
end do;

| := RectTrans(cipher, N)
[1T1], I[2], codeword];
end proc:
>

ADFGVX(" FEWARETHOSEWHOSEEW THTHEI ROANEYSANDFEELW THTHEI ROANHEARTSQEI NST
EIN', 8, "SCOOBYDOO');

[" ADGDGDGADGGCEDGDDDDDAAGGEDFDEDGAGAFXFDAXVEXAFVXVDDFFFDFVDVXVGDXVFDAVXG
VXDFDXAFXFDVFXDDGGDA\

DDAADFDDFGDGDDDAF XFDDVDF DXGAAVDGADDDDFADDDADAFD' , [7, 3, 6, 2,
8, 5 4, 1], "SCOOBYDOO']

> ADFGVX(" | DONTKNOWHONANYONEFI GUREDOUTHOM OCRACKTHI S*, 12, "JRHASS");

[" FAFGCGDAFGVDGFGDVCEDF DXXGGEEDVAAVFFVGVYVWWAVFVDDFADDGDGVFDAFDVGXVDADFFDFG
FFGDDFAAGFFAAAD!

[7, 5, 10, 2, 12, 6, 1, 8, 4, 3, 11, 9], "JRHASS']
>

RSA

The RSA code is still widely used today. It isaso called public key cryptography. This
code uses the fact that it is very difficult to factor large numbers asits strength in being
unbreakable. Surprisingly, relative to some of the earlier codes, it is quiet easy to explain
how this one works.

Begin by picking two primes p1 and p2. These numbers are generally very large.
Multiply them together to get an m, so:

m=pl* p2

Now, we know that since m is the product of two primes, then phi(m) is going to equal:

phi(m) = (p1-1) * (p2-1)

Now we pick any e and d such that

e*d = 1 mod phi(m) Note that it isintegral that the e choosen isrelatively primeto
phi(m). The

reasoning behind thiswill be explained later.

eisgoing to be our encrypting key, d is going to be our decrypting key.

d iswhat you want to keep private from the public.

To generate the code, we need to first take our plain text and turn it into a representation
of numbers. This can be donein any arbitrary way.

To encode, we simply raise the numbers of our plain text to the power of e and take the
modulus of m.

SoE1=P1”emodm

This gives us our encrypted text. To decode we simply raise an encrypted number to the

power of d and take the modulus of m

P1=E1”~dmodm

>RSA : = proc(plainText::string, mgreaterThan::integer)

This procedure takes a string an encodes it using the RSA
encryption net hod.
#
Paramns: plainTest - The string to encode
m greater Than - This will ensure that the nunber we choose
to take phi of will be the product of the
next two prinmes after this nunber.
#
Returns: This nethod returns a list of the encrypted text
and the "e', '"d" and 'm values used to decrypt the text
| ocal phiM pl, p2, m e, d, dunmy, randCGen, cipher, i,
retVval ;
pl : = nextprine(mgreaterThan);
p2 := nextprinme(pl);
phiM: = (pl-1)*(p2-1);
m: = pl*p2

randGen : = rand(phi M;
e := randGen();

igcdex conveiently figurs out what 'd" is for us
whil e igcdex(e, phiM "d", "dummy') <> 1 or d < 0 do e := randGen();
end do;

ci pher :=11];

Now we just raise the plaintext to the power of e and nod it m
Notice the & operator used for |arge nunbers.

for i in plainText do
ci pher := [op(cipher), Od(i) &e nod ni;
end do;

[cipher, e, d, ni;

end proc:
>
RSA(" | CANTBELI EVEI TTAKESSOLI TTLECODETOARI TETHI SPOAERFULENCRYPTI ONVETHCOD
", 1000);

[[974625, 780057, 352236, 809104, 728719, 781436, 107027, 304770,
974625, 107027, 414359,

107027, 974625, 728719, 728719, 352236, 122291, 107027, 501051
501051, 222175, 304770,

974625, 728719, 728719, 304770, 107027, 780057, 222175, 868136,

107027, 728719, 222175,

34978, 86692, 974625, 728719,

501051, 948810, 222175,

34978, 107027, 86692, 315801

780057, 86692, 690414,

107027, 728719, 341979, 974625,

718934, 304770, 107027, 809104,

948810, 728719, 974625, 222175, 809104, 321073, 107027, 728719,

341979, 222175, 868136],

805813, 507613, 1022117]
>

RSA(" LETSUPTHESI ZEOFNVALI TTLEBI TANDSEEHOALONG TTAKESVAPL ETODOTHECOMPUTAT

| ONS', 2720);

[[143006057764, 815676470467, 127160894710, 888760637646,

1054921107533, 671668224542,

127160894710, 1049933171982, 815676470467, 888760637646,

252520175739, 185949705342,

815676470467, 507670240547,
57371389111, 143006057764,

252520175739, 127160894710,
815676470467, 560846061432,

252520175739, 127160894710,
704578425924, 888760637646,

815676470467, 815676470467,
1072224366698, 143006057764,

507670240547, 115667106036,
127160894710, 127160894710,

467159188463, 103450703643,

127160894710, 143006057764,

57371389111, 115667106036,

1049933171982, 507670240547,

987773105173, 252520175739,

57371389111, 311404227395, 815676470467, 888760637646,

103450703643, 57371389111

671668224542, 143006057764,
507670240547, 704578425924,

507670240547, 127160894710,
55025816164, 507670240547,

103450703643, 671668224542,
57371389111, 127160894710,

252520175739, 507670240547,
759060027323, 309386620403,

1099532599387]
>

Decryption

815676470467, 127160894710,

1049933171982, 815676470467,

1054921107533, 127160894710,

115667106036, 888760637646],

Caesar

To decrypt the Caesar code, it is actually quite trivial. All we have to do isto shift back
the text the other way! Example:

> Caesar Decrypt := proc(eText::string, offset::integer)
This nmethod decrypts a Caesar encrypted nessage
#
Params: eText - The encrypted text
of fset - The offset it was encrypted with
#

Returns: The original plain text
[ocal n;
Just shift backwards!

n := Caesar(eText, -offset);

n[1];
end proc:
>e = Caesar("Gravity cannot be held responsible for people falling in
| ove - Einstein", 100);

e .=

["+VEZMX] _GERRSX_FI _LI PH_VI WI'SRWWFPI _JSV_TI STPI _JEPPMRK_MR_PSZI __) MRWK
I VMR', 100]
> CaesarDecrypt(e[1], e[2]);
"Gravity cannot be held responsible for people falling in |ove -
Ei nstei n"

>

Vigenere

The sameideais used for Vigenere, except now we have to shift a different amount for
each letter that isin the key (the codeword that was passed to the original function).

> Vi genereDecrypt := proc(eText::string, key::string)

This method decrypts a nessage that was encrypted with the
Vi genere net hod of encryption

#

#

#

Parans: eText - The encrypted text

key - The key to decrypt with
#
#

Returns: The plain text of the nessage

local n, i, pText, cl, kLen;
pText :="";

n := length(eText);

kLen : = I engt h(key);

Now shift according to the letter the plaintext was nmapped to
in the encrypting codword.

for i from1l to n do
cl Ord(eText[i]) - 65;
cl cl - Od(key[(i-1) nod kLen +1]);

while cl < 65 do cl :=cl + 26; end do;
pText := cat(pText, Char(cl));
end do;
pText;
end proc:

>e := Vigenere("| CANNOTBELI EVEI AVASENI ORI NCOLLEGEWHEREDI DTHETI MEGO' ,
"BUGS") ;
e ;= ["IWGFA ZTFFONAYOSNUYWOCUJ JHI GVFKYFQNWBYJ AENNVWUCSWHI QU
" BUGS"]
> Vi genereDecrypt (e[1], e[2]);
"1 CANNOTBEL| EVElI AMASENI ORI NCOLLEGEWHEREDI DTHETI MEGOI C'
>

Rectangular Transposition

Rectangular transposition is a bit tricky to decrypt. Visually, one would want to make
actual columns of text with the encrypted text. Then if they were given the permutation of
the number that it was encrypted with, they can just put the columns in the correct order.

Our method is going to find the position of the column we are looking for in the
permutation list. We are then going to search the string of text and find which letter in a
given column we need to append to the plain text string.

> Rect TransDecrypt := proc(eText::string, key::list)

This method decrypts a string of text encoded with
rectangul ar transposition.

#

#

#

Parans: eText - The encrypted text

key - The pernutation used to encrypt the text
#
#

Returns: The plain text nessage

l ocal rows, cols, pText, i, j, p;
pText :="";
col s : = nops(key);

rows := length(eText)/cols;
for i froml to rows do
for j from1l to cols do
menber (j, key, 'p');
pText := cat(pText, eText[rows*(p-1)+i]);
end do;
end do;
pText;
end proc:

>e .=

Rect Tr ans(" WHENYQUSI TW THANI CEG RLFORTWOHOURSI TSEEMSLI KETWOM NUTEWHENYO
US| TONAHOTSTOVEFORTWOM NUTESI TSEEMSLI KETWOHOURSTHATSRELATI VI TY", 16);

e =
[" TRLNVTRYTOEUCEHQEEI NAI ELAOW TSTQSFVHTSO | OSEQ UTI WKOFETQW RMOOI RNUOTW
L SQHHTSRVAQATT Y\

ESSQNGTUHNTAY! STOUWTULEWSEHVOREETTO HCSI NVKE"

[10, 13, 3, 15, 8, 9, 12, 1, 16, 14, 11, 4, 5, 7, 6, 2]]
> Rect TransDecrypt (e[1], e[2]);

"WHENYQUSI TW THANI CEG RLFORTWOHOURSI TSEEMSLI KETWOM NUTEVWHENYOUSI TONAHOT
STOVEFORTWOM NUTESI T\

SEEMSLI KETWOHOURSTHATSRELATI VI TYQQRQQQQY!
>

ADFGVX

As with the encryption scheme, the decryption scheme of ADFGV X isalso abit tricky.
ADFGV X uses rectangular transposition inside of it. So we must also use the method to
decrypt arectangular transposition string first, and then continue from there.

When we encrypted, we use an alphabet/number matrix to find ‘coordinates for each
letter of the plain text. Now we will have to go back words, and for each pair of
coordinates, find the corresponding letter to go with it.

> ADecrypt := proc(eText::string, pList::list, key::string)

This method decrypts a string that was encrypted with the
ADFGVX net hod.

#

Parans: eText - The encrypted text

pLi st - The pernutation of an even nunber used for
encryption

key - The key that was used to make the matri x.

#

Returns: The original plain text

local matrix, n, letter, x, vy, i, pText, EText;

EText := RectTransDecrypt (eText, pList);

pText :="";

matri x := MakeMatri x(key);

n := length(eText);

letter :=["A", "D', "F', "G, "V', "X'];
Now just look up the plaintextin the matri Xx.
for i froml to n by 2 do

nmenber (EText[i], letter, 'x');
menber (EText[i +1], letter, 'y');

pText := cat(pText, matrix[x][y]);
end do;

pText;
end proc:
>e .=
ADFGVX(" MYHATGOESOFFTOTHEPERSONTHATWASABL ETOFI GUREOQUTHOWTOBREAKTHI S*
10, "PROGRAM');

e .=
[" VAFGDVGGFDVADADDGAAAADAGGAGADGGEGGAF DDDGAFGFFAGDFAGY XAV DXXDXGDAVVGAF
VGADFDDXADFDFFA\

AFVGFDXVGFDXAGADGADAGGAGVADDAGADDAAD', [8, 1, 9, 5, 2, 6, 10,
4, 7, 3], "PROGRAM']
> ADecrypt(e[1l], e[2], e[3]);
" MYHAT GOESOFFTOTHEPERSONTHATWASABL ETOFI GUREQUTHOWT OBREAKTHI SM'
>

RSA

RSA makesit very easy to decrypt with. Aswe noted earlier, we will need to raise the
encrypted text to the inverse of e to get

the plain text again...

Why does this work though? As promised above, alittle more in depth explanation of
why this encrypytion works.

We know that e and d are inverses of the phi(m). We also know that for some number 'a
(encrypted text say)
that if gcd(a, m) =1, then

Euler-Fermat:
a” phi(m) =1 mod m

Going through the encryption and decryption process looks like:
(@ed= aVed)=aphim *a=1*a=a

When we encrypt our text, we use arelatively prime number to raise the plaintext to.
However, this does not guarantee that the output (a*e) will also be realtively prime to m.
What happens then?

We aso have another theorem which states:

For any primesp and g
a” ((p-1)* (a-1)) = 1 mod pq

How conveient! We know that m = pg and phi(m) isjust (p-1) * (g-1). So no matter what
number we use, raising it to the e and
then to the d to decrypt islike

a”phi(m) * &1 =1* amod mand hence we have the RSA encryption method!

> RSADecrypt := proc(eText::list, d::integer, m:integer)

Decrypts text that was encoded with RSA
#
Parmas: eText

The encoded text

d - The power to raise the the text to.
m - The nodul us of our original encryption
#

Returns: The plain text
| ocal pText, n, i;

pText :="";
n := nops(eText);

for i froml to n do
pText := cat(pText, Char(eText[i] &d nod m);

end do;

pText;
end proc:
>
>e = RSA(" THEWHOLEI SMORETHANTHESUMOFI TSPARTS", 100)

e .= [[4528, 4644, 537, 3925, 4644, 420, 2950, 537, 6476, 7617, 9941,
420, 3599, 537, 4528,

4644, 9862, 10321, 4528, 4644, 537, 7617, 3464, 9941, 420,
2217, 6476, 4528, 7617, 6417,

9862, 3599, 4528, 7617], 3311, 191, 10403]
> RSADecrypt (e[1], e[3], e[4]);

" THEWHOL El SMORETHANTHESUMOF| TSPARTS"

>

Breaking RSA

Since RSA is quite a popular method of encryption, | wanted to run atest oniit. | thought
it would be interesting to see what values of ‘'m’' would really make Maple stretch its
[imits. | wanted to write aprogram that 'breaks RSA. In other words given the '€ and the
'm’ used to encrypt some text, it would figure out phi of m and compute the 'd' value to
decrypt the text. The user can use this program to test how long certain values of 'm’ take
to break.

> RSABreak := proc(eText::list, m:integer, e::integer)

Method to break RSA encryption

#
Parans - eText: The encrypted text
- m The 'm val ue used to encrypt the text

d: The 'e' value used to encrypt.

#

Returns: Alist of the ambunt of time it took in seconds to break

this

code and the plaintext.
#

local i, d, phiM pText, dummy;

i = tine();

Get phi of m
phi M : = phi(m;

Calculate 'd'
i gcdex(e, phiM "d', 'dumy');

Just call the decryption nethod
[time()-i, RSADecrypt(eText, d, m];

end proc:
>e

4300341883532271697091495663,
5034654887537417552733863639,

6737328814280586534989364762,
1650996902148804864778508989,

8006295798914207798552453896,
4300341883532271697091495663,

5832955040175441781304660885,
5496889111492290237718183953,

7710043740502374310744274641,
3887130543486762767177147575,

2487417722040226111622734605,
5815890771518950704812552100,

8163173596186561677310051100,
7515641119381280734683399495,

1419613336676188540354543321
6737328814280586534989364762,

7515641119381280734683399495,
9931607857338253908428292879,

8163173596186561677310051100,
7710043740502374310744274641,

8163173596186561677310051100,
6520201877869172144798349959,

= RSA(" LETSSEEJUSTHOWNGOODMYRSABREAKPROGRAMADRKS", 10714) ;
e := [[3724888604413458711426767461, 6737328814280586534989364762,

5034654887537417552733863639,

6737328814280586534989364762,

5034654887537417552733863639,

3887130543486762767177147575,

3887130543486762767177147575,

6520201877869172144798349959,

5034654887537417552733863639,

8163173596186561677310051100,

9046819417689160797820209955,

3887130543486762767177147575,

7515641119381280734683399495,

5496889111492290237718183953, 3887130543486762767177147575,
8163173596186561677310051100,

9046819417689160797820209955, 5034654887537417552733863639] ,
1145563350815952910580498897, 1761102265371312012921172533,

10000000000009800000000002077]
>d := RSABreak(e[1l], e[4], e[2]);
d :=[1.610, "LETSSEEJUSTHONSOODMYRSABREAKPROGRAMADRKS"]

	Introduction
	Encryption
	Caesar
	Vigenere
	Rectangular Transposition
	ADFGVX
	The ADFGVX is quite a complicated system. It begins by having a keyword and an even number that will be permuted. You start by generating a matrix which looks like as follows:
	A D F G V X
	A k e y w o r
	D d a b c f g
	F h i j l m n
	G p q s t u v
	V x z 0 1 2 3
	X 4 5 6 7 8 9
	So the keyword begins the matrix and then you fill it up with the rest of the alphabet and zero through nine. Now each letter has a coordinate system of the ADFGVX matrix. For example, the letter 'r' would be AX.
	Now we can write out our text in columns of N/2, N being the even number that you passed to this method. For each letter now, we can get a set of coordinates. We now have N columns of letters after getting two coordinates for each plain text letter.
	Using rectangular transposition, we can encode the resulting text of A's D's F's G's V's and X's. This will then only give us cipher text containing the letters of ADFGVX.
	RSA
	The RSA code is still widely used today. It is also called public key cryptography. This code uses the fact that it is very difficult to factor large numbers as its strength in being unbreakable. Surprisingly, relative to some of the earlier codes, it is
	Begin by picking two primes p1 and p2. These numbers are generally very large. Multiply them together to get an m, so:
	m = p1 * p2
	Now, we know that since m is the product of two primes, then phi(m) is going to equal:
	phi(m) = (p1-1) * (p2-1)
	Now we pick any e and d such that
	e*d = 1 mod phi(m) Note that it is integral that the e choosen is relatively prime to phi(m). The
	reasoning behind this will be explained later.
	e is going to be our encrypting key, d is going to be our decrypting key.
	d is what you want to keep private from the public.
	To generate the code, we need to first take our plain text and turn it into a representation of numbers. This can be done in any arbitrary way.
	To encode, we simply raise the numbers of our plain text to the power of e and take the modulus of m.
	So E1 = P1 ^ e mod m
	This gives us our encrypted text. To decode we simply raise an encrypted number to the power of d and take the modulus of m
	P1 = E1 ^ d mod m

	Decryption
	Caesar
	Vigenere
	Rectangular Transposition
	ADFGVX
	RSA

	Breaking RSA

