Part I - True/False

1. circle T If G has order n , it can have a subgroup H of order $\mathrm{n}-1$ where $\mathrm{n}>2$.
2. circle T F is a group. We have $(a b)^{n}=a^{n} b^{n}$ for all $a, b \in G$ and $n>0$.
3. circle $T \quad$ If $x^{2}=e$ for all x in G then G is abelian.
4. circle T F If H 1 and H 2 are subgroups of the same order in an abelian group G then $\mathrm{H} 1=\mathrm{H} 2$.
5. circle T F If H is a normal subgroup of G and if H and G / H are abelian, then G is abelian.
6. circle T A normal subgroup is always abelian
7. circle T F A subgroup which is abelian is always normal
8. circle T If G is abelian then every subgroup of G is normal
9. circle T F A subgroup of prime order is always normal
10. circle T F A subgroup of prime index is always normal

Part II - longer problems

1. Let G be a group and H a subgroup. Prove the following statements about right cosets:
a. H is a right coset of H
b. Any element of G is in some right coset of H.
c. The right cosets are disjoint in the sense that
$\forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$ either $\mathrm{Ha}=\mathrm{Hb}$ or $\mathrm{Ha} \cap \mathrm{Hb}=\varnothing$ (empty set)
a. $\mathrm{H}=\mathrm{He}$, the right coset of the identity element
b. $\mathrm{a}=\mathrm{ea} \in \mathrm{Ha}$
c. If $\mathrm{c} \in \mathrm{Ha} \cap \mathrm{Hb}$ we have $\mathrm{c}=\mathrm{ha}=\mathrm{kb}$ for $\mathrm{h}, \mathrm{k} \in \mathrm{H}$ so $\mathrm{a}=\mathrm{h}^{-1} \mathrm{~kb} \in \mathrm{Hb}$ and therefore $\mathrm{Ha} \subset \mathrm{Hb}$. Similarly $\mathrm{Hb} \subset \mathrm{Ha}$ so $\mathrm{Ha}=\mathrm{Hb}$.
2. a. Find all subgroups of S_{3} and construct the subgroup lattice.
b. Find all subgroups of \mathbb{Z}_{6} and construct the subgroup lattice.

3. H is a subgroup of a group G. Show that if $|H|=1 / 2|G|$ then H is normal
A subgroup is normal if and only if every right coset is a left coset. In this case there are only two cosets (left or right) one of which is $\mathrm{H}=\mathrm{eH}=\mathrm{He}$. If a is not in H then $\mathrm{aH}=\mathrm{Ha}$ consists of the elements of G which are not in H . So every left coset is a right coset.
4. Let G be a group and $\mathrm{a} \in \mathrm{G}$. The centralizer of a is the set $C(a)=\{x \in G \mid x a=a x\}$
a. Show that $\mathrm{C}(\mathrm{a})$ is a subgroup of G
b. Compute $\mathrm{C}(\mathrm{a})$ if $\mathrm{G}=\mathrm{S}_{3}$ and $\mathrm{a}=(1,2,3)$
c. Compute $\mathrm{C}(\mathrm{a})$ if $\mathrm{G}=\mathrm{S}_{3}$ and $\mathrm{a}=(1,2)$
a. If $x, y \in C(a)$ then $x y a=x(a y)=(x a) y=a x y$-- so $C(a)$ is closed
multiply $\mathrm{ax}=\mathrm{xa}$ on the left and right by x^{-1} to obtain $\mathrm{x}^{-1} \mathrm{a}=\mathrm{ax}^{-1}$ so $\mathrm{C}(\mathrm{a})$ is closed under inverse
b. We will use Lagrange's theorem. | C(a) | divides 6 , which is the order of the group. Note that $\mathrm{e}, \mathrm{a}=\left(\begin{array}{ll}1 & 2\end{array}\right), \mathrm{a}^{2}=\left(\begin{array}{ll}1 & 2\end{array}\right)$ all commute with a So $\mathrm{C}(\mathrm{a})$ has at least 3 elements. However (12) does not commute with (123). So C(a) cannot be of order 6 - so $C(a)=<\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)>$ c. The same argument applies when $\mathrm{a}=(12)$. The subgroup C(a) contains <(1 2)> but cannot be of order 6 since (123) does not commute with (12)
