Math 103A	Midterm 1	Winter, 2006
Prof. Wavrik		

1. Find r, 0 < r < 101 so that $2^{102} \equiv r \mod (101)$. [101 is a prime]

 $2^{101} \equiv 2 \mod (101)$ by Fermat's Theorem, so $2^{102} \equiv 4 \mod (101)$.

2. Let $a = [3]_{19}$. Show that a has an inverse under multiplication and find the inverse.

1.19 + (-6).3 = 1 so [-6] = [13] is the inverse of [3]

3. a. Find a permutation σ in S₅ so that $(1 \ 2 \ 3) \ \sigma = (1 \ 2 \ 3 \ 4 \ 5)$ b. Find a permutation τ in S₅ so that $\tau (1 \ 2 \ 3) = (1 \ 2 \ 3 \ 4 \ 5)$

Notice that $(1 \ 3 \ 2)$ is the inverse of $(1 \ 2 \ 3)$ so $\sigma = (1 \ 3 \ 2)(1 \ 2 \ 3 \ 4 \ 5) = (3 \ 4 \ 5)$ $\tau = (1 \ 2 \ 3 \ 4 \ 5)(1 \ 3 \ 2) = (1 \ 4 \ 5)$

- 4. Let a, b, and n be positive integers and p a (positive) prime number
 - a. Show that if $p \mid ab$ then either $p \mid a$ or $p \mid b$.
 - b. Show that (a,n)=1 and (b,n)=1 implies (ab,n)=1.

Since p is prime we have (a,p) is either p or 1. If (a,p)=p then p | a and we are done. If (a,p)=1 then Aa + Bp = 1 for some A,B. But then Aab + Bpb = b. Since p | Aab and p | Bpb we have p | b.

If (a,n)=1 we have Aa + Bn = 1 for some A,B. Thus Aab + Bnp = b. If g=(ab,n) this shows that $g \mid b$. We also have $g \mid n$. So $g \mid (b,n)=1$ We therefore have g=1 as desired.

5. Let n be an integer > 1. Fermat's (little) Theorem says that if n is prime then n satisfies the condition:

(*) \forall x, 1<x<n, we have $x^{n-1} \equiv 1 \mod n$.

Show that the converse is true (i.e. if n satisfies (*) then it must be prime). [Hint: If n is not prime then show there are zero divisors in \mathbb{Z}_n . Show that a zero divisor cannot have an inverse (under multiplication). Observe that $x^{n-1} \equiv 1$ implies x has an inverse in \mathbb{Z}_n .]

If n is not prime then n = ab for some 1 < a, b < n. So a is a zero divisor in \mathbb{Z}_n . If $a^{n-1} \equiv 1 \mod n$ then a has an inverse (namely $c = a^{n-2}$) We have $ab \equiv 0$. Multiply by c and we find $b \equiv 0$ which cannot happen if 1 < b < n

Extra Credit Prove or disprove that if there is a permutation σ in S₅ which satisfies $(1 \ 2 \ 3) \ \sigma = (1 \ 2 \ 3 \ 4 \ 5)$ then σ is <u>unique</u>.

Theorem: σ is unique. Proof: If (1 2 3) σ = (1 2 3 4 5) and (1 2 3) τ = (1 2 3 4 5) then (1 3 2)(1 2 3) σ = (1 3 2)(1 2 3) τ so σ = τ