1. Find $\mathrm{r}, 0<\mathrm{r}<101$ so that $2^{102} \equiv \mathrm{r} \bmod (101)$. [101 is a prime]
$2^{101} \equiv 2 \bmod (101)$ by Fermat's Theorem, so $2^{102} \equiv 4 \bmod (101)$.
2. Let $\mathrm{a}=[3]_{19}$. Show that a has an inverse under multiplication and find the inverse.
$1 \cdot 19+(-6) \cdot 3=1$ so $[-6]=[13]$ is the inverse of [3]
3. a. Find a permutation σ in S_{5} so that (123) $\sigma=\left(\begin{array}{l}1 \\ 2\end{array} 345\right)$
b. Find a permutation τ in S_{5} so that $\tau(123)=(12345)$

Notice that (132) is the inverse of (123) so

$$
\begin{aligned}
\sigma & =\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right)=\left(\begin{array}{lll}
3 & 4 & 5
\end{array}\right) \\
\tau & =\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 4
\end{array}\right)
\end{aligned}
$$

4. Let a, b, and n be positive integers and p a (positive) prime number
a. Show that if $p \mid a b$ then either $p \mid a$ or $p \mid b$.
b. Show that $(a, n)=1$ and $(b, n)=1$ implies $(a b, n)=1$.

Since p is prime we have (a, p) is either p or 1 . If $(a, p)=p$ then $p \mid a$ and we are done. If $(a, p)=1$ then $A a+B p=1$ for some A, B. But then $\mathrm{Aab}+\mathrm{Bpb}=\mathrm{b}$. Since $\mathrm{p} \mid \mathrm{Aab}$ and $\mathrm{p} \mid \mathrm{Bpb}$ we have $\mathrm{p} \mid \mathrm{b}$.

If $(a, n)=1$ we have $\mathrm{Aa}+\mathrm{Bn}=1$ for some A, B. Thus $\mathrm{Aab}+\mathrm{Bnp}=\mathrm{b}$. If $g=(a b, n)$ this shows that $g \mid b$. We also have $g \mid n$. So $g \mid(b, n)=1$ We therefore have $g=1$ as desired.
5. Let n be an integer >1. Fermat's (little) Theorem says that if n is prime then n satisfies the condition:
$\left.{ }^{*}\right) \forall \mathrm{x}, 1<\mathrm{x}<\mathrm{n}$, we have $\mathrm{x}^{\mathrm{n}-1} \equiv 1 \bmod \mathrm{n}$.
Show that the converse is true (i.e. if n satisfies $\left({ }^{*}\right)$ then it must be prime). [Hint: If n is not prime then show there are zero divisors in \mathbb{Z}_{n}. Show that a zero divisor cannot have an inverse (under multiplication). Observe that $\mathrm{x}^{n-1} \equiv 1$ implies x has an inverse in \mathbb{Z}_{n}.]

If n is not prime then $\mathrm{n}=\mathrm{ab}$ for some $1<\mathrm{a}, \mathrm{b}<\mathrm{n}$. So a is a zero divisor in \mathbb{Z}_{n}. If $\mathrm{a}^{\mathrm{n}-1} \equiv 1 \bmod \mathrm{n}$ then a has an inverse (namely $\mathrm{c}=\mathrm{a}^{\mathrm{n}-2}$) We have $\mathrm{ab} \equiv 0$. Multiply by c and we find $\mathrm{b} \equiv 0$ which cannot happen if $1<\mathrm{b}<\mathrm{n}$

Extra Credit Prove or disprove that if there is a permutation σ in S_{5} which satisfies $(123) \sigma=\left(\begin{array}{ll}1 & 2\end{array} 45\right)$ then σ is unique.

Theorem: σ is unique.
Proof: If $(123) \sigma=(12345)$ and $(123) \tau=(12345)$ then
$(132)(123) \sigma=\left(\begin{array}{ll}1 & 3\end{array}\right)(123) \tau$
so $\sigma=\tau$

