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7. Mayer-Vietoris

1. Use the Mayer-Vietoris sequence to calculate the homology of the spaces below. (If you need
to identify any of the maps in the long exact sequence, it helps to first “coordinatise” the known
spaces by choosing explicit generators for their homology groups.)

(a). RP 2, as the union of a Möbius strip and a disc along their boundary.

(b). The torus, as the union of a torus minus a disc (≃ S1 ∨ S1) and a disc.

(c). The Klein bottle, as the ‘twisted’ union of two cylinders S1 × I (identify (x, 0) ∼ (x, 1), and
(x, 1) ∼ (x̄, 0), where the bar is complex conjugation.

(d). S1 ∪B2, where B2 attaches along its boundary circle by the map z 7→ zn.

2. The suspension ΣX of a topological space is obtained from X × I by “collapsing each end to a
distinct point”: that is, identify all the points of X × {0} together, and all the points of X × {1}
together. Show that

H̃i(ΣX) ∼= H̃i−1(X),

Show also that ΣSn is homeomorphic to Sn+1, so this calculation subsumes the calculation of the
homology of spheres.

3. Suspension is a functor: if f : X → Y then there is a suspended map Σf : ΣX → ΣY , defined
as the map induced on the quotient space by f × id : X × I → X × I. Show that for a self-map f

of Sn, Σf has the same degree as f , and hence that for each n ≥ 1 and integer d ∈ Z, there exists
a self-map of Sn with degree d.

4. Let A1, A2, . . . , An be a sequence of finitely-generated abelian groups. Show that there exists
a path-connected pace X with Hi(X) ∼= Ai for 1 ≤ i ≤ n and with vanishing homology above
dimension n. (Hint: use the previous problem to first build spaces with only one non-zero reduced
homology group, then think about suspension.)

5. Suppose X is a space which can be written as a union of non-empty open sets A1, A2, . . . , An

so that for each 1 ≤ k ≤ n, the intersection of any k of the sets is either empty or contractible.
Show that the reduced homology H̃i(X) is zero for i ≥ n − 1, and give an example showing that
this inequality is sharp.

6. Use Mayer-Vietoris to compute (for any X) the homology H∗(X × Sn) in terms of H∗(X). Use
this to compute the homology of the n-torus Tn = S1 × · · · × S1.

7. Let M be the space obtained by gluing two solid tori S1 ×B2 together via the identity map of
their boundaries. Compute H∗(M ;Z).

8. Suppose the two ends of Sn × I are glued together via a map Sn → Sn of degree d. Use
Mayer-Vietoris to calculate the homology of the resulting space X.

9. Let N be a knotted solid torus in S3, let T be its boundary torus, and let X be its exterior,
that is the closure of S3 −N . Use Mayer-Vietoris to compute the homology H∗(X;Z).

10. Let (X,A) be a pair of spaces and let CA be the cone on A. By considering the long exact
sequence for the pair (X ∪CA,CA), show that H̃∗(X ∪CA) ∼= H∗(X,A). This gives an alternative
definition of relative homology.
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11. Let X = A ∪ B, Y = C ∪ D be decompositions of spaces into open sets and f : X → Y a
map such that f(A) ⊆ C, f(B) ⊆ D. Check that the Mayer-Vietoris sequence is natural in the
sense that the diagram below commutes. (Hint: show it first when H∗(A+B), H∗(C +D) replace
H∗(X), H∗(Y ).)

// Hn+1(X) //

f∗
��

Hn(A ∩B) //

f∗
��

Hn(A)⊕Hn(B) //

f∗
��

Hn(X) //

f∗
��

// Hn+1(Y ) // Hn(C ∩D) // Hn(C)⊕Hn(D) // Hn(Y ) //
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