6. Homology I

Simplicial homology

1. For each of the following spaces, describe a simplicial (or Δ-) complex representing it, compute its homology groups, and describe their generators: The figure " 8 ", $S^{2}, \mathbb{R} P^{2}$, the sphere with an equatorial disc glued to it, the torus with a disc attached inside it.
2. Let K be a simplicial complex with a fixed base vertex a_{0}, and let $E\left(K, a_{0}\right)$ be the edge-group defined as follows. Consider the set of edge-loops i.e. strings $a_{0} a_{1} \ldots a_{n}$, where each a_{i} is a vertex, $a_{n}=a_{0}$, and each $\left(a_{i}, a_{i+1}\right)$ is a (0 - or 1-) simplex. Define the obvious composition, and work modulo the two relations of edge-homotopy, which say that

$$
a_{0} a_{1} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{n} \sim a_{0} a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}
$$

provided $\left(a_{i-1}, a_{i}, a_{i+1}\right)$ spans a ($0-$, 1- or 2-) simplex, and that a_{i+1} may be cancelled from the string if it equals a_{i}. Show that there is a surjection $E\left(K, a_{0}\right) \rightarrow H_{1}(K)$ with kernel the commutator subgroup, and prove $E\left(K, a_{0}\right) \cong \pi_{1}\left(|K|, a_{0}\right)$ by using van Kampen's theorem (it will probably help to take a maximal tree).
3. Let K be a simplicial complex with no simplexes of dimension higher than n. Suppose that every ($n-1$)-simplex is a face of exactly two n-simplexes, and that any two n-simplexes may be connected by a finite sequence of n-simplexes, each adjacent by an $(n-1)$-face to the last. Show that (simplicial) $H_{n}(K)$ is either trivial or isomorphic to \mathbb{Z}; in the latter case a generator being the sum of all the n-simplexes (suitably oriented).

Singular homology

4. Let X be a path-connected space with basepoint x_{0}.
(a) Show that there is a natural map $h: \pi_{1}\left(X, x_{0}\right) \rightarrow H_{1}(X)$ which is a homomorphism.
(b) Show that it factors through the abelianisation of $\pi_{1}\left(X, x_{0}\right)$; that is, the group obtained by quotienting by the subgroup generated by all commutators $a b a^{-1} b^{-1}$.
(c) Show that h is surjective. (Hint: given a 1-cycle z, look at the set of endpoints of its singular 1 -simplexes, and choose a path joining each one to x_{0}.)
(d) Show that h is injective. (Hint: if some loop α is the boundary of a 2-chain u, join the corners of the 2 -simplexes in u to the basepoint in a similar way, so as to write α as a large composite of loops. Then try to show that by reordering these (working modulo the commutator subgroup) it can be made null-homotopic.)
5. Let a singular homology class $c \in H_{n}(X)$ be represented by a singular n-cycle z. Use the idea of question 3 to construct a simplicial complex K, a homology class $\mu \in H_{n}(K)$, and a map $f:|K| \rightarrow X$ such that $f_{*}(\mu)=c$. Show that $|K|$, while not necessarily an n-manifold, is an n-circuit, i.e. that its set of singular points (ones without a neighbourhood homeomorphic to \mathbb{R}^{n}) is a subcomplex of dimension less than or equal to $n-2$. This gives rise to a useful and very visual representation of homology classes by manifolds with singularities of codimension ≥ 2.

Some algebra

6. Let $0 \rightarrow A \xrightarrow{i} B \xrightarrow{p} C \rightarrow 0$ be a short exact sequence of abelian groups. Show that the following conditions are equivalent:
(a). There exists a retraction: a homomorphism $r: B \rightarrow A$ with $r \circ i=1_{A}$
(b). There exists a section: a homomorphism $s: C \rightarrow B$ with $p \circ s=1_{C}$
(c). The sequence splits: there exists an isomorphism θ between B and $A \oplus C$ so that

commutes (where on the bottom row the maps are the obvious inclusion and projection). Show that if C is free, such a sequence always splits.
7. Show that a long exact sequence may be written as a collection of short exact sequences. For each exact sequence of abelian groups below, say as much as possible about the unknown group G and homomorphism α :
(a). $0 \rightarrow \mathbb{Z}_{2} \rightarrow G \rightarrow \mathbb{Z} \rightarrow 0$
(b). $0 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z}_{2} \rightarrow 0$
(c). $0 \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}_{2} \rightarrow 0$
(d). $0 \rightarrow G \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow 0$
(e). $0 \rightarrow \mathbb{Z}_{3} \rightarrow G \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \rightarrow 0$
8. The 5-lemma: show that if the rows are exact, and the outer four ' f 's are isomorphisms, then the middle one is also. Can you relax the hypotheses a little and still get the conclusion?

