PROBLEM SHEETS

10. Universal coefficient theorem

- 1. Identify the following abelian groups up to isomorphism.
 - (a). $\mathbb{Z}_m \otimes \mathbb{Z}_n$ (b). $\mathbb{Z}_{60}^4 \otimes (\mathbb{Z}_{24}^3 \oplus \mathbb{Z}_8^4 \oplus \mathbb{Z}_{120})$
 - (c). $\mathbb{Z}_n \otimes \mathbb{Q}$
 - (d). $(\mathbb{Z} \oplus \mathbb{Z}_n) \otimes (\mathbb{Q}/\mathbb{Z})$
- **2.** (a). Compute $\operatorname{Tor}(\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_8, \mathbb{Z} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4)$.
 - (b). Compute $\operatorname{Ext}(\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3, \mathbb{Z} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5)$.

3. Recall the calculation of the integer homology of $\mathbb{R}P^n$ by means of a cellular chain complex. Compute the following homology groups directly from the chain complex (and check them by means of the universal coefficient theorem).

(a). $H_*(\mathbb{R}P^n;\mathbb{Z}_2)$

(b).
$$H_*(\mathbb{R}P^n;\mathbb{Z}_3)$$

- (c). $H^*(\mathbb{R}P^n;\mathbb{Z}_6)$
- 4. Show that the first cohomology group of any space is free abelian.
- 5. Show that for any space, the rational homology and cohomology can be computed via

$$H_*(X;\mathbb{Q}) = H_*(X;\mathbb{Z}) \otimes \mathbb{Q}$$
 $H^*(X;\mathbb{Z}) = \operatorname{Hom}(H_*(X;\mathbb{Z}),\mathbb{Q}).$

6. Explain how to construct a space X having homology groups $H_i(X; \mathbb{Z})$ given by $\mathbb{Z}, \mathbb{Z}_6, \mathbb{Z}_{12}, \mathbb{Z} \oplus \mathbb{Z}_4$ in dimensions $i = 0 \dots 3$, and zero otherwise. Compute its cohomology groups $H^*(X; \mathbb{Z})$.

7. Compute the homology $H_*(\mathbb{R}P^2 \times \mathbb{R}P^2; \mathbb{Z}_2)$.

8. Compute the integral homology $H_*(\Sigma \mathbb{R}P^2 \times \mathbb{R}P^2; \mathbb{Z})$. (ΣX denotes the suspension of X, namely $X \times I$ with the ends $X \times \{0\}$ and $X \times \{1\}$ each collapsed to a (different) point).

9. Compute the integral homology $H_*(\mathbb{R}P^2 \times \mathbb{R}P^3; \mathbb{Z})$.

10. Show that if G is a topological group, then $H_*(G)$ has a natural (possibly non-commutative) algebra structure. Show also that there is a natural action of G on $H_*(G)$, but that this action factors through the homomorphism $G \to \pi_0(G)$, so that it's trivial if G is path-connected.