Vector Calculus 20E, Fall 2019, Second Midterm

Fifty minutes, three problems, no calculators. Please start each problem on a new page.
You will get full credit only if you show all your work clearly.
Simplify answers if you can, but don't worry if you can't!

1. Let γ be the quarter-circle inside \mathbb{R}^{2} given by $x^{2}+y^{2}=4, x \geq 0, y \geq 0$ and oriented anticlockwise. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y)=\left(x y, x^{2} y^{2}\right)$. Compute

$$
\int_{\gamma} \mathbf{F} \cdot \mathrm{d} \mathbf{s}
$$

2. Let Σ be the surface in \mathbb{R}^{3} given by $x+y+z=1, x \geq 0, y \geq 0, z \geq 0$ and let f be the function $f(x, y, z)=x^{2}$. Compute the average value of f over Σ.
3. Let Σ be the piece of the paraboloid $z=x^{2}+y^{2}$ given by $x \geq 0, y \geq 0, z \leq 1$, oriented by saying that the positive z-axis is an example of a normal vector pointing in the positive direction. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=(x, y, z)$. Compute

$$
\int_{\Sigma} \mathbf{F} \cdot \mathrm{d} \mathbf{A} .
$$

Vector Calculus 20E, Fall 2019, Second Midterm

Fifty minutes, three problems, no calculators. Please start each problem on a new page.
You will get full credit only if you show all your work clearly.
Simplify answers if you can, but don't worry if you can't!
4. Let γ be the quarter-circle inside \mathbb{R}^{2} given by $x^{2}+y^{2}=4, x \geq 0, y \geq 0$ and oriented anticlockwise. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y)=\left(x y, x^{2} y^{2}\right)$. Compute

$$
\int_{\gamma} \mathbf{F} \cdot \mathrm{ds}
$$

5. Let Σ be the surface in \mathbb{R}^{3} given by $x+y+z=1, x \geq 0, y \geq 0, z \geq 0$ and let f be the function $f(x, y, z)=x^{2}$. Compute the average value of f over Σ.
6. Let Σ be the piece of the paraboloid $z=x^{2}+y^{2}$ given by $x \geq 0, y \geq 0, z \leq 1$, oriented by saying that the positive z-axis is an example of a normal vector pointing in the positive direction. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=(x, y, z)$. Compute

$$
\int_{\Sigma} \mathbf{F} \cdot \mathrm{d} \mathbf{A} .
$$

