Vector Calculus 20E, Fall 2019, Second Midterm

Fifty minutes, three problems, no calculators. Please start each problem on a new page. You will get full credit only if you show all your work clearly. Simplify answers if you can, but don't worry if you can't!

1. Let γ be the quarter-circle inside \mathbb{R}^2 given by $x^2 + y^2 = 4, x \ge 0, y \ge 0$ and oriented anticlockwise. Let **F** be the vector field given by $\mathbf{F}(x, y) = (xy, x^2y^2)$. Compute

$$\int_{\gamma} \mathbf{F} \cdot \mathrm{d}\mathbf{s}.$$

2. Let Σ be the surface in \mathbb{R}^3 given by $x + y + z = 1, x \ge 0, y \ge 0, z \ge 0$ and let f be the function $f(x, y, z) = x^2$. Compute the average value of f over Σ .

3. Let Σ be the piece of the paraboloid $z = x^2 + y^2$ given by $x \ge 0, y \ge 0, z \le 1$, oriented by saying that the positive z-axis is an example of a normal vector pointing in the positive direction. Let **F** be the vector field given by $\mathbf{F}(x, y, z) = (x, y, z)$. Compute

$$\int_{\Sigma} \mathbf{F} \cdot \mathrm{d}\mathbf{A}$$

Vector Calculus 20E, Fall 2019, Second Midterm

Fifty minutes, three problems, no calculators. Please start each problem on a new page.

You will get full credit only if you show all your work clearly.

Simplify answers if you can, but don't worry if you can't!

4. Let γ be the quarter-circle inside \mathbb{R}^2 given by $x^2 + y^2 = 4, x \ge 0, y \ge 0$ and oriented anticlockwise. Let **F** be the vector field given by $\mathbf{F}(x, y) = (xy, x^2y^2)$. Compute

$$\int_{\gamma} \mathbf{F} \cdot \mathrm{d}\mathbf{s}.$$

5. Let Σ be the surface in \mathbb{R}^3 given by $x + y + z = 1, x \ge 0, y \ge 0, z \ge 0$ and let f be the function $f(x, y, z) = x^2$. Compute the average value of f over Σ .

6. Let Σ be the piece of the paraboloid $z = x^2 + y^2$ given by $x \ge 0, y \ge 0, z \le 1$, oriented by saying that the positive z-axis is an example of a normal vector pointing in the positive direction. Let **F** be the vector field given by $\mathbf{F}(x, y, z) = (x, y, z)$. Compute

$$\int_{\Sigma} \mathbf{F} \cdot \mathrm{d}\mathbf{A}$$