Vector Calculus 20E, Spring 2012, Lecture B, Final exam

Three hours, eight problems. No calculators allowed.
Please start each problem on a new page.
You will get full credit only if you show all your work clearly.
Simplify answers if you can, but don't worry if you can't!

1. Let γ be the ellipse $x^{2}+4 y^{2}=4$, oriented anticlockwise. Compute

$$
\int_{\gamma}(4 y-3 x) d x+(x-4 y) d y
$$

2. Find the integral $\int_{\gamma} \mathbf{F} . d \mathbf{s}$ where $\mathbf{F}=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ and the curve γ is the part of the parabola $z=x^{2}, y=0$ going from $x=-1$ to $x=2$.
3. Find the integral $\int_{R} x y z d S$, where R is the rectangle in \mathbb{R}^{3} whose vertices are the points $(0,0,0),(1,0,0),(0,1,1),(1,1,1)$.
4. Find the area of the surface Σ in \mathbb{R}^{3} described by

$$
\left(u \cos v, u \sin v, u^{2}\right) \quad 0 \leq u \leq 2 \quad 0 \leq v \leq 2 \pi .
$$

5. Find the flux $\int_{\Sigma} \mathbf{F} . d \mathbf{S}$ of the vector field $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+z^{3} \mathbf{k}$ through the surface Σ in \mathbb{R}^{3} which is oriented with an upward normal vector and described by

$$
(u \cos v, u \sin v, v) \quad 0 \leq u \leq 2 \quad 0 \leq v \leq 2 \pi .
$$

6. Find the flux of the vector field $\mathbf{F}=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$ out of the unit sphere in \mathbb{R}^{3}.
7. Find the integral $\int_{\gamma} \mathbf{F} . d \mathbf{s}$ where $\mathbf{F}=x \mathbf{i}+y^{2} \mathbf{j}+z^{3} \mathbf{k}$ and γ is the oriented curve given by

$$
\left(\sin ^{2} t, \cos ^{3} t, \sin ^{4} t\right) \quad 0 \leq t \leq 2 \pi
$$

8. One of the two vector fields

$$
\begin{gathered}
\mathbf{F}=y^{2} \mathbf{i}-z^{2} \mathbf{j}+x^{2} \mathbf{k} \\
\mathbf{G}=\left(x^{3}-3 x y^{2}\right) \mathbf{i}+\left(y^{3}-3 x^{2} y\right) \mathbf{j}+z \mathbf{k}
\end{gathered}
$$

is conservative, and the other is not. Which is which? Find a potential for the conservative one.

Vector Calculus 20E, Spring 2013, Lecture A, Final exam

Three hours, eight problems. No calculators allowed.
Please start each problem on a new page.
You will get full credit only if you show all your work clearly.
Simplify answers if you can, but don't worry if you can't!

1. Let γ be the closed curve given by the equations $x=t^{2}-t, y=2 t^{3}-3 t^{2}+t$ for $0 \leq t \leq 1$. Using Green's theorem, find the area enclosed by the curve γ.
2. Find the integral $\int_{\gamma} \mathbf{F}$.ds where $\mathbf{F}=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ and γ is the helical curve $x=2 \cos t, y=$ $2 \sin t, z=t$ for $0 \leq t \leq 2 \pi$, oriented in the direction of increasing t.
3. Find the integral $\int_{\Sigma} y^{2} \mathrm{dA}$, where Σ is the part of the cylinder $x^{2}+y^{2}=4$ lying between the planes $z=0$ and $z=x+3$.
4. Let D be the standard unit disc in the $x y$-plane, and let Σ be the part of the graph of the function $z=x y$ lying over the domain D. Find the surface area of Σ.
5. Let Σ be the hemisphere $x^{2}+y^{2}+z^{2}=16, z \geq 0$, oriented with the upward normal, and let Let \mathbf{F} be the vector field $\left(x^{2}+z\right) \mathbf{i}+3 x y z \mathbf{j}+(2 x z) \mathbf{k}$. Compute the integral $\int_{\Sigma}(\nabla \times \mathbf{F}) . \mathbf{d} \mathbf{A}$
6. Find the flux of the vector field $\mathbf{F}=x^{2} y \mathbf{i}+z^{8} \mathbf{j}-2 x y z \mathbf{k}$ out of the surface of the standard unit cube ($0 \leq x, y, z \leq 1$) in \mathbb{R}^{3}.
7. Find the integral $\int_{\gamma} \mathbf{F}$.ds where $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and γ is the oriented curve given by

$$
\left(\sin ^{2} t \cos t, \cos ^{2} t \sin t,(t-\pi)^{4}\right) \quad 0 \leq t \leq 2 \pi .
$$

8. One of the two vector fields

$$
\begin{gathered}
\mathbf{F}=3 x^{2} y \mathbf{i}+x^{3} \mathbf{j}+5 \mathbf{k} \\
\mathbf{G}=(x+z) \mathbf{i}+(z-y) \mathbf{j}+(x-y) \mathbf{k}
\end{gathered}
$$

is conservative, and the other is not. Which is which? Find a potential for the conservative one.

Vector Calculus 20E, Fall 2014, Lecture A, Final Exam

Three hours, eight problems. No calculators allowed.
Please start each problem on a new page.
You will get full credit only if you show all your work clearly.
Simplify answers if you can, but don't worry if you can't!

1. Let D be the upper half of the unit disc, given by $x^{2}+y^{2} \leq 1, y \geq 0$. Find the average of the function $f(x, y)=y$ over D.
2. Let D^{*} be the right-hand half of the unit disc, given by $x^{2}+y^{2} \leq 1, x \geq 0$. Let $D=T\left(D^{*}\right)$, where T is the map $(u, v) \mapsto\left(u^{2}-v^{2}, 2 u v\right)$. Calculate the area of D.
3. Let C be the curve in the plane described by $t \mapsto\left(\cos ^{3} t, \sin t\right)$ for $0 \leq t \leq 2 \pi$. Use Green's theorem to compute the area enclosed by C.
4. Let Σ be the part of the cone $z=\sqrt{x^{2}+y^{2}}$ lying above the standard unit square $0 \leq x, y \leq 1$. Compute the surface area of Σ.
5. Let C be the oriented triangular path formed by travelling from $(1,0,0)$ to $(0,1,0)$ to $(0,0,1)$ and then back to $(1,0,0)$ along straight line segments. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=$ $\left(y, x, x^{2}\right)$. Compute the circulation of \mathbf{F} around C :

$$
\int_{C} \mathbf{F} . \mathrm{ds}
$$

6. Let γ be the oriented path $t \mapsto\left(\sqrt{1+t^{2}}, \sqrt[3]{1+t^{3}}, \sqrt[4]{1+t^{4}}\right)$ for $0 \leq t \leq 1$. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=(y z, x z, x y)$. Is \mathbf{F} conservative? Calculate

$$
\int_{\gamma} \mathbf{F} . \mathrm{d} \mathbf{s}
$$

7. Let Σ be the part of the unit sphere $x^{2}+y^{2}+z^{2}=1$ with $x, y, z \geq 0$, oriented outwards from the origin as usual. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=(y,-x, 1)$. Compute the flux of F out of Σ :

$$
\int_{\Sigma} \mathbf{F} . \mathrm{d} \mathbf{S}
$$

8. Let Σ be the surface made by gluing the upper unit hemisphere (given by $x^{2}+y^{2}+z^{2}=1, z \geq 0$) onto the unit disc in the $x y$-plane (given by $x^{2}+y^{2} \leq 1, z=0$); orient the whole surface outwards. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=\left(x^{2}, x z, 3 z\right)$. Compute the flux of \mathbf{F} out of Σ :

$$
\int_{\Sigma} \mathbf{F} . \mathrm{d} \mathbf{S}
$$

Vector Calculus 20E, Winter 2016, Lecture A, Final Exam

Three hours, eight problems. No calculators allowed.
Please start each problem on a new page.
You will get full credit only if you show all your work clearly.
Simplify answers if you can, but don't worry if you can't!

1. Let R be the solid region between the spheres of radius 1 and 2 , centred on the origin. Compute

$$
\int_{R}(x+y)^{2} \mathrm{~d} V
$$

2. Let Σ be the surface which is given by $z=1-x^{2}-y^{2}, z \geq 0$. Compute the surface area of Σ.
3. Let Σ be the part of the unit sphere $x^{2}+y^{2}+z^{2}=1$ which lies above the plane $z=\frac{1}{2}$. Compute the average of the function $f(x, y, z)=z$ over Σ.
4. Let γ be the oriented curve parametrised by $t \mapsto\left(t, t^{2}, t^{3}\right)$ for $0 \leq t \leq 1$ and let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=\left(x+z, y^{3}, 1-x\right)$. Compute

$$
\int_{\gamma} \mathbf{F} \cdot \mathrm{ds} .
$$

5. Let R be the region $x \geq 0, y \geq 0, z \geq 0, x+y+z \leq 1$, and let Σ be its boundary surface, oriented outwards. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=\left(4 x-z^{2}, x+3 z, 6-z\right)$. Compute

$$
\int_{\Sigma} \mathbf{F} \cdot \mathrm{d} \mathbf{A} .
$$

6. Let Σ be the part of the cone given by $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$, oriented outwards. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=\left(-z^{2} y, z^{2} x, z^{4}\right)$. Compute

$$
\int_{\Sigma}(\nabla \times \mathbf{F}) \cdot \mathrm{d} \mathbf{A}
$$

7. Let Σ be the unit hemisphere $x^{2}+y^{2}+z^{2}=1, x \geq 0$, oriented using the outward normal, and let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=(y, x, z)$. Compute the flux

$$
\int_{\Sigma} \mathbf{F} \cdot \mathrm{d} \mathbf{A} .
$$

8. Find the potential function ϕ which satisfies $\phi\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)=0$ and $\nabla \phi=\mathbf{F}$, where \mathbf{F} is the vector field given by $\mathbf{F}(x, y, z)=(\sin y-z \cos x, x \cos y+\sin z, y \cos z-\sin x)$.

Vector Calculus 20E, Winter 2017, Lecture B, Final Exam

Three hours, eight problems. No calculators allowed.
Please start each problem on a new page.
You will get full credit only if you show all your work clearly.
Simplify answers if you can, but don't worry if you can't!

1. Let Σ be the part of the plane $2 x+y+z=6$ where $x, y, z \geq 0$. Compute

$$
\int_{\Sigma}(x+z) \mathrm{d} A
$$

2. Let Σ be the piece of a cylinder given by $x^{2}+y^{2}=4, y \geq 0$ and $0 \leq z \leq 1$, oriented with the outward normal. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=\left(x, 1, z^{2}\right)$. Compute

$$
\int_{\Sigma} \mathbf{F} \cdot \mathrm{d} \mathbf{A}
$$

3. Let Σ be the hemisphere given by $(x-1)^{2}+y^{2}+z^{2}=1$ and $z \geq 0$, oriented with the upward normal. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=\left(-e^{\sin z} y, x+\sin z, \cos x\right)$. Compute

$$
\int_{\Sigma}(\nabla \times \mathbf{F}) \cdot \mathrm{d} \mathbf{A} .
$$

4. Let R be the solid pipe defined by $1 \leq x^{2}+y^{2} \leq 4$ and $0 \leq z \leq 10$, and let Σ be its boundary surface, oriented out of R. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=\left(x+y z, y+x^{2} z^{3}, x y z\right)$. Compute

$$
\int_{\Sigma} \mathbf{F} \cdot \mathrm{d} \mathbf{A} .
$$

5. Let R be the part of the unit ball given by $x^{2}+y^{2}+z^{2} \leq 1, x, y, z \geq 0$. Find the average, over R, of the distance from the origin.
6. Let γ be some curve which runs from $(0,0,0)$ to $(1,2,3)$. Let \mathbf{F} and \mathbf{G} be vector fields given by $\mathbf{F}(x, y, z)=\left(3 x^{2} y^{2} z, 2 x^{3} y z, x^{3} y^{2}\right)$ and $\mathbf{G}(x, y, z)=\left(3 x^{2} y^{2} z, 2 x^{3} y z, x^{2} y^{3}\right.$. Evaluate, or say why it can't be evaluated without further information, the integrals

$$
\int_{\gamma} \mathbf{F} \cdot \mathrm{d} \mathbf{s} \quad \int_{\gamma} \mathbf{G} \cdot \mathrm{d} \mathbf{s} .
$$

7. Let γ be the straight-line segment running from $(1,2,3)$ to $(4,0,2)$. Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y, z)=(x z, 3 y, 1)$. Calculate

$$
\int_{\gamma} \mathbf{F} \cdot \mathrm{d} \mathbf{s}
$$

8. Let D be the parallelogram whose vertices are $(0,1),(1,0),(2,2),(3,1)$. Evaluate

$$
\int_{D} \cos (x+y) \mathrm{d} A .
$$

