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Radial expansion preserves hyperbolic convexity and
radial contraction preserves spherical convexity.
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Abstract On a flat plane, convexity of a set is preserved by both radial
expansion and contraction of the set about any point inside it. Using the
Poincaré disk model of hyperbolic geometry, we prove that radial expansion
of a hyperbolic convex set about a point inside it always preserves hyperbolic
convexity. Using stereographic projection of a sphere, we prove that radial
contraction of a spherical convex set about a point inside it, such that the
initial set is contained in the closed hemisphere centred at that point, always
preserves spherical convexity.

Keywords Preserving hyperbolic and spherical convexity, Poincaré disk,
stereographic projection, dilation, radial expansion and contraction.

1 Introduction

Hyperbolic, spherical, and of course Euclidean convexity have been exten-
sively studied as the constant curvature cases of geodesic convexity. Of course
convexity is preserved by isometries in all cases, and by dilations as well in
Euclidean geometry. In this work we define hyperbolic and spherical analogs of
dilations and prove that they preserve convexity under appropriate hypothe-
ses. See [1–3] for the basic facts of hyperbolic and spherical geometry used
here. Our notation is broadly consistent with these sources.

Euclidean Plane The Euclidean plane is C, the complex plane, with Eu-
clidean metric |dz| which is flat; that is, has curvature zero. The translation
map

τc(z) = z + c
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is a Euclidean isometry that moves the origin to c.

Euclidean dilations Euclidean dilation about the origin with dilation factor
k > 0 is given by

δ0,k(z) = kz.

Euclidean dilation about a point c ∈ C is then given by δc,k = τc ◦ δ0,k ◦ τ−1c .
Obviously, δc,k preserves convexity for all c and for all k > 0. This is what
we generalize in hyperbolic and spherical geometry. This overall pattern of
translation, dilation about the origin and then translation again will be used
in this work to define dilation about an arbitrary point.

Hyperbolic plane Let D ⊆ C denote the Poincaré disk of unit radius with
metric 2|dz|/(1 − |z|2) which has curvature −1. The hyperbolic distance of
z ∈ D from the origin is given by

d(z) = 2 tanh−1 |z| .

Given distinct u, v ∈ D, there is a unique hyperbolic geodesic segment, denoted
[u, v], joining these points. Hyperbolic geodesics are arcs of Euclidean circles
orthogonal to the unit circle, including Euclidean lines through the origin. A
Euclidean circle |z − a| = r is orthogonal to the unit circle |z| = 1 if and only
if |a|2 = 1 + r2. The map

τhc (z) =
z + c

1 + c̄z

is the unique hyperbolic isometry that maps the origin to c and has positive
derivative at the origin; in fact, (τhc )′(0) = 1− |c|2.

Definition 1 A set C ⊆ D is hyperbolic convex (h-convex) if, for every u, v ∈
C, [u, v] lies in C. Obviously, C is h-convex if and only if τhc (C) is h-convex
for each c ∈ D.

Hyperbolic dilations Given a direction eiθ, there is a unique hyperbolic
geodesic ray γ0(θ) emanating from the origin with tangent vector eiθ at the ori-
gin. For z ∈ γ0(θ), its dilated image is the unique point δh0,k(z) = z′ on this ray

with d(z′) = kd(z). If z = reiθ, then z′ = r′eiθ, where r′ = tanh(k tanh−1 r).
Thus,

δh0,k(reiθ) = tanh(k tanh−1 r)eiθ. (1)

We abbreviate τhc by τc to simplify notation. Then dilation about a point c ∈ D
is given by δhc,k = τc ◦ δh0,k ◦ τ−1c .

Spherical plane The spherical plane is the one-point compactification Ĉ =
C∪ {∞} of the complex plane with the metric 2|dz|/(1 + |z|2) which has cur-

vature +1. The extended plane Ĉ is isometric under stereographic projection
to the unit sphere S in R3 with its metric as a subset of R3. A Euclidean disk
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D or Euclidean half-plane H in C is called a hemisphere if its stereographic
projection onto S is a hemisphere. A disk Ds(c, r) is a hemisphere if and only
if 1 + |c|2 = r2. The spherical distance is

d̂(z, w) = 2 tan−1
∣∣∣∣ z − w1 + w̄z

∣∣∣∣ ,
with obvious changes if one of the points is ∞. Points u, v ∈ Ĉ are antipodal
when v = −1/ū; this is equivalent to d̂(u, v) = π. If u, v are not antipodal,
then there is a unique spherical geodesic segment [u, v] joining the points; it
is the shorter arc of the unique great circle through the points. The map

τsc (z) =
z + c

1− c̄z

is the unique spherical isometry that takes the origin to c with positive deriva-
tive at the origin: (τsc )′(0) = 1+ |c|2 > 0. It is a rotation when viewed as acting
on the unit sphere.

Definition 2 A set C ⊆ Ĉ is spherical convex (s-convex) if, for every u, v ∈ C,
all spherical geodesic segments joining them lie in C. Naturally, C is s-convex
if and only if τsc (C) is s-convex for each c ∈ D.

With this definition, Ĉ is s-convex. If a s-convex set C contains a pair of
antipodal points, then the set must be Ĉ. If a s-convex set does not con-
tain antipodal points then the set is contained in a hemisphere centred at a,
Ds(a, π/2) = {z ∈ Ĉ : d̂(a, z) 6 π/2} for some a ∈ C. We will always assume
this is the case.

Spherical dilations Given eiθ, there is a unique spherical geodesic ray γ0(θ)
emanating from the origin with the tangent vector eiθ at the origin. For z ∈
γ0(θ), its dilated image is the unique point δs0,k(z) = z′ on this ray with

d̂(0, z′) = kd̂(0, z) provided kd̂(0, z) < π. If z = reiθ, then z′ = r′eiθ, where
r′ = tan(k tan−1 r). Thus,

δs0,k(reiθ) = tan(k tan−1 r)eiθ. (2)

Again abbreviating τsc by τc, the spherical dilation about a point c ∈ Ĉ is
given by δsc,k = τc ◦ δs0,k ◦ τ−1c .

For all three geometries, we refer to the dilation of a set as radial expansion
when k > 1 and as radial contraction when k 6 1. Henceforth, expansion al-
ways means radial expansion and contraction always means radial contraction,
hyperbolic or spherical according to context.
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2 Results

It is clear that in Euclidean geometry, if a set C is convex then irrespective
of whether dilation is an expansion or a contraction, the dilated set C ′ is also
convex. In this work, we prove that if C is h-convex then the set obtained by
expansion of C about a point in it is still h-convex. We also prove that if C
is s-convex then the set obtained by contraction of C about a point c in C is
still s-convex, provided that the initial set C is contained in Ds(c, π/2), the
closed spherical half-plane centred at c. We prove the hyperbolic case first.

Theorem 1 Consider a h-convex set C ⊆ D and a point c ∈ C. Then for any
k > 1, δhc,k(C) is h-convex.

Proof. Because of the invariance of h-convexity and dilations under isometries
of the hyperbolic metric, there is no loss of generality in assuming that c = 0.
So, we prove that for any k > 1, δh0,k(C) is h-convex when C is h-convex and

0 ∈ C. Denote δh0,k(C) by C ′.

The following is an outline of the proof. We take two arbitrary points x′1, x
′
2 ∈

C ′. We then take an arbitrary point x′ on [x′1, x
′
2]. To show that C ′ is h-convex,

we must show that x′ ∈ C ′ (Definition (1)). The preimages of x′1, x
′
2 and x′

under the map δh0,k are then computed. We call these preimages x1, x2 and x.
Since x′1, x

′
2 ∈ C ′, therefore x1, x2 ∈ C. We must show that x ∈ C which will

then prove that x′ = δh0,k(x) ∈ C ′. To show that x ∈ C, we first find a point
ξ on [x1, x2] which is on the same radial geodesic ray as x. Note that ξ ∈ C
because C is h-convex. Then we show that |ξ| > |x|. Using this and the facts
that 0, ξ ∈ C and C is h-convex, we conclude that x ∈ C and therefore C ′ is
h-convex.

For convenience, denote s = 1/k, so s ∈ (0, 1]. Consider two points x′1, x
′
2 ∈ C ′

as follows,

x′1 = r′1e
iθ1 ,

x′2 = r′2e
iθ2 ,

where r′1, r
′
2 ∈ (0, 1). Without loss of generality, assume that 0 6 θ1 < θ2 < π.

For convenience, denote γ1 = tanh−1 r′1 and γ2 = tanh−1 r′2. Rewriting x′1 and
x′2,

x′1 = tanh(γ1)eiθ1 ,

x′2 = tanh(γ2)eiθ2 .

Let x′ be a point on [x′1, x
′
2]. We can represent x′ as

x′ = r′eiλ,
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where λ = θ1 + t(θ2 − θ1) for some t ∈ (0, 1). Later we will obtain the value
of r′ in terms of γ1, γ2, θ1, θ2 and λ (equation (9)). Using the inverse of δh0,k,
(equation (1)), we obtain x1, x2, x from x′1, x

′
2, x
′ as

x1 = r1e
iθ1 ,

x2 = r2e
iθ2 ,

x = reiλ,

where

r1 = tanh(s tanh−1 r′1) = tanh(γ1s), (3)

r2 = tanh(s tanh−1 r′2) = tanh(γ2s), (4)

r = tanh(s tanh−1 r′). (5)

Then [x1, x2] will be an arc of a circle K orthogonal to ∂D centred at a =
a1 + ia2 with radius R. Since x1 and x2 lie on K and |a|2 = 1 +R2, we obtain,

a1 =
(r−11 + r1) sin θ2 − (r−12 + r2) sin θ1

2 sin(θ2 − θ1)

=
coth(2γ1s) sin θ2 − coth(2γ2s) sin θ1

sin(θ2 − θ1)
, (6)

a2 =
(r−12 + r2) cos θ1 − (r−11 + r1) cos θ2

2 sin(θ2 − θ1)

=
coth(2γ2s) cos θ1 − coth(2γ1s) cos θ2

sin(θ2 − θ1)
. (7)

We used equations (3, 4) and the identity tanh(α) + coth(α) = 2 coth(2α) to
simplify the above expressions.

Since x′1, x
′
2 ∈ C ′, we have x1, x2 ∈ C. Since C is h-convex, every point on

[x1, x2] lies in C. There exists a point on [x1, x2] in the direction eiλ of x. Let
that point be ξ and denote ρ = |ξ|. Then,

ρ = a1 cosλ+ a2 sinλ−
√

(a1 cosλ+ a2 sinλ)2 − 1.

Note that the circle K intersects the line passing through 0 and x at two points,
one of which lies inside D, the other outside. The above equation ensures that
ξ is the point of intersection which lies inside D. Also, note that

a1 cosλ+ a2 sinλ =
coth(2γ1s) sin(θ2 − λ) + coth(2γ2s) sin(λ− θ1)

sin(θ2 − θ1)

>
sin(θ2 − λ) + sin(λ− θ1)

sin(θ2 − θ1)

> 1.
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Using tanh−1(α−
√
α2 − 1) = 1

2 tanh−1
(
1
α

)
, we get

tanh−1 ρ =
1

2
tanh−1

(
1

a1 cosλ+ a2 sinλ

)
.

Substituting the values of a1 and a2 using equations (6, 7), we get

tanh−1 ρ =
1

2
tanh−1

(
sin(θ2 − θ1)

coth(2γ1s) sin(θ2 − λ) + coth(2γ2s) sin(λ− θ1)

)
. (8)

Also, note that r = |x| and from equation (5) we have tanh−1 r = s tanh−1 r′.
Note that when k = 1 (equivalently s = 1) we have x′1 = x1, x

′
2 = x2 and

x′ = x = ξ. So, by equating tanh−1 r and tanh−1 ρ at s = 1, we obtain

tanh−1 r′ =
1

2
tanh−1

(
sin(θ2 − θ1)

coth(2γ1) sin(θ2 − λ) + coth(2γ2) sin(λ− θ1)

)
. (9)

Therefore,

tanh−1 r =
s

2
tanh−1

(
sin(θ2 − θ1)

coth(2γ1) sin(θ2 − λ) + coth(2γ2) sin(λ− θ1)

)
. (10)

Using equations (8, 10), we show that ρ > r by showing that tanh−1 ρ >
tanh−1 r (because ρ, r ∈ (0, 1)). Note that tanh−1 r is linear in s and tanh−1 ρ
is concave in s for all s > 0 (using Lemma (1) in the Appendix). Also, note
that in the limit s → 0, tanh−1 r = tanh−1 ρ = 0, and at s = 1, tanh−1 r =
tanh−1 ρ = tanh−1 r′. These constraints on tanh−1 r and tanh−1 ρ imply that
tanh−1 ρ > tanh−1 r for all s ∈ (0, 1].

Therefore, ρ > r and so |ξ| > |x|. Using this and the facts that 0, ξ ∈ C, x
is on the same radial geodesic ray [0, ξ], and C is h-convex, we conclude that
x ∈ C. So, x′ ∈ C ′ and C ′ is h-convex.

The spherical case is similar except that the initial s-convex set is restricted
to be contained in the spherical half-plane centred at the point about which
the set is dilated.

Theorem 2 Consider a s-convex set C ⊆ Ĉ and a point c ∈ C such that
C ⊆ Ds(c, π/2). Then for any 0 < k 6 1, δsc,k(C) is s-convex.

Proof. Because of the invariance of s-convexity and s-dilations under spherical
isometries, there is no loss of generality in assuming that c = 0. So, we prove
that for any k ∈ (0, 1], δs0,k(C) is s-convex when C ⊆ D = Ds(0, π/2) is s-

convex and 0 ∈ C. Denote δs0,k(C) by C ′. Note that C ′ ⊆ C ⊆ D. The strategy
of the proof is same as that of Theorem 1.

For convenience, denote s = 1/k, so that s > 1. Later we will obtain an upper
bound on s based on the constraint C ⊆ D. Consider two points x′1, x

′
2 ∈ C ′,

x′1 = r′1e
iθ1 ,

x′2 = r′2e
iθ2 ,
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where r′1, r
′
2 ∈ (0, 1). Without loss of generality, assume that 0 6 θ1 < θ2 < π.

For convenience, denote γ1 = tan−1 r′1 and γ2 = tan−1 r′2. Rewriting x′1 and
x′2,

x′1 = tan(γ1)eiθ1 ,

x′2 = tan(γ2)eiθ2 .

Let x′ be a point on [x′1, x
′
2]. We can represent x′ as

x′ = r′eiλ,

where λ = θ1+t(θ2−θ1) for some t ∈ (0, 1). Using the inverse of δs0,k (equation
(2)), we obtain x1, x2, x from x′1, x

′
2, x
′:

x1 = r1e
iθ1 ,

x2 = r2e
iθ2 ,

x = reiλ,

where

r1 = tan(s tan−1 r′1) = tan(γ1s), (11)

r2 = tan(s tan−1 r′2) = tan(γ2s), (12)

r = tan(s tan−1 r′). (13)

Since x1, x2, x ∈ D, therefore r1, r2, r ∈ (0, 1], or equivalently, their spherical
distance from 0 is less than or equal to π/2. Since x lies on [x1, x2], therefore
the spherical distance of x from 0 is less than the spherical distance of either
x1 or x2 from 0. So we obtain the following constraint on s,

2s max(γ1, γ2) 6
π

2
.

Define s∗ as,

s∗ =
π

4
min(γ−11 , γ−12 ).

Note that s∗ > 1 and we have s ∈ [1, s∗].

Then [x1, x2] will be an arc of a circle K which intersects the unit circle at
diametrically opposite points, and is centred at a = (a1, a2) with radius R.
Since x1 and x2 lie on K and 1 + |a|2 = R2, we obtain

a1 =
(r1 − r−11 ) sin θ2 − (r2 − r−12 ) sin θ1

2 sin(θ2 − θ1)

= −cot(2γ1s) sin θ2 − cot(2γ2s) sin θ1
sin(θ2 − θ1)

, (14)

a2 =
(r2 − r−12 ) cos θ1 − (r1 − r−11 ) cos θ2

2 sin(θ2 − θ1)

= −cot(2γ2s) cos θ1 − cot(2γ1s) cos θ2
sin(θ2 − θ1)

. (15)
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We used equations (11, 12) and the identity cot(α) − tan(α) = 2 cot(2α) to
simplify these expressions.

Since x′1, x
′
2 ∈ C ′, we have x1, x2 ∈ C. Since C is s-convex, every point on

[x1, x2] lies in C. There exists a point on [x1, x2] which has the same direction
eiλ as x because λ ∈ (θ1, θ2). Let that point be ξ and denote ρ = |ξ|. Then,

ρ =
√

(a1 cosλ+ a2 sinλ)2 + 1 + a1 cosλ+ a2 sinλ.

The above equation ensures that ξ is the point of intersection which lies inside
the unit circle. Also, note that

a1 cosλ+ a2 sinλ = −cot(2γ1s) sin(θ2 − λ) + cot(2γ2s) sin(λ− θ1)

sin(θ2 − θ1)

6 0.

Using tan−1(α+
√
α2 + 1) = 1

2 tan−1
(−1
α

)
when α 6 0, we get

tan−1 ρ =
1

2
tan−1

(
−1

a1 cosλ+ a2 sinλ

)
.

Substituting the values of a1 and a2 using equations (14, 15) we get

tan−1 ρ =
1

2
tan−1

(
sin(θ2 − θ1)

cot(2γ1s) sin(θ2 − λ) + cot(2γ2s) sin(λ− θ1)

)
. (16)

Setting s = 1 we obtain

tan−1 r′ =
1

2
tan−1

(
sin(θ2 − θ1)

cot(2γ1) sin(θ2 − λ) + cot(2γ2) sin(λ− θ1)

)
. (17)

Therefore,

tan−1 r =
s

2
tan−1

(
sin(θ2 − θ1)

cot(2γ1) sin(θ2 − λ) + cot(2γ2) sin(λ− θ1)

)
. (18)

Using equations (16, 18), we show that ρ > r by showing that tan−1 ρ >
tan−1 r (because ρ, r ∈ (0, 1)). Note that tan−1 r is linear in s and tan−1 ρ is
convex in s for all s ∈ (0, s∗] (using Lemma (2) in the Appendix). Also, note
that in the limit s → 0, tan−1 r = tan−1 ρ = 0, and at s = 1, tan−1 r =
tan−1 ρ = tan−1 r′. These constraints on tan−1 r and tan−1 ρ imply that
tan−1 ρ > tan−1 r for all s ∈ [1, s∗].

Therefore, ρ > r and so |ξ| > |x|. As before this shows that x′ ∈ C ′ and C ′ is
s-convex.

We now provide examples which show that the hypotheses of our theorems
are necessary.
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– Contraction of a h-convex set about a point in it may not preserve h-
convexity. Consider a hyperbolic geodesic γ that does not contain the
origin. Let H be the closed hyperbolic half-plane determined by γ that
contains the origin. Consider δh0,k(H), where k ∈ (0, 1). Note that δh0,k(γ)
is a curve in H that has the same endpoints, say a and b, on the circle as
γ. If one selects two points on δh0,k(γ) that are very near a and b, respec-
tively, then the hyperbolic geodesic through these points is very close to
γ. Because δh0,k(γ) lies in the interior of H, this hyperbolic geodesic must

contain points outside δh0,k(H), so δh0,k(H) is not h-convex.
– Expansion or contraction of a h-convex or a s-convex set C about a point

outside it may not preserve h-convexity or s-convexity. This follows directly
from the fact that in both hyperbolic and spherical geometries, dilation of
a geodesic segment about a point outside it results in a segment which is
not a geodesic, so simply take C to be such a geodesic segment.

– Expansion of a s-convex set C about 0, where 0 ∈ C, may not preserve
s-convexity. Consider a geodesic segment C = γ passing through 0 and
having length slightly less than π with length approximately π/2 on either
side of 0. Clearly, γ is s-convex. With a sufficiently large dilation factor
k � 1, δh0,k(γ) will be a geodesic containing at least two antipodal points.

Since Ĉ is the only s-convex set containing antipodal points, δs0,k(γ) is not
s-convex.

– Contraction of a s-convex set C about 0 when C 6⊆ D and 0 ∈ C, may
not preserve s-convexity. Consider the s-convex hull C of the points 0,
tan( 0.9π

2 )eiπ/6 and tan(0.9π
2 )eiπ/3. Clearly, C is s-convex and C 6⊆ D. We

then take a dilation factor of 0.9 and plot C ′ = δs0,0.9(C) as well as the
s-convex hull of C ′ (Figure (1)). Clearly, the s-convex hull of C ′ is not
contained in C ′. So, C ′ is not s-convex.

Fig. 1: Contraction of a s-convex set C about 0 when C 6⊆ D and 0 ∈ C resulting in a set
which is not s-convex. The dotted quarter circle is the stereographic image of a hemisphere
centred at the origin.
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3 Conclusion and future work

In this work, we showed that expansion of a hyperbolic convex set in the
Poincaré disk about a point inside it results in a hyperbolic convex set while
contraction may not. We also showed that contraction of a spherical convex
set about a point inside it, such that the set is contained in the closed spher-
ical half-plane centred at that point, results in a spherical convex set while
expansion may not. This is in contrast to the case on a flat plane, where both
contraction and expansion preserve convexity. Although not proved in this
work, we conjecture that our results still hold for asymmetric dilation as well
as in higher dimensions. For example, in the planar Euclidean case, asymmet-
ric dilation means scaling by a diagonal matrix having unequal entries, say k1

and k2, so that a point reiθ maps to r′eiθ
′

where r′ = r
√
k21 cos2 θ + k22 sin2 θ

and tan θ′ = (k2/k1) tan θ. Data from computer experiments supports these
conjectures, which we hope to prove in our future work.
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Appendix

Lemma 1 Let f(x) = tanh−1
(

1
k1 coth(u1x)+k2 coth(u2x)

)
. If k1, k2 > 0, k1 +

k2 > 1 and u1, u2 > 0, then f(x) is concave, that is, f ′′(x) 6 0 for all x > 0.

Proof. For convenience, denote pi ≡ coth(uix). Note that pi > 1 for all x > 0
and p′i ≡ ui(1− p2i ). Then

f ′(x) =
f1(x)

f2(x)
,
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where

f1(x) = k1u1(p21 − 1) + k2u2(p22 − 1),

f2(x) = (k1p1 + k2p2)2 − 1.

Note that f1(x), f2(x) > 0 for all x > 0. Next,

f ′′(x) =
f ′1(x)f2(x)− f1(x)f ′2(x)

f2(x)2
,

where

f ′1(x) = −2(k1u
2
1p1(p21 − 1) + k2u

2
2p2(p22 − 1)),

f ′2(x) = −2(k1p1 + k2p2)f1(x).

Note that f ′1(x), f ′2(x) 6 0 for all x > 0. The denominator f2(x)2 is non-
negative. We show that the numerator f ′1(x)f2(x)−f1(x)f ′2(x) is non-positive.
Using the Cauchy-Schwarz inequality, we have

f1(x)2 =

(
u1

√
k1p1(p21 − 1) ·

√
k1(p1 − p−1

1 ) + u2

√
k2p2(p22 − 1) ·

√
k2(p2 − p−1

2 )

)2

6 (k1u
2
1p1(p21 − 1) + k2u

2
2p2(p22 − 1))(k1(p1 − p−1

1 ) + k2(p2 − p−1
2 ))

= −
f ′1(x)

2
(k1(p1 − p−1

1 ) + k2(p2 − p−1
2 )).

Substituting the above inequality in f ′1(x)f2(x)− f1(x)f ′2(x), we get

f ′1(x)f2(x)− f1(x)f ′2(x)

= f ′1(x)f2(x) + 2(k1p1 + k2p2)f1(x)2

6 f ′1(x)(f2(x)− (k1p1 + k2p2)(k1(p1 − p−11 ) + k2(p2 − p−12 )))

= f ′1(x)((k1p1 + k2p2)2 − 1− (k1p1 + k2p2)(k1(p1 − p−11 ) + k2(p2 − p−12 )))

= f ′1(x)(k21 + k22 + k1k2(p1p
−1
2 + p2p

−1
1 )− 1)

6 f ′1(x)((k1 + k2)2 − 1) (19)

6 0.

Inequality (19) follows from the facts that f ′1(x) 6 0 and p1p
−1
2 +p2p

−1
1 > 2 for

all x > 0. The last inequality follows from f ′1(x) 6 0 and (k1 + k2)2 > 1.

Lemma 2 Let f(x) = tan−1
(

1
k1 cot(u1x)+k2 cot(u2x)

)
. If k1, k2 > 0, k1+k2 > 1,

and u1, u2 > 0, then f(x) is convex, that is, f ′′(x) > 0 for all x ∈ (0, x∗] where
x∗ = π

2 min(u−11 , u−12 ).

Proof. For convenience, denote pi ≡ cot(uix). Note that pi > 0 for all x ∈
(0, x∗] and p′i ≡ −ui(1 + p2i ). Then

f ′(x) =
f1(x)

f2(x)
,
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where,

f1(x) = k1u1(1 + p21) + k2u2(1 + p22),

f2(x) = (k1p1 + k2p2)2 + 1.

Note that f1(x), f2(x) > 0 for all x ∈ (0, x∗]. Next,

f ′′(x) =
f ′1(x)f2(x)− f1(x)f ′2(x)

f2(x)2
,

where

f ′1(x) = −2
(
k1u

2
1p1(1 + p21) + k2u

2
2p2(1 + p22)

)
,

f ′2(x) = −2(k1p1 + k2p2)f1(x). (20)

Note that f ′1(x), f ′2(x) 6 0 for all x ∈ (0, x∗]. The denominator f2(x)2 is
positive, so we will show that the numerator f ′1(x)f2(x) − f1(x)f ′2(x) is also
positive for all x ∈ (0, x∗]. First we show that

f ′1(x)

(
k1

√
p21 + 1 + k2

√
p22 + 1

)2

− f1(x)f ′2(x) > 0. (21)

Using the Cauchy-Schwarz inequality, we have(
k1

√
p21 + 1 + k2

√
p22 + 1

)2

=

(√
k1u1(p21 + 1) ·

√
k1u
−1
1 +

√
k2u2(p22 + 1) ·

√
k2u
−1
2

)2

6 (k1u1(p21 + 1) + k2u2(p22 + 1))(k1u
−1
1 + k2u

−1
2 )

= f1(x)(k1u
−1
1 + k2u

−1
2 ).

Using the above inequality and equation (20) in equation (21), we get

f ′1(x)

(
k1

√
p21 + 1 + k2

√
p22 + 1

)2

− f1(x)f ′2(x)

> f ′1(x)f1(x)(k1u
−1
1 + k2u

−1
2 )− f1(x)f ′2(x) (22)

= f ′1(x)f1(x)(k1u
−1
1 + k2u

−1
2 ) + 2(k1p1 + k2p2)f1(x)2

= f1(x)(f ′1(x)(k1u
−1
1 + k2u

−1
2 ) + 2(k1p1 + k2p2)f1(x))

= 2f1(x)

[
k1k2
u1u2

(u1p1 − u2p2)
(
u22(1 + p22)− u21(1 + p21)

)]
(23)

> 0

as required. We used the fact that f ′1(x) 6 0 to obtain (22). Equation (23)
follows by substitution. Since x ∈ (0, x∗], we have uix 6 π/2. Also, note that
f1(x), k1, k2, u1, u2 > 0. Then the last inequality follows from the fact that
α cot(kα) is decreasing in α and α2(1 + cot(kα)2) is increasing in α for all α
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such that α > 0 and kα ∈ (0, π/2], so that either both terms in the product
(u1p1 − u2p2)

(
u22(1 + p22)− u21(1 + p21)

)
are non-positive or both non-negative.

Finally, we substitute (21) in f ′1(x)f2(x)− f1(x)f ′2(x), to get

f ′1(x)f2(x)− f1(x)f ′2(x)

> f ′1(x)f2(x)− f ′1(x)

(
k1

√
p21 + 1 + k2

√
p22 + 1

)2

= −f ′1(x)

[
−f2(x) +

(
k1

√
p21 + 1 + k2

√
p22 + 1

)2
]

= −f ′1(x)

[(
k1

√
p21 + 1 + k2

√
p22 + 1

)2

− (k1p1 + k2p2)2 − 1

]

= −f ′1(x)

[
k21 + k22 + 2k1k2

(√
p21 + 1

√
p22 + 1− p1p2

)
− 1

]
> −f ′1(x)(k21 + k22 + 2k1k2 − 1) (24)

= −f ′1(x)((k1 + k2)2 − 1)

> 0.

We used the fact that
√
a2 + 1

√
b2 + 1− ab > 1 to obtain (24).


