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Abstract In this work, we examine students’ ways of thinking when presented with a
novel linear algebra problem. Our intent was to explore how students employ and
coordinate three modes of thinking, which we call computational, abstract, and
geometric, following similar frameworks proposed by Hillel (2000) and Sierpinska
(2000). However, the undergraduate honors linear algebra students in our study used
the computational mode of thinking in a surprising variety of productive and reflective
ways. This paper examines the solution strategies that the students employed to solve
the problem, emphasizing their use of the computational mode of thinking.
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Conceptual understanding

Introduction

A first course in linear algebra plays a pivotal role in the mathematical education of
college students in STEM disciplines. It usually follows a calculus sequence that may
be predominantly computational in focus, and serves as a first encounter with many
elements of more advanced mathematics. These include the emphasis on precise
definitions and formal proofs, the creation of an abstract axiomatic structure, the study
of objects that are not easy to visualize, multiple representations of those objects, and
computational methods that require non-routine choices and interpretations of those
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representations. The kinds of flexible thinking required are foreign to many students,
for whom “the fog rolls in” and the subject remains opaque (Carlson 1993).

Much of the literature on the learning of linear algebra documents students’ inabil-
ities to solve basic problems, to move flexibly between the representations, to use
abstract theorems in concrete situations, and even to speak or write the basic language
of linear algebra coherently. Despite much insight into the causes of their difficulties,
and creative pedagogical suggestions, the overall impression remains pessimistic.

Based on our own teaching experience, and consistent with previous work (Hillel
2000; Sierpinska 2000), we hypothesized that students must learn three major ways of
thinking, and how to coordinate them with each other, in order to succeed in linear
algebra. We term these abstract, geometric, and computational thinking. The study
reported here was designed to explore students’ use of these ways of thinking and their
ability to coordinate them while solving a novel linear algebra problem. The initial
research questions for the study were: What strategies do students use to solve a novel
linear algebra problem (described below)? What are the uses, affordances, and con-
straints of each mode of thinking? In what ways do students coordinate these modes of
thinking? As our analysis progressed, we noted a preponderance of computational
thinking, used by students in unexpectedly effective ways, and we were thus led to ask
in addition: In what productive ways did students use computational thinking? The
present paper concentrates on this question.

The students in our study were first year undergraduates enrolled in an Honors linear
algebra course at a large university in the southwestern United States. As such, they do
not form a representative sample of the general population of linear algebra students,
and we would not expect our results to generalize immediately to this larger population.
However, our students successfully used computational thinking to solve the problem
in creative ways and to justify their solutions. Our study shows what successful student
thinking in linear algebra can look like and provides a positive counterpoint to the
literature on student deficiencies in linear algebra.

Theoretical Background and Literature Review

Drawing upon our own teaching experience, we hypothesize that mastery of linear
algebra requires students to develop, and move flexibly between, three essential ways
of thinking that we term abstract, geometric, and computational thinking. Our tripartite
taxonomy of modes of thinking is closely related to similar categories described by
Hillel (2000) and Sierpinska (2000). We now review their work and explain how our
own viewpoint builds upon it.

Hillel speaks of three modes of description of vectors and operators: the abstract,
algebraic, and geometric modes. He defines the abstract mode as using the language
and concepts of the general formalized theory, including vector spaces, subspaces,
linear span, dimension, operators, and kernels. His algebraic mode includes the
language and concepts of the more specific theory of Rn, including n-tuples,
matrices, rank, solutions of systems of linear equations, and row space. Even
more specifically, his geometric mode includes the language and concepts of 2-
and 3-space, including directed line segments, points, lines, planes, and
geometric transformations.
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Hillel (2000) traces many student difficulties to instructors’ propensity for “con-
stantly shifting modes of description and notation” (p. 199) without alerting students to
this. He points out that choosing a basis, or changing basis, may require students to shift
modes of description, and that over-reliance on a single mode can cause problems for
students, for example when they inappropriately apply geometric intuition in dimen-
sions higher than three. His three modes roughly correspond to ours, but refer to
languages that can describe the basic objects of study, whereas ours refer directly to
the ways that students think; Hillel acknowledges that “it is possible, for example, for
students to be working inRn (the algebraic mode of description) and to be using several
modes of reasoning” (p. 195).

Sierpinska (2000), like us, discusses three modes of thinking or reasoning. We will
shorten her names to (analytic-)structural, (synthetic-)geometric, and
(analytic-)arithmetic. While she does not give explicit definitions of these categories,
she provides a wealth of examples. Her categories roughly correspond to Hillel’s
abstract, geometric, and algebraic modes, respectively. She says these modes are
“equally useful, each in its own context, and especially when they are in interaction”
(p. 233) and traces student difficulties to “their inability to move flexibly between the
three modes” (p. 209). Her structural mode corresponds to our abstract one, and her
geometric mode to ours. However, we intend our computational mode to be more
inclusive than her arithmetic mode. As we elaborate below, our computational mode
includes reasoning about computations, which Sierpinska views as overlapping with
the other modes of thinking. Such computational reasoning, as we call it, will be a
central theme of this paper.

Our Tripartite Taxonomy

We use a similar threefold classification of students’ modes of thinking, comprising
abstract, geometric, and computational thinking; we present examples of each in the
Results section. Abstract thinking treats vectors as abstract objects manipulated ac-
cording to formal rules, without reference to components or arrows. It makes use of
definitions and theorems stated in coordinate-free language and applicable to Rn for
any n. (Our course did not cover abstract vector spaces.) It makes assertions of
existence or uniqueness on the basis of general principles rather than resulting from
explicit computations. The notion of orthogonality may be part of abstract thinking if
its meaning comes from an abstract inner product rather than the specifically geometric
notion of right angles.

Geometric thinking involves visualization in Euclidean two- or three-
dimensional space, with vectors represented as arrows, and may draw on
concrete facts from high school geometry such as the Pythagorean Theorem.
Span and linear independence can be geometric concepts if based on geometric
properties such as collinearity and coplanarity in R2 and R3. “Orthogonal” as a
synonym for “perpendicular” is a geometric concept. Systems of linear
equations can be viewed geometrically in terms of the incidence relations
among the lines or planes obtained by graphing each equation. A desirable
outcome of a linear algebra course is for students to learn to extend their
geometric thinking to apply in Rn for n>3; we do not consider “geometric
thinking” in such contexts to be an oxymoron.
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Since the present study emphasizes students’ use of computational thinking, we
wish to focus on our definition of computational thinking and its relation to
Sierpinska’s (2000) arithmetic mode of thinking. Computational thinking represents
vectors in Rn explicitly as n-tuples of real numbers, and draws conclusions from
algorithms such as row reduction of matrices for solving systems or computing
determinants. Assertions of existence or uniqueness come from explicit computations
producing the objects in question. Systems of linear equations are thought of in terms of
their coefficient or augmented matrices. Most importantly, for us computational think-
ing is not simply the procedural knowledge of how to execute an algorithm without
errors. It includes choosing the appropriate computation to answer a particular question,
understanding what the result of the computation means in that context, and reasoning
about the steps or the outcome of the computation.

In essence, our computational mode of thinking is an expansion of Sierpinska’s
(2000) arithmetic mode to include reasoning about computations. Although Sierpinska
includes some reasoning and proof within her arithmetic mode of thinking, its precise
limits are not clear to us, and seem too restrictive. On the one hand, she says that “Much
of the analytic-arithmetic reasoning goes along the line: Show that two processes lead
to the same result” (p. 234). On the other, she gives an example she considers to be
intermediate between arithmetic and structural thinking, in which “the student was not
performing calculations, he was reflecting on the properties of the possible effects of a
calculation” (p. 240). We definitely consider this within the scope of computational
thinking. Regarding a second example of student reasoning, about the algorithm for
inverting a matrix, she says that it is partly arithmetic but has “one foot in the structural
mode because it reflects on the technique and makes use of its reversible character” (p.
241). We would again consider this within the scope of computational thinking.

Problems in linear algebra may require an insight or reasoning process that is most
accessible via one specific way of thinking. However, coordination between multiple
ways of thinking is often required. By this we mean the ability to flexibly move from
one way of thinking to another, or more specifically to “import” information acquired
via one mode into another mode for further reasoning. Translation to the geometric
mode often provides intuitive confirmation or understanding of abstract or computa-
tional results; a geometric picture may provide the key idea for an abstract proof or
identify a key quantity to be computed. For instance, a geometric viewpoint on least
squares and orthogonal projection is an invaluably illuminating complement to an
abstract or computational one. The abstract mode can provide necessary or sufficient
conditions for drawing some conclusion, which conditions can then be verified com-
putationally. Our study was initially designed to explore students’ ability to coordinate
multiple modes of thinking in solving a novel problem, and the affordances provided
by such coordination, which is a feature of “expert” thinking in linear algebra. In
delineating the “boundaries” between the modes of thinking, and studying their
interaction at these boundaries, we consider it important that each mode be defined
broadly enough to include reasoning processes carried out within its own “language”.
In particular, this is the reason for our expansion of Sierpinska’s (2000) arithmetic mode
of thinking into our computational category.

We view the classification of student thinking in linear algebra as computational,
geometric, or abstract as being largely orthogonal to the broader classification of
students’ knowledge as procedural or conceptual. Students thinking in any of the
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modes may draw upon knowledge anywhere on the continuum from procedural to
conceptual. In particular, although computational thinking would include superficial
procedural knowledge, in which students apply rote algorithms without reflection
(Hiebert and Lefevre 1986), we do not view computational thinking as limited to
superficial procedural knowledge. At its best, computational thinking can be an
example of what Baroody et al. (2007), responding to Star (2005), call deep procedural
knowledge. For Baroody et al. (2007), “(relatively) deep procedural knowledge cannot
exist without (relatively) deep conceptual knowledge” (p. 123). The “procedural
flexibility and critical judgment” that for us can be exhibited by students using
computational thinking “require the integration of procedural knowledge with concep-
tual knowledge” (Baroody et al., p. 121). We will present examples of our students
successfully and flexibly applying computational thinking to solve the problem we
posed in a variety of creative and reflective ways.

Literature Review

The early literature on linear algebra tends to emphasize identification and diagnosis of
student errors and deficiencies. Hillel (2000) and Sierpinska (2000) highlight students’
inability to utilize and flexibly coordinate the three modes of thinking. Dorier and
Sierpinska (2001) also point out students’ unfamiliarity with axiomatic frameworks and
the need to think in terms of formal definitions and general properties. Maracci (2008)
studied student work on a challenging problem about the intersection of subspaces of a
vector space of dimension at least 5. He suggested that their difficulties reflect an
insufficiently general “paradigmatic model” of subspace limited to the span of a
selected subset of given basis vectors, like the coordinate subspaces xi=0 of Rn. He
also pointed out the need to view a linear combination both as a process and as an
object. Stewart and Thomas (2010) frame their work in terms of APOS theory and
Tall’s three worlds of mathematics (embodied, symbolic, and formal) which they
compare to Hillel’s three modes of description. They point out that students are often
not given time and opportunities to develop links between the three worlds, and that
their procedural knowledge is not deep in the above sense: “students who thought that
they should row reduce a matrix often did not know why, or what to do with
the result” (p. 186).

More recent work presents a more optimistic picture of student understanding in
linear algebra. Several studies have explored sociocultural aspects of student learning,
and proposed new instructional approaches to enrich students’ concept images in linear
algebra. Wawro (2014) documented the evolution of student argumentation, at the level
of the classroom community, concerning the Invertible Matrix Theorem over the course
of a semester. This provides insight as to how students use and modify their
understanding of key concepts like span and independence as they make connections
between the many criteria for a matrix to be invertible. Wawro et al. (2012) described
the implementation of an instructional sequence in the spirit of Realistic Mathematics
Education to build rich concept images for span and independence, in which vectors are
identified with modes of travel through space. They showed that students continue to
draw on these concrete images later as they work on more abstract tasks. Possani et al.
(2010) similarly used a realistic traffic modeling task to generate concept images for
systems of linear equations and their solution methods.
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Student problem-solving has also been examined in the framework of Sierpinska’s
three modes of thinking. Dogan-Dunlap (2010) coded students’ different approaches to
determining whether given sets of vectors were linearly independent and categorized
these within Sierpinska’s three modes of thinking. Students’ use of geometric thinking
was of most interest inasmuch as they were provided with software generating visual
representations of the vectors in question. Celik (2015) similarly coded approaches to a
more abstract task asking whether the (in)dependence of a set of three unspecified
vectors implies the (in)dependence of the new set obtained by deleting one vector, or by
adding another. This latter task has some relation to our task (see below) of extending a
given set of vectors to a basis. Both of these authors found that arithmetic
(computational) thinking predominated, which is consistent with our finding here.

Materials and Methods

The students in our study were enrolled in an Honors Linear Algebra course in their
first year at a large university in the southwestern United States. The course forms the
first quarter of a three-quarter Honors Calculus sequence in which linear algebra
provides the conceptual basis for treating multivariable calculus in any number of
dimensions. Completion of Advanced Placement (AP) calculus in high school, and
obtaining the highest possible score of 5 on the AP calculus BC examination, are
prerequisites for the course. The instructor was not an author of this paper, although we
did observe his class on a few occasions and asked him some questions about the
course content. One of us has taught the course in previous years, including the year of
the pilot study mentioned below. Both the textbook (Hubbard and Hubbard 2009) and
the instructor of this iteration of the course take a fairly computational approach to
linear algebra, building much of the subject around the key idea of finding solutions to
linear systems.

Eight students (of 34 enrolled) responded to our request for volunteers to participate
in a clinical interview (Ginsburg 1997); all of these were accepted. The eight students’
course grades ranged from A though C. Although all volunteers were male, this was not
unrepresentative of the class, which included only a few female students. Students were
interviewed individually; the interviews lasted about one hour and took place at the end
of the course, when essentially all course material had been covered.

The interview revolved around the following task, termed the “Michelle Problem:”

Michelle would like to create a basis for R4. She has already listed two vectors v
and w that she would like to include in her basis, and wants to add more vectors
to her list until she obtains a basis. What instructions would you give her on how
to accomplish this?

We had included this problem as one among many interview questions in an earlier
pilot project conducted near the end of a previous year’s iteration of the same honors
linear algebra course (Wawro et al. 2011). Based on the responses at that time, we
determined that the task has the potential to elicit all three modes of thinking:
computational, geometric, and abstract. Although some textbooks do prove that a
linearly independent set of vectors can always be extended to a basis, this was not
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covered in the course the students took, and thus the problem was novel to them. The
framing in R4 rather than R3 is intended to discourage an immediate appeal to visual
geometric intuition, although geometric thinking is still applicable. Not providing
numerical components for the “given” vectors may facilitate an abstract approach,
and by asking for “instructions” for Michelle we hope that students will reflect on their
methods and perhaps present them in algorithmic form. The semistructured interviews
were conducted by one of the authors, joined by another colleague on some occasions.

Most of the eight students did not make much progress on the problem in the very
general way in which it was initially presented, with generic vectors v and w. When
they appeared “stuck” we asked them to test, or continue to develop, their ideas using
the specific vectors v=[1 2 3 4] and w=[0 -1 4 2]. We asked a number of follow-up
questions to probe students’ intuition and solution procedures, whether students could
formulate their solution procedure in an algorithmic way, and whether they
could justify their procedure. More details of the interview protocol are pro-
vided in Appendix 1.

The interviews were videotaped and transcribed, and students’ written work pro-
duced during the interviews was retained. These recordings, transcripts, and written
documents formed the corpus of data analyzed in this study. Using grounded theory
(Strauss and Corbin 1994), we coded students’ utterances as instances of abstract,
computational, or geometric thinking, referring to written work for confirmatory
evidence, and documented the ways in which students used each mode of thinking.
To code students’ utterances, we attended to vocabulary indicative of specific modes;
for example, we usually coded utterances including “plane” and “perpendicular” as
instances of geometric thinking, whereas we usually coded utterances including “pivot”
and “row reduction” as instances of computational thinking. Some terms, especially
“orthogonal”, are meaningful in any mode, and we used context to resolve such
ambiguity. As an example of the use of context, two students in our pilot study used
the term “perpendicular” in the context of taking the cross product of two vectors or of
the Gram-Schmidt process; based on the context, we could not conclude that they were
thinking geometrically, since it was just as likely that they were thinking about an
algorithm. References to the components of vectors, or the entries of matrices, were
usually taken to indicate the computational mode. We coded statements of theorems or
properties in coordinate-free language as instances of abstract thinking. We also
attended to notations, procedures, images, or metaphors students used. In particular,
our students often explicitly carried out the steps of an algorithm such as row reduction,
or explicitly reasoned about those steps; this was one of our primary indications that
they were using the computational mode of thinking. Similarly, reasoning based on
visual images or Euclidean geometry provided evidence of geometric thinking.

Results

The students in our interviews were largely successful in solving this task; all but one of
the eight students developed a solution procedure. The most frequently used solution
method was some variant on the guess-and-check method; however, students usually
developed strategies for producing guesses that they thought were more likely to
succeed. A summary of solution methods and the number of students who used each
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is presented in Appendix 2. Throughout this section, we will capitalize the name of
each mode of thinking to more clearly mark them.

Most of our results document students using Computational thinking in ways we
found surprisingly effective. As a contrast to those results, and to exemplify our coding,
we begin by documenting some productive ways students used Abstract and Geometric
thinking. Most of the students began with the Abstract definition of basis before
shifting into another mode of thinking. For instance, Carl’s 1 initial response was,
“She would just start by finding one vector that was linearly independent, that could
not be made as a combination of v and w, and once she found that vector, she would
have to find another one that was not a linear combination of the other three.” This was
the only consistent use of Abstract thinking across the students in our study. Once they
were given specific numerical vectors, students tended to quickly shift into Computa-
tional thinking.

We had anticipated that the notion of orthogonality would be most likely to lead
students to think Geometrically, for example recommending that Michelle choose
vectors orthogonal to those she already has. To our surprise, it was an intuitive idea
of probability, or “measure zero”, that led one student in this direction. For instance,
when Bob was asked how many bases meet Michelle’s requirements, he said:

Bob: She would just pick a third vector that’s not in the same plane as the other
ones. Which, if you’re talking about comparing infinities, we’re talking about a
little infinity for just that plane, versus the huge infinity that’s the rest of R3. So in
R4 would be the same; there’s a little three-dimensional space, and that the rest of
R4 is huge, that you can choose from.

Here, Bob attacked the problem Geometrically, by visualizing the relative sizes of
R3 and R4. He had previously made similar comments about the odds that random
guessing would produce a suitable basis:

Bob: Well, it’s comparing two infinities, but like. If it’s R3, if they’re linearly
dependent then they only form like a plane in R3. And there’s just one plane out
of the infinitely many other planes that are in R3. Basically, it’s the odds of the
three points [sic; vectors is meant] all being in the same plane in R3, which R3 is
just like, it’s three-dimensional, and the odds that they’re all just in a two-
dimensional slice of it is much lower. I mean, yeah, I guess you can’t come up
with odds, because they’re infinities, but maybe like 1% or something. [laughs]
Probably less than that.

As discussed earlier, the occurrence of the word “plane” is a key indicator of
Geometric thinking; this was the first time it appeared in Bob’s interview.

Alan provides another example of Geometric thinking powering intuition. When
asked to describe orthogonality, he uses the Abstract mode to provide a “technical
definition,” then describes his intuition in more Geometric terms with reference to
“right angles:”

1 All student names are pseudonyms.
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Alan: I usually think about it as being perpendicular, but I think the technical
definition is more that the dot product is zero. But I like thinking about it as the
directions in R3, just like your x and your y and your z pretty much. And then in
Rn, you just have n directions… they’re sort of at right angles. I don’t know how
to think about that in Rn, but that’s what I think about; I just think about R3 and
use that as a basis for my thinking about Rn.

In contrast to the pilot study, where student thinking was largely balanced between
all three modes of thinking, we noted a preponderance of Computational thinking in the
present study; indeed, two students provided no evidence of Geometric thinking at all.
As a crude indication, although the word “orthogonal” was used multiple times by each
student, the specifically Geometric word “perpendicular” was used by only two of the
eight students, and the Geometric word “plane” was used by four of the eight. In
contrast, five of the eight students in the pilot study provided evidence of Geometric
thinking in response to the Michelle question. This surprising (in view of the pilot
study) preponderance of Computational thinking is what led us to expand our initial list
of research questions to include a more focused question examining students’
use of Computational thinking. Our data suggest that students using Computa-
tional thinking can generate strategies, formulate justifications, reveal tacit
assumptions, and provide several different ways to frame a solution process.
We present vignettes of two students who exhibit some of these surprising and
productive ways of using Computational thinking. Through these vignettes, we
illustrate some of the affordances and pitfalls of Computational thinking, which
we summarize at the end of this section.

Bob: Strategy Generation and Computational Justification

To prompt students to justify their solutions, we included in our protocol the question,
“Michelle is skeptical that your solution will always work. How would you convince
her?” We had anticipated that this question would prompt Abstract thinking, as this is
the language commonly used in theorems and proofs. However, we found that several
students were able to produce largely valid justifications using Computational thinking
alone. Additionally, several students’ Computational thinking inspired the creation of
strategies for choosing vectors. The first vignette, featuring a student we call Bob,
exemplifies both of these phenomena.

Bob used what we call the Missing Pivots strategy, which he came to
formalize as follows: “Form an augmented 4x2 matrix with v and w and row
reduce to echelon form. From there, choose two new vectors so that the
nonpivotal rows have a nonzero number, and all other numbers in the vector
are zero.” In particular, Bob used elementary basis vectors to supply the
missing pivots.

Recall that, when a matrix is in reduced row echelon form, the leftmost nonzero
entry of any row must be 1, by definition. In the textbook used for this course, and thus
in the classroom discourse, these entries are called “pivotal 1s” or “pivots” (some texts
call them “leading 1s”). Accordingly, the rows or columns in which the pivotal 1s occur
are called pivotal rows or columns. The pivotal columns of the reduced row echelon
formMre of a matrixM correspond to linearly independent columns ofM. For example,
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if columns 1, 3, and 4 of Mre are pivotal, then columns 1, 3, and 4 of M are linearly
independent. In the context of the Michelle problem, the full set of column vectors ofM
is independent if all columns are pivotal. Bob proposed augmenting the 4x2 matrixMre

with two additional columns so that each column (and row) in the resulting 4x4 matrix
is pivotal.

Bob’s procedure was interesting to us in its own right for its sophistication
and novelty; this was not one of the methods we had anticipated students
would use. However, Bob’s development of this procedure was also noteworthy.
He first stated that “if you form a 4x4 matrix with [the vectors], it will row
reduce to the identity in R4. So, you need to choose vectors that are likely to
row reduce to pivotal columns.” He suggested that “the odds are really good”
that pure guess and check will accomplish this, and that including zeroes in the
additional vectors will be helpful: “she could include zeroes to make it easier,
zeroes being a way to easily show that there’s no way you can write it as a
combination of the other ones.” Specifically, he proposed adding two vectors of
the form [0 0 # #] and [0 0 0 #], and successfully checked that this procedure
works in a specific numerical example. This solution strategy is reflective of a
rich conceptual understanding of the relationship between basis vectors and
pivot columns, which Bob accessed here through reasoning Computationally
about the row reduction process. Thus, Bob provides us with an example of
Computational reasoning as “integration of procedural knowledge with
conceptual knowledge” (Baroody et al. 2007, p. 121).

In the course of formalizing this method for Michelle, it emerged that he
was tacitly assuming that the first two columns v and w of the matrix reduce to
the standard basis vectors e1 and e2. When the interviewer questioned this
assumption, suggesting a counterexample v=e1 and w=e3, Bob realized that
he needed to use the first two columns to ascertain which pivots are missing
and must be supplied by the two additional vectors. Thus, the Missing Pivots
strategy emerged as a refinement of simple guess and check methods motivated
by concrete counterexamples to an insufficiently general tacit assumption. His
construction of the procedure could be described as reverse-engineering the
check: by using Computational reasoning to think about the test his vectors
must pass, he was able to engineer vectors that are guaranteed to pass it.
Therefore, an affordance of Computational reasoning is the possibility of testing
and refining methods and assumptions against well-chosen examples and
counterexamples.

Next, the interviewers asked him a question intended to elicit justification: “Michelle
is skeptical that your method will work; how would you convince her?” Bob’s
justification was entirely Computational:

Bob: Well, by the definition of linear independence, their matrix has to
row-reduce to the identity. All the columns will be pivotal. So, by using
these facts about linear independence and pivotal columns, this procedure
is a way to find two more columns that will be pivotal columns inde-
pendent of the other ones already found. With the two vectors she
already has, she has two pivotal columns here, and they both represent
pivotal ones. It’s just a way to find the other two columns that won’t
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form the same pivotal row as another one, so that they’ll all be
independent.

We note the presence of strongly Computational language such as “row-reduce” and
“procedure.” Additionally, we argue that the notion of pivots on which this argument
relies is so closely linked to the row reduction algorithm that it is a de facto sign of
Computational thinking.

This technique of justification by analysis of an algorithm is a particularly valuable
way of constructing formal justifications. Many proofs in linear algebra proceed in a
similar fashion; for instance, the usual proof that more than n vectors in Rn cannot be
linearly independent proceeds by forming a matrix whose columns are these vectors,
row reducing, and arguing that the shape of the resulting echelon form implies that one
vector is a linear combination of the others. The fact that students are capable
of producing such justifications, as evidenced by Bob and others in our study,
is perhaps an argument for teachers to highlight this method when discussing
proof techniques.

It is worth noting that Bob’s justification falls slightly short of being a fully correct
proof. In particular, say that the completed basis consists of the given vectors v and w
and the additional vectors x and y. The vectors supplementing the row-reduced
forms of v and w are technically the row-reduced forms of x and y, and should
have the inverse row operations applied to them to yield the original x and y.
In Bob’s case, where the additional vectors are elementary basis vectors, the
particular inverse row operations that would be applied would leave the addi-
tional vectors unchanged, but to be called a fully correct proof, his argument
should have addressed this complication. Our data do not provide clear evi-
dence of whether he was aware of this issue. In any event, the Computational
justification Bob produced was correct as far as it went, and was most of the
way to a complete proof.

Greg: Numerical Examples and Framing

The work of a student called Greg illustrates several more facets of students’
productive Computational thinking. Here we first discuss Greg’s solution pro-
cedure with minimal editorial comment, then offer two possible and related
explanations of his actions.

To orient the reader, we briefly discuss the mathematics underlying what we called
the Unknown Columns strategy, illustrated by Greg in Fig. 1. This strategy proceeds as
follows: augment v and w together with vectors composed entirely of variables, and
row reduce until the first two columns are e1 and e2. At this point, the third and fourth
columns are partially row reduced. To continue the row reduction process from here,
one would need to divide the third column by the diagonal entry; thus, for x to be
linearly independent of v and w, it suffices that the diagonal entry be nonzero. This puts
a constraint on the components of the original vector x; a similar constraint on the
values of the original vector y emerges from continuing the row reduction
process further.

As stated above, Greg used this Unknown Columns strategy: he augmented v and w
with vectors x and y composed entirely of variables (see Fig. 1), and performed row
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operations on the resulting 4x4 matrix until the first two columns were reduced to e1
and e2. He obtained the following matrix:

He then said, “These two [the diagonal entries] should be 1, and those [the off-
diagonal entries] should be zeroes… because for these columns to be linearly indepen-
dent, it would row-reduce to the identity matrix.” This reasoning gave him the
following four equations for the third column x, and similar equations for the
fourth column y:

x1 ¼ 0
2x1−x2 ¼ 0
x3−11x1 þ 4x2 ¼ 1
x4−8x1 þ 2x2 ¼ 0

(These equations are overly restrictive, in that they are sufficient but not necessary
for the third column to be linearly independent of the first two. In particular, the only
necessary condition is that x3 – 11x1+4x2 is nonzero.)

The interviewers were interested to see how far he could push this line of reasoning,
and asked him, “Can you give numerical vectors that satisfy these equations that you’ve
got?” He obliged, and found that this system of equations uniquely determines the
vector [0 0 1 0]; similarly, he concluded that his parallel set of equations for the fourth
column y uniquely determines the vector [0 0 0 1]. (This is the precise sense in which
the equations Greg wrote are overly restrictive; they uniquely determine e3 and e4,
which are valid solutions to this problem, but not the only ones.) This appeared to
violate his expectations, inasmuch as he asked, “Is there a way to take this back to the
non-row-reduced form?” He thus seemed to believe that [0 0 1 0] was the row-

Fig. 1 Greg’s unknown columns matrix, initial and row-reduced
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reduced version of the original x vector, and was unsure how to recover the
original vector. He also said he was sure that this row-reduced version of x,
denoted xr, is independent of vr and wr, but perhaps not independent of v and
w themselves; further, he was sure that x (the original, “non-row-reduced”
version) would be independent of v and w.

Later in the interview, the interviewers asked Greg to reflect on how he
would validate a proposed third vector, and gave him a numerical example, [1
-1 0 0]. He augmented v and w with this vector and proceeded to row-reduce
until his first two columns were e1 and e2. At this point, his third row was [0
0 | -15] (see Fig. 2 below). He seemed unsure how to interpret this result,
saying, “I’m actually kinda confused about what this tells me. Um… Did I
make a mistake?”

Once the interviewers assured him that he had not made a computational error, he
reasoned further:

Greg: Well, actually, if I continue row-reducing this, then I would get a 1 here [in
place of the -15 in the final column], and then that would make it unsolvable. …
And then, that would mean that this can’t be a linear combination of these two. So
then, it’s not in the span.

Int: And is that good or bad, for purposes of this problem?

Greg: That’s good. So then, this could be an additional vector for a basis.

Int: And just what about your answer says that?

Greg: If I continue row-reducing this, which is something that I also
blanked out on, then I would get a 1 in the final column, and that states
that 0 times whatever plus 0 times whatever, so on, equals 1, which is not
true. So searching for solutions is what this is, so therefore there are no
solutions.

Next, the interviewers asked Greg to reflect on what this example would mean for
his original solution process (i.e., his Unknown Columns method). He realized that he
had imposed too many constraints on the variables:

Greg: I should have known that if this thing that ended up in the x3 spot [i.e., the
diagonal entry], if this was equal to 1, then there’d be no solution. So this is what
I want to satisfy. … Really, that’s the only important thing, basically. This stuff

Fig. 2 Greg’s work on validating a proposed third vector
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[i.e., the constraints on the non-diagonal entries] is not important. It’s just this
[constraint on the diagonal entry].

Int: What do you mean it’s just that that’s important?

Greg: This is the only thing that would determine whether or not my new column
would be in the span. … And actually it’s not just “equal to 1,” it’s “not equal to
zero.” So it can be any number.

Greg then replaced his previous conditions with the new condition, depicted
in Fig. 3.

It is visible in this Figure that Greg first wrote “=1” but then replaced this with “≠ 0”
(thus replacing his original overly-restrictive condition with the correct necessary
condition discussed earlier). He then chose numbers for the xi’s that satisfied the given
constraint, and seemed much more satisfied with this solution than with his previous
solution.

Now that we have recounted Greg’s story, we propose two related explanations for
his “a-ha moment” and subsequent correction of his strategy. First, the numerical
example may have shown Greg that he was not done with his row reduction process.
When row-reducing his matrix, he stopped as soon as the first two columns were in the
form he wanted, and seemed to believe that the matrix was then in reduced row echelon
form and should thus be equal to the identity matrix; note, for instance, that he obtains
his initial equations by setting the third column of his matrix equal to [0 0 1 0], the third
column of the identity matrix. He did not seem to realize that there was more work he
needed to do to reach this point (i.e., dividing the third row by the diagonal entry to
create a pivotal 1, etc.); this work may have been obscured by the algebraic complexity
of his approach. In the numerical example, he obtained [1 3 -15 10] as his third column
at the same point in the row reduction process, which seems to have helped him realize
that the third column of his Unknown Columns matrix need not be equal to [0 0 1 0],
allowing him to relax the constraints on the variables accordingly. It thus appears that
numerical examples can illuminate what purely algebraic manipulations can obscure;
however, both of these are examples of Computational thinking, since they both
involve reasoning about the row reduction process. It is thus evident that Computa-
tional thinking can take many forms, and that one form can be used to help make sense
of another. It is also interesting that both Greg’s error (not realizing that he was not done
with the row reduction process) and its resolution (by way of examining a specific
numerical example) came from his use of Computational reasoning.

Additionally, the algebraic complexity of Greg’s work may have hindered his
thinking in another way. As shown by his desire to find the “non-row-reduced form”
of his initial solution, he seemed to have lost track of the meaning of the variables he
introduced; by definition, they are the entries in the original matrix, not its reduced
form, and he had already undone the row reduction process by solving the equations he

Fig. 3 Greg’s constraint
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had accumulated in the third and fourth columns. Again, it appears that the numerical
example helped him realize what his variables had originally meant.

Second, once Greg realized that he was not done, his thinking shifted from solving a
system of equations (induced by setting his third column equal to [0 0 1 0]) to finding
and satisfying constraints (induced by saying that the diagonal entry should be nonze-
ro). This is an example of a shift in what we call a framing; that is, a student’s implicit
mental expectation for how a computation should go. Greg shifted from thinking of
equations, where the expected action is to solve and the expected outcome is a specific
solution, to thinking of constraints, in this case inequalities, where the expected action
is to satisfy and the expected outcome is a range of possible solutions. Both
framings are useful at times, but for Greg, the framing as equation was less
appropriate for the situation and seemed to cause him difficulty. The framing as
equation led him to the (apparently unsatisfactory) conclusion that adding e3
and e4 should be the only solution to the problem; while this is a correct
solution, it is not the most general form. By imposing unnecessarily strong
constraints, he obtained an overly restricted answer; by shifting his framing and
relaxing the constraint, he obtained a much more general form.

Our use of the construct framing is broadly consistent with its prior use in education
research and other fields of social science. Hammer et al. (2005) define a frame (p. 98)
as “a set of expectations an individual has about the situation in which she finds herself
that affect what she notices and how she thinks to act.” In addition to frames for social
situations, these authors mention epistemological frames that describe the methods an
individual expects to use to construct or justify knowledge. We suggest that students
have expectations for the sequence of steps a computation will follow and the outcomes
of at least some of these steps. This notion is linked to those of scripts, schemas,
monitoring, and metacognition (see, e.g., Polya 1945; Davis 1984; Schoenfeld 1992;
Asiala et al. 1996). The frame may include actions to be taken if the expectations are
not met, but a sufficient deviation from expectations may trigger a shift of
framing instead.

The Unknown Columns solution method was attempted by three other
students, but not completed due to its algebraic complexity. One of these
three students, Alan, exhibited behavior that we interpret as another shift in
framing. In the course of row-reducing the matrix, he freely divided rows by
algebraic expressions that appeared in their pivotal locations, so as to obtain
pivotal 1s there. He was not initially aware of the fact that this amounted to
assuming the pivotal entries to be nonzero and thus the matrix to be invert-
ible. When he arrived at the identity matrix as the row-reduced form, he was
surprised. His framing, or expectation, perhaps based on experience with
similar problems when a basis for a subspace was to be found, was that there
would be free variables remaining at the end of the reduction, which could be
chosen so as to obtain the desired basis. That is, he expected the constraints
on the possible additional vectors to appear at the end of the computation, in
terms of the free variables, rather than along the way, in the requirements that
certain entries be nonzero. His surprise caused him to reorient his framing and
focus his attention on the expressions he had divided by. He was
experimenting with setting them equal to specific nonzero values when the
interviewer moved on due to time constraints.
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Summary of Affordances and Pitfalls of Computational Thinking

We now move on from the close examination of these two vignettes to present some
more general results about how our students used Computational thinking. Rather than
comprehensively examine each student’s uses of Computational thinking, we here
present as a more general summary a list of the affordances and pitfalls of Computa-
tional thinking we identified in our students’ thinking, and provide brief examples of
each. We noted the following affordances of Computational thinking:

1. Working out an example to provide a general orientation to an unfamiliar problem:
before being presented with specific vectors for v and w, Alan invented his own
numerical examples to see how the other two vectors might be related.

2. Searching for a known algorithm that applies to the situation, or evaluating the
applicability of a known algorithm: several students thought about using the Gram-
Schmidt process, but eventually discarded this idea when they realized it required a
different set of inputs than the situation afforded.

3. Recognizing when systems of equations have no solution, a unique solution, or
infinitely many solutions: Greg reasoned that his [0 0 | 15] row indicates that there
is no solution, so the vector is not in the span of v and w; another student, Hal, said
that there are infinitely many bases that satisfy Michelle’s requirements because
there is not just one solution to a certain equation.

4. Clarifying a more general approach with a numerical example: Greg was confused
by his Unknown Columns method until he worked through the validation of [1 -1 0
0] as a proposed third vector.

5. Making choices to simplify computations or reasoning: Bob proposed the strategic
positioning of zeroes to “make it easier” to show that the guessed vectors are
independent of the original vectors.

Naturally, Computational thinking was not a panacea; some students encountered
difficulties that emerged directly from their use of Computational thinking. Here are
some of the pitfalls of this way of thinking that we observed:

1. Thinking that coefficients in linear combinations must be integers: when checking
whether or not a third vector was linearly independent of two others, Alan only
checked integer combinations of the first two until challenged by the interviewer.
Students’ default concept image of a “number” is often a (positive) integer, perhaps
based on experience with oversimplified textbook examples (the “natural number
bias;” see, e.g., Christou and Vosniadou 2012).

2. Dividing by variable expressions without imposing the constraint that they must be
nonzero: during the row reduction process in the Unknown Columns solution
method, Alan divided a row by the expression (x3–3x1) + 4(x2−2x1) which
appeared in the diagonal entry. He then continued row reducing until he obtained
the identity matrix, and then became confused that he had no constraints on his
variables, neglecting the fact that dividing by variable expressions would have
introduced constraints earlier.

3. Becoming overwhelmed by sheer algebraic complexity, e.g., many variables: Carl
attempted the Unknown Columns method (which introduces eight variables
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representing the entries of these columns) but did not persist to a solution he
regarded as satisfactory because dividing by the diagonal entry would lead to
overly complicated entries elsewhere.

4. Circular substitutions leading to vacuous statements: when attempting the orthog-
onality approach described below, Carl made circular substitutions that led him to
the equation 0 = 0.

5. Narrow focus on algorithmic procedures: several students thought that Gram-
Schmidt was the only way to produce orthogonal vectors.

6. Uncertainty about meaning of variables, leading to difficulty in interpreting results:
as described above, Greg lost track of the meaning of his variables, leading him to
be confused about whether or not his result was row-reduced.

7. Failing to realize when an algorithm has (not) been run to its proper completion:
Hal stopped row reducing before obtaining the identity matrix, leading him to
mistakenly conclude that the two vectors he chose formed a linearly dependent set
with the first two.

8. Narrowly framing a computation in terms of solving an equation, leading to an
expectation that the solution will be unique. We interpreted Greg’s thinking as a
shift away from this narrow framing. Other sorts of algorithms may be subject to
this pitfall as well; for example, the standard algorithm for computing a basis for
the null space (say) of a matrix may foster the belief that this is the only basis for
that space.

Many of these dangers will likely be familiar to any reader acquainted with students’
thinking in linear algebra.

Responses to the Suggested Orthogonality Approach

Contrary to our expectations based on the pilot study, no student spontaneously
suggested finding vectors orthogonal to both v and w. When the interviewer proposed
this approach (as having been mentioned by “another student”) most students agreed
that it would work and translated it into some set of equations but generally could not
carry it through to a complete solution. They also did not shift to Geometric thinking
for guidance, but remained in the Computational or Abstract mode, and this likely
contributed to their difficulties.

One student wrote the equations stating that the new vectors should have zero dot
products with the original pair, e.g., v x=0, but tried to manipulate them in that Abstract
form as opposed to Computationally introducing the components of the vectors as
variables. Two were concerned that the initial vectors v and w were not orthogonal to
each other, perhaps thinking that orthogonality is a transitive property. Geometric
thinking would clarify that the new vectors need to be orthogonal to the plane of v
and w, the particular basis in this plane being irrelevant. An indicator of the absence of
Geometric thinking is that all students used the term orthogonal rather than perpen-
dicular when reasoning about this proposed solution process. Students who formulated
the equations in components could make further progress, sometimes obtaining a
partial solution, but did not obtain a general solution or clearly understand how many
solutions there would be. Some did not write the complete set of orthogonality
requirements, and one unnecessarily required the two new vectors to be orthogonal
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to each other (making his system of equations nonlinear). In this approach to the
problem, purely Computational thinking in the absence of coordination with the
Geometric mode was insufficient for most students, consistent with our original
hypothesis.

Discussion

Some authors, and some instructors, may view Computational thinking as mathemat-
ically unsophisticated, a form of procedural knowledge in the narrow sense (Hiebert
and Lefevre 1986). Our data show that this is not necessarily the case; the students in
our study were able to use Computational thinking in a variety of sophisticated,
productive, and reflective ways, including generating Computational justifications for
claims and making strategic choices to limit the complexity of their calculations. Our
work thus joins the body of literature presenting an optimistic picture of student
reasoning in linear algebra (e.g., Possani et al. 2010; Wawro 2014; Wawro et al.
2012), and provides evidence for the utility of Computational reasoning. We also hope
to have provided evidence for the analytic usefulness of including reasoning processes
within the construct of Computational thinking.

The fact that students in our study largely remained in the Computational mode of
thinking throughout the interviews could be viewed as confirmation of Hillel’s and
Sierpinska’s observations that they have difficulty switching flexibly between modes
even when this would be helpful. However, the question remains, why did these
students use Computational thinking so much more than those in our pilot study
(Wawro et al. 2011)? Both groups of students took the same course, with the same
textbook, and were interviewed at the end of the class. While our data provide no
definitive answers, we can offer some conjectures. First, the class in the present study
was taught with a heavy emphasis on computations. Many of the central problems of
linear algebra were framed in terms of finding solutions to systems of equations; this is
also the approach taken by the textbook (Hubbard and Hubbard 2009). In contrast, the
students in the pilot study were taught by a different instructor who takes a more
Geometric approach to the subject.

Second, the structure of the interview may have privileged Computational ways of
thinking. To minimize feelings of frustration and to smooth the way for students to
produce as much interesting mathematics as possible, we gave students the concrete
numerical vectors fairly early on in the interview, which may have led students to more
Computational thinking than their natural inclination. We could well have waited until
later to provide the concrete vectors, and pushed harder for non-numeric solutions to
the problem.

It is also possible that our students have not yet developed the ability to use
Geometric thinking in higher-dimensional contexts. Framing the Michelle problem in
R4 may have precluded this mode of thinking. We could have explored this possibility
by asking them to re-situate the problem in R3.

We had hoped to investigate students’ use of multiple modes of thinking, and the
nature of the coordination or interaction between them. What are the “boundaries”
between the modes and how should thinking near these boundaries be characterized?
What can prompt students to switch modes, and how do insights obtained in one mode
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affect thinking in another? Do difficulties in coordinating representations between
different modes outweigh the benefits obtained from flexibility? These questions
cannot be answered with the data we have reported in this paper, and thus remain for
future work. The interview protocol may need to be redesigned to provide more
opportunities for students to switch modes of thinking, or include questions that
actually prompt such a switch.

We may recommend a few pedagogical implications of our work. First, the success
of students in constructing Computational justifications by analysis of algorithm (and
the frequent presentation of such proofs in linear algebra textbooks) may imply that
instructors should foreground this technique in classes with a proof component.
Textbooks normally justify each new algorithm with a proof that it does compute what
it claims to compute, and the structure of such proofs could be emphasized. Other uses
of the technique, such as the proof by row-reduction that a linearly independent set in
Rn contains at most n vectors, could be highlighted. Second, our results suggest that
instructors may wish to adopt a more positive orientation toward computational and
procedural thinking in general, notice when their students are using it productively, and
help them grow more expert-like in the ways they use it. In particular, instructors may
be more explicit about the notions of framing and metacognition. Students could be
encouraged to anticipate the output of an algorithm they employ, monitor its steps as it
progresses to check consistency with expectations, and consider an Abstract or Geo-
metric viewpoint for making sense of unexpected results.

Finally, our data imply that Computational reasoning in linear algebra is an oppor-
tunity for students to develop and utilize deep procedural knowledge (Baroody et al.
2007). While not all Computational reasoning is particularly deep, and while our
sample is composed of students in a high-achieving population and is therefore not
representative of the general population of linear algebra students, our results are an
existence proof. Our students’ use of procedural elements such as framing and reverse-
engineering in the service of activities such as strategy generation, justification, and
troubleshooting is evidence that linear algebra students can, perhaps with appropriate
scaffolding from their instructors, use Computational reasoning in ways that blend
procedural and conceptual knowledge. Our data contain many examples of what the
sophisticated blending of procedural and conceptual knowledge might look like. We
hope that other researchers and practitioners will join us in recognizing and researching
productive ways students might develop and use deep procedural knowledge.

Appendix 1: Interview Protocol

The task is posed in the relatively abstract form: Michelle would like to create a basis
for R4. She has already listed two vectors v and w that she would like to include in her
basis, and wants to add more vectors to her list until she obtains a basis. What
instructions would you give her on how to accomplish this? Students are provided
with this task in written form, and scratch paper to use.

After students have suggested a solution method, or if they are having difficulty
producing one: Suppose the specific vectors v and wMichelle has chosen are [1 2 3 4]
and [0 -1 4 2]. Can you show how your procedure would work with these vectors?
Would you like to revise your procedure after trying it with these vectors?
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Questions to elicit formalization and justification: Michelle is only available via
email; how would you write down your procedure to communicate it to her? Suppose
Michelle would like to find another basis containing v and w; can she use your method
to find another? Michelle is skeptical that your method will work; how would you
convince her?

Questions for students who propose guess-and-check methods: Suppose you are a
very unlucky guesser; is there a strategy for making better guesses? How does row
reduction tell you that the vectors form a basis? Suppose Michelle wants to guess
additional vectors one at a time; can she check the third vector before guessing
the next?

Suggesting an alternate method, potentially eliciting geometric thinking: Another
student suggested that since orthogonal vectors are independent, Michelle should pick
vectors orthogonal to those she already has. What do you think of this idea?

Additional questions: How many bases are there that meet Michelle’s requirements?
Can you describe them? How many dimensions of freedom are there in choosing such
bases? Can Michelle begin with any two vectors v and w, or does she need to be careful
in choosing them?

Within the above framework, the interviewer was free to ask additional questions
exploring students’ thinking about the methods they employed. Although it was not his
purpose to help the students solve the problem, some of the questions caused students
to reflect on difficulties they had encountered and were therefore of assistance.

Appendix 2: Solution Methods for the Michelle Problem

When we designed our study, we listed possible solution methods that we expected
students might use. These are named in boldface below, and are followed by the
additional unanticipated methods our students used. The numbers of students observed
to employ each method is given. Note that some students used multiple approaches.

1. Guess and Check (5 students). Simply guess two vectors x and y to supplement v
and w in forming a basis. Check that the set of four do form a basis, for example by
row reducing a 4x4 matrix having these vectors as columns. This method succeeds
with probability one, that is, unless the guesses are very unlucky.

2. Abstract Proof (0 students). Since the span of v and w is two-dimensional, choose
any vector x not in this span. Then choose any vector y not in the three-
dimensional span of v, w, x. This is a proof of existence of the desired basis, in
the Abstract language. To translate it into a practical algorithm, Computational
thinking is needed to specify a method for making the required choices. For
example, the span of v and w can be characterized by row reducing a 4x2 matrix
having those columns, to find a simple basis for this span. Then find by inspection
a vector that is not a linear combination of these basis vectors. Or, augment this
matrix with a third column of unknowns and row reduce to determine the condi-
tions on the unknowns for this third column not to be a linear combination of the
first two. Several students stated the Abstract definition of a basis, but did not
appear to extend this into a proof by, for example, arguing that there are vectors in
R4 outside the two-dimensional span of v and w.
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3. Orthogonality (0 students). Find all vectors orthogonal to both v and w (Geomet-
ric thinking), for example by computing the kernel of the 2x4 matrix having those
rows. Choose two independent vectors in this kernel to complete the desired basis.
This idea was suggested to students during the interview, but none used it
spontaneously. This was in contrast to the pilot study, in which many students
proposed it as their initial response.

4. Modified Linear Combination (1 student). Take some linear combination of v and
w, and alter one component of the resulting vector. This gives a vector x that is
(almost certainly) independent of v and w. Repeat with some linear combination of
v, w, and x.

5. Unknown Columns (4 students). Create a 4x4 matrix whose columns are v, w, and
two columns of unknowns representing the desired additional vectors x and y. Row
reduce to determine the conditions on the unknowns that make the four columns
independent. Choose values satisfying these conditions.

6. Missing Pivots (2 students). Row reduce the 4x2 matrix having columns
v and w, noting which rows of the reduced matrix contain pivots. Then
supply two additional columns having pivots in the complementary rows
(for example, two of the standard basis vectors would accomplish this).
The reduced columns are then independent, and by reversing the se-
quence of steps in the row reduction one obtains four independent
columns v, w, x, y forming a basis. The choice of standard basis vectors
is particularly convenient because they will often not change under the
reduction steps.
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