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Abstract

Spectral graph theory is a vast and expanding area of combinatorics. We start these notes
by introducing and motivating classical matrices associated with a graph, and then show how
to derive combinatorial properties of a graph from the eigenvalues of these matrices. We then
examine more modern results such as polynomial interlacing and high dimensional expanders.

1 Introduction

These notes are comprised from a lecture series for graduate students in combinatorics at UCSD
during the Winter 2020 Quarter. The organization of these expository notes is as follows. Each
section corresponds to a fifty minute lecture given as part of the seminar. The first set of sections
loosely deals with associating some specific matrix to a graph and then deriving combinatorial
properties from its spectrum, and the second half focus on expanders.

Throughout we use standard graph theory notation. In particular, given a graph G, we let V (G)
denote its vertex set and E(G) its edge set. We write e(G) = |E(G)|, and for (possibly non-
disjoint) sets A and B we write e(A,B) = |{uv ∈ E(G) : u ∈ A, v ∈ B}|. We let N(v) denote the
neighborhood of the vertex v and let dv denote its degree. We write u ∼ v when uv ∈ E(G).

For a matrix M , we let σ(M) denote the multi-set of eigenvalues of M , and we will often write

this as {λ(a1)
1 , . . .} to indicate that the eigenvalue λi appears with multiplicity ai. We let 1 denote

the all 1’s vector. Whenever we say that λ is the eigenvalue of some graph, we mean that λ is an
eigenvalue of MG where MG is the relevant matrix associated to G for that section.
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2 Spectral Graph Theory and the Adjacency Matrix

2.1 Combinatorial Information from Eigenvalues

Given an n-vertex graph G, we define its adjacency matrix A = AG with rows and columns indexed
by V (G) by Auv = 1 if uv ∈ E(G) and Auv = 0 otherwise. In addition to being a compact way
to define the graph G, it turns out that the adjacency matrix encodes combinatorial information
about G through its eigenvalues. We first recall the following fact from linear algebra.

Theorem 2.1. Let M be a Hermitian matrix. Then M has real eigenvalues λ1(M) ≥ · · · ≥ λn(M).
Moreover,

λ1(M) = max
x6=0

x∗Mx

x∗x
,

and any x achieving equality is an eigenvector corresponding to λ1(M). Moreover, if the entries of
M are non-negative, then this x can be chosen to have non-negative entries.

Because A is a real symmetric matrix, the theorem applies. For the rest of the section we define
λi(G) := λi(AG), and we simply write λi whenever G is understood. With this we can deduce a
number of results relating the eigenvalues of A to combinatorial properties of G.

Theorem 2.2. Let G be a graph with maximum degree ∆ and minimum degree δ. Then

δ ≤ λ1 ≤ ∆.

Proof. For the lower bound, let 1 be the all 1’s vector. Then

λ1 = max
y 6=0

y∗Ay

y∗y
≥ 1∗A1

1∗1
=

∑
dv
n
≥ δ.

For the upper bound, let x be an eigenvector of A corresponding to λ1 and let v ∈ V (G) be such
that |xv| is maximized. Then we have

|λ1xv| = |(Ax)v| = |
∑
u

Av,uxu| ≤
∑
u∼v
|xu| ≤ dv|xv| ≤ ∆|xv|.

Thus |λ1| ≤ ∆. Because all the eigenvalues of A are real and Tr(A) = 0, we must have λ1 ≥ 0,
giving the desired result.

The above proof easily generalizes to the following.

Theorem 2.3. Let G be an n-vertex graph and M a hermitian matrix such that |Mu,v| = 1 whenever
u ∼ v and Mu,v = 0 otherwise. Then

λ1(M) ≤ ∆.

We note that this theorem is not just generalization for generalization’s sake. Indeed, a special case
of Theorem 2.3 was used by Hao Huang to prove the sensitivity conjecture [14]. This illustrates
the general principle of spectral graph theory that choosing different matrices to associate to your
graph G leads to different information being captured by your eigenvalues.

We continue our exploration of combinatorial properties implied by the eigenvalues of A.

Lemma 2.4. Let G′ be a subgraph of G and λ′i = λi(AG′). Then λ′1 ≤ λ1.
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Proof. Let x be a unit eigenvector for λ′1 with non-negative entries. Then

λ′1 = x∗AG′x ≤ x∗Ax ≤ λ1.

Theorem 2.5. χ(G) ≤ λ1 + 1.

Proof. This holds when n = 1. Inductively assume the result holds up to n. Let v be a vertex of
minimum degree δ and G′ = G − x. If λ′1 = λ1(AG′), then by induction and the previous lemma
we have χ(G − x) ≤ λ′1 + 1 ≤ λ1 + 1. Thus we can color G − x in at most λ1 + 1 colors, and as
δ ≤ λ1 by Theorem 2.2, we can give x a color that is not used by any of its neighbors.

Note that this bound is often stronger than Brook’s Theorem χ(G) ≤ ∆. We also have the following
lower bound on χ(G), whose proof we omit.

Theorem 2.6. [23]

χ(G) ≥ 1− λ1

λn
.

Recall that a walk of length k is a sequence of (not necessarily distinct) vertices x1, . . . , xk+1 such
that xi ∼ xi+1 for all 1 ≤ i ≤ k. A walk is said to be closed if xk+1 = x1.

Lemma 2.7. The number of walks of length k from u to v is Aku,v.

Proof. By definition of matrix multiplication, we have

Aku,v =
∑

Auw1 · · ·Awk−1v,

where the sum ranges over all sequences w1, . . . , wk−1. The term will be 1 if this sequence defines
a walk and will be 0 otherwise.

Corollary 2.8. The number of closed walks of length k is Tr(Ak) =
∑
λki .

Corollary 2.9. e(G) =
∑
λ2
i .

Corollary 2.10. A graph G is bipartite iff σ(A) is symmetric about 0.

Proof. If G is bipartite with bipartition U ∪V and x is such that Ax = λx, then define y such that
yu = xu if u ∈ U and yu = −xu if u ∈ V . Then for u ∈ U we have

(Ay)u =
∑
v∼u

Au,vyv = −
∑
v∼u

Au,vxv = −λxu = −λyu.

The same conclusion holds if u ∈ V , so Ay = −λy. We conclude that the spectrum of A is
symmetric about 0. Conversely, if the spectrum of A is symmetric about 0, then G has 0 closed
walks of length 2k + 1 for all k. In particular, G contains no odd cycles.

Proposition 2.11. The number of distinct eigenvalues of A is larger than the diameter D of G.

Proof. By Lemma 2.7, if k ≤ D, then Ak will contain some non-zero entry which is 0 for all A` and
` < k. Thus the minimum polynomial of A must have degree at least D + 1.

Theorem 2.12. If G is d-regular then α(G) ≤ −nλnd−λn ).
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Proof. Let S be an independent set and let s = |S|/n. Let x be the vector which has xv = −s if
v /∈ S and xv = 1− s otherwise. Because the graph is d-regular and S is an independent set,

xtAx = −d|S|(1− s)s+ (dn/2− d|S|)s2 = −dns2(1− s) + dn(.5− s)s2 = −dns2/2.

Also
xtx = |S|(1− s)2 + (n− |S|)s2 = ns(1− s),

so by the Raleigh quotient we have λn ≤ −ds
2(1−s) , which implies s ≤ −λn

d−λn .

We note that there exists a generalization of this result with a somewhat clearer proof using the
Laplacian matrix. This is the specific case of a general phenomenon: for regular graphs, many
reasonable choices for MG all have “equivalent” spectrums so one can deduce information using
any of these matrices. Moreover, the answer you get at the end may suggest which MG you should
use for general graphs (e.g. d − λn is an eigenvalue of the Laplacian of a d-regular graph, so one
might suspect that this is the right way to approach the problem).

We’ve now seen a couple of combinatorial properties that follow from the eigenvalues of A, but
what about its limitations? To this end we say that two graphs G1, G2 are cospectral (with respect
to A) if λi(G1) = λi(G2) for all i.

Example 2.13. Let G1 = K2,2tK1 and G2 = K4,1. Then the eigenvalues for both of these graphs
are {−2, 0, 0, 0, 2}, so G1 and G2 are cospectral.

Corollary 2.14. From the eigenvalues of A it is impossible to determine if G is connected, contains
a C4, etc.

In general, when studying some matrix M associated to a graph, looking for cospectral graphs is a
good way to understand the limitations of a spectral theory using M . There are a number of tools
that can be used to construct cospectral graphs, or simply to verify that two graphs are cospectral.

Theorem 2.15. [19] Let T be a forest with n vertices and let ak be the number of k-element
matchings in T . Then the characteristic polynomial p(x) of AT satisfies

xn − a1x
n−2 + · · ·+ (−1)bn/2cabn/2cx

n−2bn/2c.

In particular, two forests T1 and T2 are cospectral iff they have the same number of k-matchings
for all k.

2.2 Computing Eigenvalues of Graphs

We close by showing off various techniques one can use to actually compute the spectrum of various
graphs. The simplest is to just use linear algebra.

Proposition 2.16. If Kn is the complete graph on n vertices, then σ(A) = {n− 1, (−1)(n−1)}.

Proof. Indeed, it is not difficult to see that 1 is an eigenvector corresponding to n − 1. Further,
the vectors which have a 1 in position 1, a −1 in some other position, and 0’s everywhere else are
linearly independent and correspond to an eigenvalue of −1.

In principle this method always works, but guessing the eigenvectors may not be obvious in general.
We can compute eigenvalues in a more combinatorial way by using a converse of Corollary 2.8.

5



Proposition 2.17. If G is a graph and there exist real numbers {αi}ni=1 such that G has
∑
αki

closed walks for all k, then the {αi} are a permutation of the eigenvalues of A.

One proof of this uses generating functions [24]. Here we present a more direct argument.

Proof. Let the αi be as stated, and without loss of generality assume that α1 ≥ · · · ≥ αn. By
assumption and Corollary 2.8, we have

∑
αki =

∑
λki for all k. Let ` be the number of i such that

α1 = |αi| and ε = max|αi|6=α1
|αi|/α1. Then, for all k,∑

(λi/α1)k =
∑

(αi/α1)k ≤ `+ εkn,

and similarly for even k we find
∑

(λi/α1)k ≥ `. From these inequalities it is not too difficult to
see that we must have |λi| ≤ α1 for all i, and further that equality must hold for exactly ` choices
of i. Further, if `+ is the number of i such that α1 = αi and `− = ` − `+, then for odd k one can
argue that

`+ − `− − εkn ≤
∑

(λi/αi)
k ≤ `+ − `− + εkn.

From this we conclude that there are exactly `+ choices of i with λi = α1 and `− choices with
λi = −α1. The result follows by iterating this argument.

Corollary 2.18. If Km,n is the complete bipartite graph, then we have σ(A) = {
√
mn,−

√
mn, 0(m+n−2)}.

Proof. It is not difficult to prove that the number of closed walks of length k of Km,n is 0 if k is
odd and 2(mn)k/2 otherwise, and the result follows from Proposition 2.17.

Representation theory gives another way of giving us eigenvalues of graphs.

Theorem 2.19. Let Γ be an abelian group and S ⊆ Γ a set closed under inverses. Define the
Cayley graph G = G(Γ, S) by V (G) = Γ and uv ∈ E(G) iff u− v ∈ S.
If χ : Γ → C is a character of Γ, then the vector with xa = χ(a) is an eigenvector of A with
eigenvalue 1

|S|
∑

s∈S χ(s)

We omit the proof of this result, see [25].

Corollary 2.20. If Cn is the cycle of length n, then its eigenvalues are cos(2πr/n) for all 0 ≤ r ≤
n− 1.

Proof. Cn is a Cayley graph with Γ = Z/nZ and S = {−1,+1} and has the characters χ(x) =
e2πirx/n for 0 ≤ r ≤ n− 1. Thus its eigenvalues are

1

2
e2πir/n +

1

2
e−2πir/n = cos(2πr/n).

Corollary 2.21. If Qn is the n-dimensional cube, then its eigenvalues are
(
n
i

)
with multiplicity

n− 2i for all 0 ≤ i ≤ n.

Proof. Qn is a Cayley graph with Γ = (Z/2Z)n and S = {e1, . . . , en}, where ei has a 1 in position
i and 0’s everywhere else. For each r ∈ {0, 1}n we have the character χ(x) = (−1)

∑
rixi . If we let

|r| =
∑
ri, then we have the eigenvalues

1

n

∑
χ(ei) =

1

n

∑
(−1)ri =

1

n
(−|r|+ (n− |r|)) = 1− 2|r|

n
.
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Finally, we demonstrate how eigenvalues of larger graphs can be used to find eigenvalues of smaller
graphs.

Proposition 2.22. If Pn is the path graph on n vertices, then its eigenvalues are 2 cos(πr/(n+ 1))
for all 1 ≤ r ≤ n.

Proof. Consider C2n+2 and its eigenvector x(r) = (ω, ω2, . . . , ω2n+2) with ω = eπir/(n+1), which has
eigenvalue 2 cos(πr/(n+ 1)). Note that x(−r) has the same corresponding eigenvalue, and hence so

does the vector y(r) := x(r)− x(−r). Note that y
(r)
n+1 = y

(r)
2n+2 = 0. Upon deleting these two vertices,

we are left with the disjoint union of two Pn’s and y(r) restricted to this graph is an eigenvector
with the same corresponding eigenvalue.

For more on this, and the idea of an “equitable partition,” see [10].

3 The Laplacian Matrix of a Graph

In this section, we will introduce another commonly studied matrix related to a graph known as
its Laplacian matrix L(G). Although it is directly related to the adjacency matrix A(G) and the
degree matrix ∆(G), we will give a more round about definition to motivate its definition. To this
end, we first examine the incidence matrix of a graph:

Definition 3.1. Let G = (V,E) be a graph. Then let B(G) ∈ {0, 1}V×E be defined by

(B(G))v,e = 1 ⇐⇒ v ∈ e.

For example, if V (G) = {1, 2, 3, 4} and E(G) = {13, 34, 12, 23}, then the incidence matrix is as
follows:

B(G) =


1 1 0 0
1 0 1 0
0 1 1 1
0 0 0 1


This is actually a particular case of the incidence matrices we saw last quarter in the proof of
Frankl-Wilson. We will now consider an arbitrarily orientation σ of the edges. It turns out that
what we will do will be independent of our choice of orientation.

Definition 3.2. Let G = (V,E) be a graph. Then let Dσ(G) ∈ {−1, 0, 1}V×E be defined by

(Dσ(G))v,e = 1 ⇐⇒ e = (u→ v)

(Dσ(G))v,e = −1 ⇐⇒ e = (v → u).

For example, if V (G) = {1, 2, 3, 4} and Eσ(G) = {1→ 3, 4→ 3, 1→ 2, 2→ 3}, then the incidence
matrix is as follows:

Dσ(G) =


−1 −1 0 0
1 0 −1 0
0 1 1 1
0 0 0 −1


We will consider Dσ(G)Dσ(G)T ∈ RV×V where all of the entries will be integer-valued, but we will
think of them as real-valued for spectral reasons.
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Our above example then yields that

Dσ(G)Dσ(G)T =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1

 =


2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1

−


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 and

Dσ(G)Dσ(G)T = ∆(G)−A(G).

It is not too difficult to see that this holds regardless of our orientation σ of the edges. This is most
easily seen by example and trying to understand each entry of Dσ(G)Dσ(G)T . As a result of this
invarience, we make the following definition.

Definition 3.3. Let G = (V,E) be a graph. Then, the Laplacian of G is defined as

L(G) := ∆(G)−A(G).

Lemma 3.4. Let G = (V,E) be an n-vertex graph. Then, for any x ∈ Rn,

xTL(G)x =
∑
uv∈E

(xu − xv)2

where xu is the u ∈ V coordinate of the vector x.

Proof. Take some arbitrary orientation σ and consider Dσ(G). Then

xTDσ(G)DT
σ (G)x = 〈DT

σ x,D
T
σ x〉 =

∑
uv∈E

(xu − xv)2

as the only terms which remain in the inner product correspond to edges in the graph G.

Lemma 3.4 is in some sense an l2 type result and gives many useful corollaries. We list a few below.

Corollary 3.5. L(G) is positive semi-definite. In particular, all of its eigenvalues are non-negative.

Corollary 3.6. The vector 1 is an eigenvector with eigenvalue 0.

Corollary 3.7. Let c(G) be the number of connected components in the graph G. Then

rank(L(G)) = n− c(G).

Corollary 3.8. The eigenvalues of the Laplacian λ1 ≤ · · · ≤ λn are monotone in the the sense
that if G ⊂ G′, then λi(G) ≤ λi(G′).

Definition 3.9. Let G = (V,E) be a graph. Then κ(G) is the minimum r ≥ 0 so that there exists
a set S of r-vertices such that G[V \ S] is not connected.

Corollary 3.10. λ2(L(G)) ≤ κ(G)

The second smallest eigenvalue λ2 is often referred to as the spectral gap.
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3.1 The Matrix Tree Theorem

In this subsection, we will consider the problem of determining the number of spanning tree’s that
a graph has. To this end, given a graph G = (V,E), let τ(G) denote the number of spanning trees
of G. Given a vertex u ∈ V , we let L(G)[u] denote the Laplacian matrix of G where we delete the
row and column which correspond to the vertex u.

Theorem 3.11. Let G = (V,E) be an n vertex graph with Laplacian L(G) which has eigenvalues
0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Then for any vertex u ∈ V ,

τ(G) = det(L(G)[u]) =
1

n

n∏
i=2

λi

The proof of Theorem 3.11 is by induction and by using deletion and contraction. Given a graph
G = (V,E) and an edge e ∈ E, we define deletion of an edge by G \ e = (V,E \ e) to be the graph
obtained by simply deleting the edge e. Given a graph G and an edge e ∈ E, we define G/e to
be the graph obtained by identifying the vertices u and v where e = uv into one vertex u which is
adjacent to any vertex adjacent to u or v in G. Then, as any spanning tree of G either contains e
or does not contain e,

τ(G) = τ(G \ e) + τ(G/e).

As we have that L(G) = ∆(G) − A(G), in the case where G is k-regular (and hence ∆(G) = kI)
and the adjacency matrix has eigenvalues λ1, . . . , λn, then the Laplacian matrix has eigenvalues
k − λ1, . . . , k − λn. This allows us to use many of the calculations from Section 2 to compute
eigenvalues for the Laplacian.

For the complete graph, a n − 1-regular graph, the spectrum of the Laplacian is {0, (n − 1)n−1}
and hence Theorem 3.11 yields

τ(Kn) = nn−2.

For the cube, which is n-regular, the spectrum of the Laplacian consists of the eigenvalues 2i with
multiplicity

(
n
i

)
.

4 Towards a Theoretical Foundation for Laplacian-Based Mani-
fold Methods

Most of the classical techniques in supervised learning consist of approximation of our data with
linear spaces(for example principal component analysis). As you can imagine, approximating data
linearly is not always a good approach. There is a trend in the area where instead of assuming our
data is close to a plane, it is assumed to lie on a Riemannian manifold. At first it is not entirely
obvious what the advantages of doing this are. Sure, we can all agree that our manifold might
be a more accurate description of the solution to the problem, but how does such a complicated
structure will allow us to get a concrete and easily computable solution.

It turns out that in a Riemannian manifold the heat equation allows us to see how a function
evolves locally around a point. Technically speaking, the values of the function around our point
diffuse respecting the solution to the heat equation. This means that a good understanding of
the solutions of the heat equation on our manifold, might be the key to understand evolution of
our function around a point. Now, our heat equation on a Riemannian manifold is defined in
terms of the Laplace-Beltrami operator. Then, if we want to have a discrete description of the
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solutions, these have to come from a discrete description of the heat equation and, particularly, of
the Laplace-Beltrami operator.

In order to approximate our manifold from our data cloud we build a graph G, where the edges
correspond to some weights that mimic our notion of distance in the manifold. It turns out that
for our Laplace-Beltrami operator we pick the normalized Laplacian of G. Finally, the analogue
to our diffusion process on the manifold is the approximations given by our diffusion maps. In [?],
Belkin and Niyogi show why our choice of the Laplacian of G as our Laplace-Beltrami operator is
correct: the graph Laplacian converges1 to the Laplace-Beltrami operator.

4.1 Differential Geometry

We will begin by giving the basic definitions related to differential geometry. A smooth manifold
M of dimension d is a topological space with five properties:

4.1. For every two points x, y I can separate them with two open sets; in other words, I can find
disjoint open sets Ux and Uy so that x ∈ Ux and Uy.

4.2. It is second countable, which only means that your open sets can be built from a countable
collection of them.

4.3. It can be covered by open sets {Uα}α such that for each α there is a homeomorphism φα
between Uα and some open subset of Rd.

4.4. For each α 6= β the map φα ◦ φ−1
β is smooth.

4.5. The collection of (Uα, φα) is maximal with respect to the latter two requirements.

What all this is saying is that locally, up to a homeomorphism, a manifold looks like euclidean
space. More explicitly, for every p ∈ M one can define its tangent space at p, TpM , by Rd (the
tangent space can be thought of as the local approximation of the manifold by a flat space). It was
showed by Nash that every smooth manifold can be embedded into a euclidean space. For the rest
of this talk we will assume our manifold M is embedded on some euclidean space RN and think of
its tangent space as an affine subspace of RN .

A Riemannian manifold is a smooth manifold together with a metric distM which gives us a notion
of distance, and fortunately that of geodesics. It is of great interest to us to study the relationship
between lines on the tangent space that go through the origin and geodesics on M , fortunately the
exponential map expp : TpM → M allows us to do so. Here we will not be explicit on what the
exponential map is and rely only on the property aforementioned.

Finally, since our manifold was embedded on RN we can compare the two metrics, in the case where
M is compact we have the following

distM (x, y) = ‖x− y‖+O(‖x− y‖3).

In RN we can define the Laplace operator as

∆f(x) =
∑ ∂2f

∂x2
i

(x).

1It will become clear what we mean by convergence.
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We say that a function u(x, t) satisfies the heat equation if

∂

∂t
u(x, t)−∆u(x, t) = 0.

The latter, describes a diffusion of heat with initial distribution u. The solution to the heat equation
is given by a semi-group of heat operators Ht. Given an initial heat distribution f , Ht(f) is the
heat distribution at time t. The explicit formulation of Ht(f) is given by

Htf(x) =

∫
RN

f(y)Ht(x,y) dy

Ht(x,y) =
1

(4πt)
N
2

e
−‖x−y‖2

4t .

Which has as a consequence that
f(x) = lim

t→0
Htf(x).

In the case of a Riemannian manifold a similar formulation is achieved with the second order
differential operator ∆M , the Laplace-Beltrami operator. As before, we have the heat equation

∆MHt
M (f) =

∂

∂t
Ht
M (f)

and the approximation
f = lim

t→0
Htf.

We should remark that computing an exact form of the solution to the heat equation in a manifold
is really difficult.

Now, after being able to clarify the intuition on manifolds, we are ready to set up the setting for
the problem in question. Let S = {x1, · · · ,xn} ⊂ RN , we construct a graph G whose vertices are

data points. Let W t
n(i, j) = e

−‖xi−xj‖
2

4t be the entries of the matrix W t
n, the adjacency matrix of G.

The corresponding Laplacian of G is given by Ltn = Dt
n−W t

n where Dt
n(i, i) =

∑
W t
n(i, j). Here we

should think of the Laplacian as an operator on functions defined on our data set where for each
f : V → R,

Ltnf(xi) = f(xi)
∑
j

e
−‖xi−xj‖

2

4t −
∑
j

f(xj)e
−‖xi−xj‖

2

4t .

This operator can be naturally extended to an integral operator Ltn on functions in RN with respect
to the empirical measure of the data set, where for f : RN → R we have

Ltnf(x) = f(x)
∑
j

e
−‖x−xj‖

2

4t −
∑
j

f(xj)e
−‖x−xj‖

2

4t .

Therefore, by construction,
Ltnf(xi) = Ltnf(xi).

We call Ltn the Laplacian operator associated to the point cloud Sn.

Notice that by our construction of Ltn, we get that we can approximate ∆(f) by

∆̂(f) =
(4πt)−

k+2
2

n
Ltnf(x).

11



This tells us that we can approximate numerically the value of the Laplace operator on RN with
the graph Laplacian of a big enough data set.

Finally I present the main result in [2], where the authors are able to give an accurate approximation
of the Laplace-Beltrami operator of any manifold through Laplacians of graphs:

Theorem 4.1. [2] Let data points x1, . . . ,x1 be sampled from a uniform distribution on a manifold

M ⊂ RN . Put tn = n−
1

k+2+α , where α > 0 and let f ∈ C∞(M). Then there is a constant C, such
that in probability,

lim
n→∞

C
(4πtn)−

k+2
2

n
Ltnf(x) = ∆Mf(x).

5 The Normalized Laplacian

Last week we saw that the Raleigh quotient for the Laplacian matrix was essentially∑
u∼v(xu − xv)2∑

x2
u

and that this was a useful tool in determining the eigenvalues of the Laplacian. Observe that the
denominator of this quotient has each xu appearing exactly once, while the numerator has each
appearing du times. To balance things out, consider a matrix which gives the quotient∑

u∼v(xu − xv)2∑
dux2

u

,

so now each vertex is given weight according to its degree.

To achieve this quotient, let G be a graph without isolated vertices2, D its diagonal matrix of
degrees, and L its Laplacian matrix. Define the normalized Laplacian

L := D−1/2LD−1/2 = I −D−1/2AD−1/2.

Equivalently Lu,u = 1, Lu,v = 1/
√
dudv if u ∼ v and Lu,v = 0 otherwise. Becuase L is real

symmetric, it has real eigenvalues λ1 ≤ · · · ≤ λn. Moreover, we have the following Raleigh quotient
to work with.

Lemma 5.1. Let y be a real vector and x = D1/2y. Then

yTLy
yT y

=

∑
u∼v(xu − xv)2∑

dux2
u

.

Proof. The numerator is simply xTLx, so that follows from the equation we worked out last week,
and the denominator is easy to work out.

Because of this formulation, we often find it easiest to work with the normalized x vectors. Thus
whenever y is an eigenvector, we say that x := D1/2y is a corresponding harmonic eigenvector.

Corollary 5.2. It follows that λ1 = 0 and the all 1’s vector 1 is a corresponding harmonic eigen-
vector and λn ≤ 2 with equality iff G contains a bipartite component. Lastly,

λ2 = max
x:
∑
duxu=0

∑
uv∈E(G)(xu − xv)2∑

dux2
u

,

and this is positive iff G is connected.
2This is done so that D−1 is well defined. One can easily modify definitions to allow for isolated vertices if desired.
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Proof. It’s easy to see that
∑
uv∈E(G)(xu−xv)2∑

dux2u
is minimized by the all 1’s vector, so this is a harmoic

eigenvector corresponding to λ1 = 0.

The second bit follows by trying to maximize the Raleigh quotient and using (xu−xv)2 ≤ 2(x2
u+x2

v)
with equality holding iff xu = −xv for all u ∼ v, which defines a bipartition of the component.

For the last part, note that D1/21 is an eigenvector corresponding to λ1, so we can choose an
eigenvector D1/2x corresponding to λ2 such that 〈D1/2x,D1/21〉 = 0. Further, if λ2 = 0 and
xu 6= 0, then for the Raleigh quotient to be 0 we must have xv = xu for every v in a component
containing u, and this will not satisfy

∑
duxu = 0 if G is connected.

So this is all well and good, but maybe defining a matrix with that Raleigh quotient wasn’t moti-
vating for you, or at the very least you might be asking what this matrix is good for. The answer
to both of these quandries lie within random walks.

Again let G be an n-vertex graph without isolated vertices and x ∈ Rn be a non-negative vector
with

∑
xi = 1. We define the simple random walk on G with initial distribution x as follows. For

the 0th step of the walk, start at vertex u with probability xu. Given that you are at vertex u
at step k, uniformly at random choose a neighbor of u and walk to that vertex. That is, move to

vertex v with probability 1/du if u ∼ v. We let x
(k)
u denote the probability that you are at vertex

u after the kth step of the walk.

We wish to understand when and how quickly the x(k) vectors converge. It is not too difficult to
see that x(k+1) = AD−1x(k) where A is the adjacency matrix of G and D is the diagonal matrix
of degrees. We let P := AD−1 be this probability transition matrix. If P had n orthogonal
eigenvectors, then we could study how x converges by expanding it in a basis of eigenvectors. This
turns out to be true, and an easy way to see this is with the normalized Laplacian.

Lemma 5.3. Let x1, . . . , xn be a set of harmonic eigenvectors of L corresponding to λi. Then
Dx1, . . . , Dxn are eigenvectors of P corresponding to the eigenvalues 1− λi.

Proof. The key idea is that P is similar to the matrix

M = D−1/2PD1/2 = D−1/2AD−1/2 = I − L.

Thus if xi is a harmonic eigenvector corresponding to λi, we have

PDxi = D1/2(I − L)D1/2x = D1/2(1− λi)D1/2xi = (1− λi)Dxi.

We note that one could just as well study M and recover all the properties that the normalized
Laplacian controls. However, the normalized Laplacian is somewhat more standard, has the benefit
of the Raleigh quotient, and some statements are clener using the eigenvalues of L.

Corollary 5.4. Let π := (d1/
∑
di, · · · ) and D1/2x1, . . . , D

1/2xn an orthogonal set of eigenvectors

of L. Given a distribution x, let ci = 〈x,xi〉
〈D1/2xi,D1/2xi〉

. Then x(k) = P kx = π +
∑

i 6=1 ci(1− λi)kDxi.
Further, x(k) → π for all x iff G is connected and not bipartite.

Proof. Because the D1/2xi vectors are orthogonal, we have D−1/2x =
∑
ciD

1/2xi, and thus x =∑
ciDxi. As each Dxi vector is an eigenvector of P corresponding to eigenvalue (1− λi), we have

x(k) = P kx =
∑
ci(1 − λi)

kDxi. In particular, for i = 1 we can take x1 = 1 correponding to
1−λ1 = 1. In this case we have 〈x, xi〉 =

∑
xu = 1 and 〈x1, x1〉 =

∑
du, and putting this together

gives c1Dx1 = π. Finally, we have |1− λi| < 1 for all i > 1 iff G is connected and not bipartite by
the corollary.
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Here one might argue that the better eignenvalues to use would be for M to get rid of the 1 − λi
terms. However, using (1 − λi)k ≈ e−kλi lets us state the following result concerning the speed of
convergence.

Corollary 5.5. Let λ′ = λ2 if |1 − λ2| ≥ |1 − λn| and λ′ = 2 − λn otherwise. Then for any

distribution x, we have
∥∥x(k) − π

∥∥
2
≤ e−kλ′ max

√
dv

min
√
du

, i.e. the walk converges to π in the L2 norm in

roughly k = log(∆1/2/δ1/2)/λ′ steps.

One can also consider convergence in various other norms, and basically all of these are controlled
by λ′. The definition for λ′ is somewhat annoying, and one can get around this by using a lazy
random walk. This is defined by performing a simple random walk where at each step you have a
fifty percent probability of staying in place. Equivalently one can add du loops to each vertex.

Morally speaking this walk behaves in the same way as the original random walk but is twice as
slow. If L̃ is the appropriate analog of the Laplacian matrix for this non-simple graphs, then it
turns out L̃ = 1

2L so all its eigenvalues are halved. In particular, λ̃n ≤ 1, which means (1) it
won’t be the most influential eigenvalue and (2) we no longer have a periodicity issue with bipartite
graphs.

If you’ve talked to Fan for more than five minutes, you’re probably very aware of the existence of
something called “the Cheeger inequality,” which is an isopermietric inequality that is intimately
related to the normalized Laplacian.

Recall that for S, T ⊆ V (G) we let e(S, T ) denote the number of edges uv with u ∈ S and v ∈ T .
We let S = V (G) \S and define the volume of a set volS =

∑
u∈S du, which one can think of as the

size of a set weighted by the degrees of its vertices. We define hG(S) = e(S,S)

min{volS,volS
. That is, this

measures how many edges you have to delete in order to separate S from its complement, where
you normalize by the total number of edges involving S (typically we think of choosing S so that
volS ≤ volS). We define the Cheeger ratio by hG = minS 6=∅,V (G) hG(S). Thus roughly hG measures
the fewest number of edges you need to delete to separate the graph into two components.

Theorem 5.6 (Cheeger Inequality).
h2
G

2
λ1 ≤ 2hG.

Proof. For the upper bound, let S be a set and consider the vector xu = 1/volS if u ∈ S and
xv = −1/volS otherwise. Note that

∑
duxu = 1 − 1 = 0, so λ1 ≤

∑
u∼v(xu − xv)

2/
∑
dux

2
u.

Each term in the numerator will be 0 unless u ∈ S and v ∈ S or the other way around. Further,∑
u∈S dux

2
u = 1/volS and

∑
v∈S dvx

2
v = 1/volS. Define volV = volV (G) = volS + volS. Thus the

Raleigh quotient will be

e(S, S)(1/volS − 1/volS)2

1/volS + 1/volS
=

e(S, S)(volS − volS)2

volSvolS(volS + volS)
=
e(S, S)(volV − 2volS)2

volSvolSvolV
.

If volS = min{volS, S} ≤ 1
2volV , then S ≥ 1

2volV and this inequality is at most e(S,S)(volV )2

1
2

volS(volV )2
=

2hG(S). Taking S so that hG = hG(S) gives the result.

The lower bound is significantly more involved and we omit its proof in full. The rough idea is
to let x be a harmonic eigenvector corresponding to λ2 and then partition your vertices into those
with xu large and those with xu small. Because x minimizes the Raleigh quotient, we should have
few of the (xu − xv)2 terms with u, v being in opposite sets (as this would make the term large),
which is precisely the number of edges in a cut.
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6 Strongly Regular Graphs

Among all graphs, regular graphs are often a topic of interest, and are both fairly well studied, and
make various situations easier. A special class of regular graphs are the strongly regular graphs.
In some sense they are extremal examples of regular graphs, since their spectrum has only three
values.

Definition 6.1. Let (n, k, λ, µ) be nonnegative integers. A graph G is a strongly regular graph
with parameters (n, k, λ, µ) if G is a k-regular graph on n vertices such that

• Every pair of adjacent vertices has λ common neighbours.

• Every pair of non-adjacent vertices has µ common neighbours.

Note that this is a very strong condition, hence one should expect to be able to say a lot more
about such graphs. However, in order for this to be useful, there should be a fairly large number
of graphs satisfying this. So let us give some examples.

• The complete graph Km is a strongly regular graph with n = m, k = m−1, λ = m−2. (And
µ really can be anything)

• The complete bipartite graph Km,m works with n = 2m, k = m, λ = 0 and µ = m.

• The line graphs of Km and Km,m satisfy with (n, k, λ, µ) = (
(
m
2

)
, 2(m − 2),m − 2, 4) and

(n, k, λ, µ) = (m2, 2(m− 1),m− 2, 2) respectively.

• The Petersen graph is a strongly regular graph with n = 10, k = 3, λ = 0 and µ = 1.

• The complement of any strongly regular graph is strongly regular with parameters (n, n −
k − 1, n− 2− 2k + µ, n− 2k + λ).

Strongly regular graphs do not exist for any set of parameters. In particular, we have the relation

(n− k − 1)µ = k(k − λ− 1).

To see this relation, pick any vertex v and let S = V (G)\(N(u) ∪ {u}). We count the number of
edges between N(v) and S.

• On the one hand, let u ∈ S. Since u and v are not adjacent, they have µ common neighbours,
that all belong to N(v). Therefore, every u ∈ S contributes µ edges between N(v) and S, for
a total of (n− k − 1)µ.

• On the other hand, let w ∈ N(v). Since w and v are adjacent, they have λ common neighbours
inN(v). Therefore, w contributes k−λ−1 edges betweenN(v) and S, for a total of k(k−λ−1).

Let A be the adjacency matrix of a strongly regular graph and let J be the all ones matrix. As
usual, the all ones vector is an eigenvector of A with eigenvalue k. We claim that we have the
relation

A2 = kI + λA+ µ(J − I −A).

Indeed, let u, v be vertices of G, then A2
uv is the number of length 2 paths from u to v.
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• When u = v, this equals d(u) = k explaining the kI term.

• When u ∼ v this equals the number of common neighbours of u and v, which is λ, explaining
the λA term.

• When u 6∼ v this again equals the common neighbours of u and v, which is µ, explaining the
µ(J − I −A) term.

Now, we know that (1, 1, . . . , 1) is an eigenvector of A with eigenvalue k. Let x be any eigenvector
with eigenvalue θ 6= k, then x ⊥ (1, 1, . . . , 1), hence Jx = 0. Therefore,

θ2x = A2x = (kI + λA+ µ(J − I −A))x = (k + λθ − µ(1 + θ))x,

so
θ2 = (λ− µ)θ + (k − µ),

showing that θ can take only one of two values, ρ =
λ−µ+

√
(λ−µ)2+4(k−µ)

2 or σ =
λ−µ−

√
(λ−µ)2+4(k−µ)

2 .
In fact, this is an equivalence; the connected k-regular graphs with only 3 eigenvalues (say k, ρ, σ)
are all strongly regular graphs. Indeed, for any such graph, if x ⊥ (1, 1, . . . , 1) we have

(A− ρI)(A− σI)x = 0,

hence (A − ρI)(A − σI) = τJ , which expands as A2 = (τ − ρσ)I + (ρ + σ + τ)A + τ(J − I − A),
and we can run the inverse argument as above.
One example of a strongly regular graph is the Clebsch graph, which for one appears in the proof
of R(3, 3, 3) = 17.

Definition 6.2. The Clebsch graph is the graph formed by taking the 4 dimensional hypercube
and adding edges between pairs of opposite vertices (that is, pairs of vertices of Hamming distance
4). This graph is a strongly regular graph with parameters (16, 5, 0, 2). It is in fact the only one.

Theorem 6.3. The Clebsch graph is the only strongly regular graph with parameters (16, 5, 0, 2).

The proof of this theorem uses a concept called “local eigenvalues”. To introduce those, let u ∈ V (G)
and note that we can write

A =

0 1T 0
1 A1 BT

0 B A2


Using the equation A2 − (λ− µ)A− (k − µ)I = µJ and the fact that

A2 =

 k 1TA1 1TBT

A11 J +A2
1 +BTB A1B

T +BTA2

B1 BA1 +A2B A2
2 +BBT


Therefore,

A2
1 − (λ− µ)A1 − (k − µ)I +BTB = (µ− 1)J ;

A2
2 − (λ− µ)A2 − (k − µ)I +BBT = cJ ;

BA1 +A2B = (λ− µ)B + cJ.
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Definition 6.4. An eigenvalue θ of Ai is local if θ 6= k, ρ, σ, and θ has an eigenvector orthogonal
to 1.

Local eigenvalues satisfy the following property.

Lemma 6.5. Let G be a strongly regular graph with eigenvalues k > ρ > σ. Suppose that x is an
eigenvector of A1 with eigenvalue θ and 〈x,1〉 = 0. If Bx = 0 then θ ∈ {ρ, σ} and else we have
ρ > θ > σ.

Proof. Since Jx = 0 we see that

(θ − ρ)(θ − σ)x = (θ2 − (λ− µ)θ − (k − µ))x =
(
A2

1 − (λ− µ)A1 − (k − µ)I
)
x = −BTBx.

If Bx = 0 it is clear that θ ∈ {ρ, σ}. Else, (θ − ρ)(θ − σ) is a nonzero eigenvalue of the negative
semi-definite matrix −BTB, hence (θ − ρ)(θ − σ) < 0, proving ρ > θ > σ.

Of course a similar result holds for the eigenvalues of A2. It turns out that we can actually relate
the eigenvalues of A1 and A2.

Lemma 6.6. Let G be a strongly regular graph with parameters (n, k, λ, µ). Let θ be a local eigen-
value of A1 or A2. Then (λ− µ)− θ is a local eigenvalue of the other, with the same multiplicity.

Proof. Suppose θ is a local eigenvalue of A1 with eigenvector x. As 1Tx = 0 we have

A2Bx = (λ− µ)Bx+ cJx−BA1x = ((λ− µ)− θ)Bx.

As 1TB = (k−1−λ)1T we have 1TBx = 0, hence (λ−µ)−θ is a local eigenvalue with eigenvector
Bx. A similar argument holds for local eigenvalues of A2. As BTB and BBT are positive semi-
definite, and we work with vectors such that Bx 6= 0 and BT y 6= 0, the maps B and BT are
injections from one eigenspace to another, hence the multiplicities coincide.

Proof of Theorem 6.3. A graph with these parameters must have eigenvalues 5, 1,−3. Let u ∈
V (G) and let G2 the induced subgraph on V (G)\({u} ∪ N(u)). As 0 is the only eigenvalue of
G1 = G[N(u)] = 5K1, G2 can only have eigenvalues 3 (because G2 is cubic), 1,−3 (as those are
eigenvalues of G) and −2 (as this is (λ − µ) − 0. If G2 would be disconnected it would have a
component isomorphic to K4 and hence an eigenvalue −1. Hence G2 is connected and as a result
(as G2 is not complete) it must have three eigenvalues. This implies that the spectrum of G2 cannot
be symmetric around 0, hence G2 is not bipartite, and so −3 is not an eigenvalue of G2. So G2 has
eigenvalues 3, 1 and −2, and hence must be strongly regular with parameters (10, 3, 0, 1). It is now
easy to see that G2 is the Petersen graph. Now, each vertex in G1 is adjacent to an independent
set of size 4 in G2 (never picking the same one twice). Since the Petersen graph has exactly 5 such
independent sets we conclude that G is uniquely determined by the set of parameters.

Strongly regular graphs are heavily intertwined with combinatorial geometry. One such example
are the generalized quadrangles.

Definition 6.7. A generalized quadrangle is a point-line incidence structure such that

1. Any two points are on at most one line, or equivalently any two lines meet in at most one
point.

2. If P is a point not on a line `, then there is a unique point Q on ` such that there is a line
through P and Q.
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It is clear that the second condition implies that the structure has no triangles. Besides the
exceptional case of just two lines, this also implies that we have a lot of quadrangles. Indeed, let
` and m be two lines intersecting in P1 and let P2 be a point on neither of those lines. Then
there exist (unique) points Q1 ∈ ` and Q2 ∈ m such that P2 is collinear with these points. Then
P1Q1P2Q2 is a quadrangle.
A special type of generalized quadrangles are ones with some regularity. In particular, a generalized
quadrangle has order (s, t) if every line contains s+ 1 points and every point belongs to t+ 1 lines.
The point graph of a generalized quadrangle is the graph whose vertices are the points and where
two vertices are adjacent if the points are collinear.

Lemma 6.8. Let G be the point graph of a generalized quadrangle of order (s, t), then it is a
strongly regular graph with parameters ((s+ 1)(st+ 1), s(t+ 1), s− 1, t+ 1).

Proof. As every point lies on t + 1 lines, and each of these lines contains exactly s other points,
G is s(t + 1)-regular. Additionally, if (u, v) is an edge in G, then u and v correspond to collinear
points P and Q, and there are exactly s − 1 other points on this line, and since the structure is
triangle-free these are the only other points that are collinear with both P and Q. Also, if u and v
are not adjacent, then they correspond to nonadjacent points P and Q. For each of the t+ 1 lines
through P there is a unique point on it that is also collinear with Q, so u and v have t+ 1 common
neighbours.
To count the number of vertices of G, consider a line `, which has s + 1 points on it. Through
every point there are t other lines, each with s other points on it. Note that all these points are
different since the structure is triangle-free, giving st(s + 1) more points. Finally, we can have no
more other points, since every point not on ` is collinear with some point on `. Therefore, we have
(s+ 1) + st(s+ 1) = (st+ 1)(s+ 1) vertices.

We can use the framework of regular graphs to impose some conditions on s and t.

Lemma 6.9. Let G be a connected strongly regular graph with parameters (n, k, λ, µ). Then G has
eigenvalues k, ρ, σ with multiplicities 1 and

mρ = −(n− 1)σ + k

ρ− σ

mσ =
(n− 1)ρ+ k

ρ− σ
.

Proof. It is clear that k has multiplicity 1, hence mρ +mσ = n− 1. Using the fact that the sum of
the eigenvalues equals the trace of A, which is 0, this implies that mρρ+mσσ+ k = 0. Solving for
mρ and mσ yields the result.

Now, a generalized quadrangle of order (s, t) has eigenvalues (s−t−2)±
√

∆
2 where

∆ = (s−t−2)2 +4(st+s−t−1) = (s−t)2−4(s−t)+4+4st+4(s−t)−4 = (s−t)2 +4st = (s+t)2,

so the eigenvalues are s− 1 and −t− 1, with multiplicities

st(s+ 1)(t+ 1)

s+ t
and

s2(st+ 1)

s+ t
,

respectively. The fact that these numbers must be integers impose some conditions on {s, t}. For
example, we can consider the situation where each line contains exactly 3 points.

18



Lemma 6.10. If a generalized quadrangle of order (3, t) exists, then t ∈ {1, 2, 4}. In particular,
the total number of points is 9, 15 or 27.

Proof. Note that −t − 1 has multiplicity 4(2t+1)
t+2 , so t + 2 | 8t + 4. Therefore, t + 2 also divides

8t + 4 − 8(t + 2) = −12, showing t ∈ {1, 2, 4, 10}. One can exclude t = 10 by doing some more
general bounds on the eigenvalues and multiplicities of strongly regular graphs.

7 (n, d, λ) Graphs and Ramsey numbers

Speaking very informally, a pseudo-random graph G = (V,E) is a graph that behaves like the
random graph G(|V |, p) with p = |E|/

(|V |
2

)
. A frequently used approach to pseudo-randomness is

to consider the eigenvalues of a graph, which leads us to a concept of (n, d, λ)-graphs. For more
detailed introduction on pseudo-random graphs, readers are referred to the survey by Krivelevich
and Sudakov [17].

Definition 7.1. An (n, d, λ)-graph is a d-regular graph on n vertices in which all eigenvalues, but
the first one, are at most λ in their absolute value.

The following well known theorem provide a relation between eigenvalues and pseudo-randomness.

Theorem 7.2. Let G = (V,E) be an (n, d, λ)−graph, and B ⊂ V such that |B| = bn. Then,∑
v∈V

(|NB(v)| − bd)2 ≤ λ2b(1− b)n,

where NB(v) denote the set of all neighbors of v in B.

Proof. Let A be the adjacency matrix of G and define a vector fB such that fB(v) = 1 − b when
v ∈ B and fB(v) = −b otherwise. Note that fB · 1 = 0; that is, f is orthogonal to the all 1 vector,
which is the eigenvector of the largest eigenvalue of A. Therefore,

fTA2f ≤ λ2fT f.

The left-hand side is

‖Af‖22 =
∑
v∈V

(|NB(v)|(1− b)− (d− |NB(v)|)b)2 =
∑
v∈V

(|NB(v)| − bd)2.

And the right-hand side is λ2b(1− b). The desired result follows.

Given a graph G = (V,E). For two (not necessarily disjoint) subsets B and C of V , let e(B,C)
denote the number of ordered pairs (u, v) such that u ∈ B and v ∈ C and uv ∈ E.

Corollary 7.3. Let G = (V,E) be an (n, d, λ)-graph, then for every two subsets B and C of V ,

|e(B,C)− (d/n)|B||C|| ≤ λ
√
|B||C|

Proof. Let |B| = bn. Then

|e(B,C)− (d/n)|B||C|| ≤
∑
v∈C
||NB(v)| − bd|

≤
√
|C|
∑
v∈C

(|NB(v)| − bd)2 (Cauchy’s inequality)

19



By Theorem 1, ∑
v∈C

(|NB(v)| − bd)2 ≤
∑
v∈V

(|NB(v)| − bd)2 ≤ λ2b(1− b)n ≤ λ2|B|

This completes the proof.

Now consider the random graph G(n, p), it is not hard to show by Chernoff bound that a.a.s.

|e(B,C)− p|B||C|| = O(
√
pn|B||C|)

Comparing the preceding two bounds, we can see that when λ is small, especially when λ = O(
√
d),

the (n, d, λ)−graphs behave like the random graph G(n, d/n). In fact, this is the best possible λ
we can obtain.

Proposition 7.4. Let G be an (n, d, λ)−graph, and d� n, then λ = Ω(
√
d).

Hence, the (n, d, λ)−graphs with λ = Θ(
√
d) are known as optimally pseudo-random.

7.1 Ramsey numbers

The Ramsey number r(F, t) is the minimum number n such that every n-vertex F -free graph has
an independent set of size t. When F = Ks we simply write r(s, t) instead of r(F, t). For the upper
bounds, Erdős and Szekeres [12] (1935) show, by a nice inductive proof, that r(s, t) ≤

(
s+t−2
s−1

)
. In

particular, if we fix s, this gives r(s, t) ≤ cst
s−1. The best upper bound is not far away from this,

which is shown by Ajtai, Komlós and Szemerédi (1980):

r(s, t) ≤ cs
ts−1

(log t)s−2

The best lower bound so far is shown by Bohman and Keevash [5] (2010) using a natural random
Ks-free process:

r(s, t) ≥ cs
t(s+1)/2

(log t)(s+1)/2−1/(s−2)

A recent work by Mubayi and Vertraete [21] (2019) offers a new way to improve this lower bound.

Theorem 7.5. Let F be a graph, n, d, λ be positive numbers with d ≥ 1 and λ > 1/2 and let
t = d2n log2 n/de. If there exists an F -free (n, d, λ)−graph, then

r(F, t) >
n log2 n

20λ

Remark 7.6. For Ks-free (n, d, λ)−graphs with λ = Θ(
√
d), it is knonw that d = O(n1− 1

2s−3 ).
If this upper bound is obtainable, that is, if there exist a (n, dλ)−graph with λ = Θ(

√
d) and

d = Θ(n1− 1
2s−3 ), then by the theorem above, r(s, t) = Ω(ts−1/ log2s−4 t), which is tight up to log

factors. The best construction of Ks-free pseudo-random graph so far is given by Bishnoi, Ihringer
and Pepe [6] with d = Ω(n1−1/(s−1)).

The key of the proof of Theorem 4, is the following Theorem by Alon and Rödl [1]:

Theorem 7.7. Let G be an (n, d, λ)−graph with d ≥ 1 and λ > 1/2. Then for any integer
t ≥ 2n log2 n/d, the number of independent sets of size t in G is at most (2e2λ/log2 n)t.
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To prove Theorem 5, we use the following lemma:

Lemma 7.8. Let G = (V,E) be an (n, d, λ)−graph, and let B be a subset of V such that |B| = bn.
Define C := {u ∈ V : |NB(u)| < bd/2}. Then

|B ∩ C| ≤ 2λn/d.

Proof. By Theorem 1, we have ∑
v∈V

(|NB(v)| − bd)2 ≤ λ2b(1− b)n.

Every vertex in C contribute at least b2d2/4 to the left-hand side, hence we have

|C|b
2d2

4
≤ λ2b(1− b)n ≤ λ2bn,

which is equivalent to

|B||C| ≤ 4λ2n2

d2

Note that |B ∩ C| ≤ min{|B|, |C|}, the desired result follows.

Proof of Theorem 5. Consider the following process of picking an independent set of size t: Begin
with B0 = V , for each Bi ⊂ V such that 0 ≤ i ≤ t − 1, pick a vertex v in Bi and then let
Bi+1 = Bi\(v∪N(v)). Let Ci = {u ∈ V : |NBi(u)| < |Bi|d/2n}. Note that if in step i, the selected
vertex v that is not in Ci, then we must have |Bi+1| ≤ (1 − d/2n)|Bi|. We call such a choice a
bad pick, and otherwise a good pick. The number of bad picks cannot be more than 2n log n/d,
otherwise Bi will be empty before the process terminates. Let l = t/ log n, then we count the
independent sets of size t as following: we first choose an index set of size l where the picks can be
either good or bad. Then for the remaining t − l picks, by Lemma 6 each of them have at most
2λn/d choices. In this way, the number Z of independent set of size t is at most

1

t!

(
t

l

)
nl
(

2λn

d

)t−l
Using

(
t
l

)
≤ 2t and t! ≥ (t/e)t,

Z ≤
(

4eλn

td

)t( d

2λ

)l
Since λ > 1/2, we have d/2λ < d < n and hence (d/2λ)l < nt/ logn = et. Using t ≥ 2n(log2 n)/d,

Z ≤
(

4e2λn

dt

)t
≤
(

2e2λ

log2 n

)
.

This completes the proof.

With Theorem 5, we are ready the prove Theorem 4. The idea is to randomly sampled vertices
with some suitable probability and then remove a vertex from each independent set of size t.
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Proof of Theorem 1. Let G be an F -free (n, d, λ)−graph. Randomly sample a subset U of V with
probability p = (log n)2/2e2λ. Let Z be the number of independent sets of size t in the subgraph
of G induced by U . Then we can obtain an F -free graph with no independent set of size t by
removing one vertex from each independent set of size t. By Theorem 5 and the choice of p, the
expected number of remaining vertices is at least

E[|U | − |Z|] ≥ pn− pt
(

2e2λ

log2 n

)t
= pn− 1

Therefore, we have

r(F, t) ≥ pn > n log2 n

20λ
.

8 Ramanujan Graphs

Given the numerous applications of expander graphs, one might wish to know what the ”best”
expanders are; these graphs are called Ramanujan Graphs. In this section, we will present a proof
of the existence of these graphs following the novel treatment of [18].

Next, we consider a random walk on the vertices of G, where we move from v to one of its neighbors
with probability 1/ deg(v) = 1/d. Then the transition matrix for this Markov chain is precisely
1
dA(G), and by the basic theory of Markov chains, the largest eigenvector of 1

dA is the stationary
distribution of the random walk. In our case, that stationary distribution assigns weight 1/n to
each vertex. If we start with a distribution with all its weight on one vertex, and run the Markov
chain, how quickly does the distribution converge to the stationary distribution? As it turns out,
the spectrum of a our graph determines this rate of convergence.

Theorem 8.1. Given the random walk on G as above, let 1v be a starting distribution with weight
only on the vertex v, and let 1

n1 be the stationary distribution. Then, the distribution of the random

walk after t steps is
(

1
dA
)t

1v and

‖d−tAt1v −
1

n
1‖2 ≤ C

(
max{|λ2|, |λn|}

d

)t
for some constant C depending on the graph.

Proof. The first claim can be seen from the definition of the transition matrix, so we do not prove
it here. For the second claim, let 1, v2, . . . , vn be the eigenvectors of A and let 1v =

∑n
i=1 αivi.

‖d−tAt1v −
1

n
1‖2 = ‖d−tAt

(
n∑
i=1

αivi

)
− 1

n
1‖2 = ‖

n∑
i=1

(
λi
d

)t
αivi −

1

n
1‖2

Noting that α1 = 〈1v,1〉 = 1
n ,

‖
n∑
i=1

(
λi
d

)t
αivi −

1

n
1‖2 ≤ ‖

(
maxi 6=1 λi

d

)t n∑
i=2

αivi‖2 ≤ C
(

maxi 6=1 |λi|
d

)t
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Thus we define the following

Definition 8.2. For a graph G, its spectral gap λ(G) is maxi 6=1 |λi| = max{|λ2|, |λn|}.

Thus, the smaller the spectral gap, the quicker a random walk on G will converge to its limiting
distribution.

Now that we have isolated the spectral gap as an interesting graph property, it is natural to ask
how small can the spectral gap can be relative to λ1. The complete graph on n vertices has λ = 1
and d = n−1. But the degree of this example grows with the size of the graph, so a better question
is how small can λ be for a fixed value of λ1, i.e. for a family of d-regular graphs? Here we have a
much more interesting result

Theorem 8.3. [22] For an infinite family of d-regular graphs,

lim
n→∞

λ(G) ≥ 2
√
d− 1− o(1)

Definition 8.4. A d-regular graph is Ramanujan if

λ(G) = 2
√
d− 1

As always, we want to know if this bound is tight, or equivalently, if Ramanujan graphs exist.
Thankfully, the answer is yes.

Theorem 8.5. [16] For every prime p, there exists an infinite family of p+ 1-regular Ramanujan
graphs.

Unfortunately, the analysis of these constructions involve some rather non-trivial number theory
results, and the degree restriction is unnatural for many applications in combinatorics and computer
science.

8.1 Lifts

In the years of work following [16], one particular result from [3] proposed a novel construction for
Ramanujan graphs. They considered random lifts of a graph, illustrated as follows.

Start with a fixed graph G Double every vertex, and re-
place each edge with a match-
ing

Switch each matching at ran-
dom

More formally,

Definition 8.6. Given a graph G, a signing of G is a map

s : E(G)→ {±1}
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Definition 8.7. Given a graph G = (V,E) and a signing s of G, the 2-lift of G corresponding to
s is the graph G2 = (V2, E2) where V2 = V × {±1} and

(v, sv) ∼ (u, su) ⇐⇒ v ∼ u and sv = s((u, v)) ∗ su

.

How can these lifts give a Ramanujan graph? Bilu and Linial prove the following

Theorem 8.8. [3] Given a d-regular graph G, there exists a 2-lift of G, G2 such that

λ(G2) ≤ 2
√
d− 1 +O(

√
d log3(d))

and furthermore they conjectured

Conjecture 8.9. [3] Given a d-regular graph G, there exists a 2-lift of G, G2 such that

λ(G2) = 2
√
d− 1

Finally, we get to the main result of today’s talk:

Theorem 8.10. [18] Given a d-regular graph G, there exists a 2-lift of G, G2 such that

λ2(G2) ≤ 2
√
d− 1

Note that this theorem gives no control over λn. However, by as bipartite graphs have symmetric
spectrum, it follows that:

Corollary 8.11. Given a d-regular bipartite G, there is a 2-lift of G, G2 such that

λ(G2) ≤ 2
√
d− 1

By iteratively applying Corollary 8.11, we achieve our desired result:

Theorem 8.12. For any d ≥ 3, there exists an infinite family of d-regular bipartite Ramanujan
graphs.

8.2 Interlacing Families

Recall our definitions of signings (8.6) and 2-lifts (8.7).

Definition 8.13. Given a graph G and a signing s, the signed adjacency matrix As is defined by

(As)ij =

{
s((i, j)) i ∼ j
0 i 6∼ j

Lemma 8.14. [3] Let G2 be the 2-lift of a graph G defined by the signing s. Then,

σ(A(G2)) = σ(A) ∪ σ(As)

where the union is taken with multiplicity.

Thus, if G is a Ramanujan Graph, in order to analyze its 2-lifts, we simply have to analyze the
eigenvalues of As for every signing s. To do so, we introduce the following polynomial.
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Definition 8.15. Given a graph G, its matching polynomial µG(x) is

µG(x) =

n/2∑
i=0

xn−2i(−1)imi(G)

where mi(G) is the number of matchings with i edges.

The matching polynomial is rather well-studied, and in particular we need these facts

Theorem 8.16. [11] All the roots of µG(x) are real.

Theorem 8.17. [11] If G is d-regular, the roots of µG lie in the interval

[−2
√
d− 1, 2

√
d− 1]

The 2
√
d− 1 is exactly the bound on the second largest root that we want to show! So it would be

nice if we could relate the eigenvalues of As for some signing to the roots of µG. The next lemma
shows that, in expectation, As and µG have exactly the relationship we might want.

Lemma 8.18. Let G be a graph, and let s be a uniformly random signing. Then,

Es [det(xI −As)] = µG(x)

Proof. We expand the determinant as a sum over permutations and apply linearity of expectation:

Es [det(xI −As)] =
∑
σ∈Sn

(−1)sign(σ)Es

[
n∏
i=1

(xI −As)i,σ(i)

]

As the signing on each edge is chosen independently

=
∑
σ∈Sn

(−1)sign(σ)
n∏
i=1

Es
[
(xI −As)i,σ(i)

]
As the signing of each edge is 0 in expectation, the only permutations with a nonzero contribution
are composed of cycles of length at most 2. These permutations thus correspond to matchings of
size i. Finally, note that the sign such a permutation is precisely i

=
n∑
i=0

xn−2i(−1)imi(G)

= µG(x)

So all we have to do is show that some As has its largest root bounded by the largest root of
Es[det(xI −As)]. However, there is no reason to expect such a relationship as the roots of polyno-
mials do not behave nicely under addition.

Example 8.19. Consider p(x) = x2−3x+1 and q(x) = x2 +3x+1, both of which are real-rooted.
Their sum, 2x2 + 2 has only imaginary roots!

Example 8.20. Consider r(x) = x3−2x2 +3x+3 and s(x) = x3−4x2−1 with roots −0.63, 1.31±
1.171i and 4.066, 0.03± 0.49i respectively. Their sum has roots 2, 1

2 ±
√

3
2 .
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To gain some control over the roots of sums of polynomials, we have the following key idea

Definition 8.21. Given a degree n real-rooted polynomial f = (x − α1)(x − α2) . . . (x − αn) and
a degree n− 1 real-rooted polynomial g = (x− β1)(x− β2) . . . (x− βn−1), we say that g interlaces
f if

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ βn−1 ≥ αn

The prototypical example to keep in mind that of the Cauchy Interlacing Theorem, which states
that for any matrix A and any principal submatrix B of A, the characteristic polynomial of B
interlaces the characteristic polynomial of A.

Definition 8.22. Given a collection of degree n real-rooted polynomials {fi}, we say that they
have a common interlacing if there is a degree n−1 real-rooted polynomial g such that g interlaces
each fi.

The upshot of interlacing is the following lemma:

Lemma 8.23. let {fi}i∈I be a collection of degree-n real-rooted polynomials with positive leading
coefficient and a common interlacer g. Then the following hold:

• F := Ei∈I [fi] is real-rooted and g interlaces F .

• There exists an i ∈ I such that the largest root of fi is at most the largest root of F

Proof. We will only treat the case where g has no common roots with any of the fi. The general
case follows by a limiting argument. Let the roots of g be β1, . . . , βn−1. As the fi all have the same
degree and have positive leading coefficients, for every i ∈ I, fi(βk) < 0 if k is odd and fi(βk) > 0
if k is even. Thus, F (βk) > 0 if k is odd and F (βk) < 0 if k is even. Thus, by the intermediate
value theorem, F must be real-rooted and g interlaces F .

For the second assertion, let α be the largest root of F , and assume for contradiction that the
largest root of any fi is strictly larger than α. As all the fi’s have positive leading coefficients, if
follows that fi(α) < 0 for every i ∈ I. Hence, F (α) < 0, a contradiction.

To summarize, if we can show that {det(xI − As)}s:E(G)→{±1} has a common interlacer, then the
lemma (8.23) allows us to conclude that there is a 2-lift of G which is Ramanujan.

Question 8.24. Note that the above argument can easily generalize to show that there must be
an fi whose k-largest root is at most the k-largest root of F . Can this be furthermore generalized
to show that there is an fi such that its kth and lth largest roots are simultaneously at most the
kth and lth largest roots of F?

8.3 Interlacing and Real Stable Polynomials

How do we show that a collection of polynomials has a common interlacer? Thankfully, interlacing
is a well-studied concept, and we have a nice characterization

Lemma 8.25. [13] Let {fi}i∈I be a collection of degree n real-rooted polynomials. Then the follow-
ing are equivalent

• {fi}i∈I has a common interlacer.

• For every choice of λi ≥ 0 with
∑

i∈I λi = i, the polynomial
∑

i∈I λifi is real-rooted.

26



To apply this lemma in our setting, we will show the following

Theorem 8.26. For every assignment of weights pe : E(G)→ [0, 1] to the edges of G, the following
polynomial is real-rooted ∑

s:E(G)→{±1}

∏
e:s(e)=1

pe
∏

e:s(e)=−1

(1− pe) det(xI −As)

By setting the pe appropriately, we can then recover any convex combination {λe}e∈E(G).
The proof is based on the theory of Real-Stable Polynomials.

Definition 8.27. A polynomial p(z1, . . . , zn) ∈ R[z1, . . . , zn] is called real-stable if

f(z1, . . . , zn) 6= 0

whenever =(zi) > 0 for every i.

Rather than dive into the deep theory of real-stable polynomials, we will instead point the interested
reader to [4] for a proper treatment of the subject, and we will simply note the following facts
without proof.

8.1. A real-stable polynomial in one variable is real-rooted.

8.2. If p, q are real-stable and α, β ≥ 0, then αp+ βq is real-stable

8.3. If p is real-stable, then ∂
∂zi
p is real-stable for any i.

8.4. If p(z1, . . . , zn) is real stable and c ∈ R, then p(z1, . . . , zi−1, c, zi+1, . . . , zn) is real-stable for
any i ∈ [n].

8.5. If A1, . . . , An are positive semidefinite matrices, then det(z1A1 + . . . znAn) is real-stable.

All of the above facts (and much more) are proven in [4]. Our first key takeaway is the following.
Define Zi to be the operator which maps p(z1, . . . , zn)→ p(z1, . . . , zi−1, 0, zi+1, . . . , zn)

Claim 8.28. For variables u, v and pu,v ∈ [0, 1] the operator Tu,v := ZuZv(1+pu,v∂u+(1−pu,v)∂v)
preserves real stability.

Lemma 8.29. Let A be an invertible n× n matrix, let u, v be variables, and let ~x, ~y ∈ Rn.Then,

Tu,v det(A+ u~x~x> + v~y~y>) = pu,v det(A+ ~x~x>) + (1− pu,v) det(A+ ~y~y>)

Proof. By the matrix determinant lemma, det(A+u~x~x>) = det(A)(1+u~x>A−1~x), Thus, ∂u det(A+
u~x~x>) = det(A)(~x>A−1~x). Finally, we note that Zv∂u = ∂uZv. So, expanding and applying Zu, Zv
wherever possible.

Tu,v det(A+ u~x~x> + v~y~y>) = det(A) + pu,vZu∂u det(A+ u~x~x>) + (1− pu,v)Zv∂v det(A+ v~y~y>)

By the above

= det(A) + pu,v det(A)(~x>A−1~x) + (1− pu,v) det(A)(~y>A−1~y)

= pu,v det(A)(1 + ~x>A−1~x) + (1− pu,v) det(A)(1 + ~y>A−1~y)

By the matrix determinant lemma in reverse

= pu,v det(A+ ~x~x>) + (1− pu,v) det(A+ ~y~y>)
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With this lemma in hand, we can finally prove the main theorem

Proof. We wish to show that∑
s:E(G)→{±1}

∏
e:s(e)=1

pe
∏

e:s(e)=−1

(1− pe) det(xI −As)

is real-rooted for any assignment pe : E(G)→ [0, 1]. Clearly, this will follow if we show that∑
s:E(G)→{±1}

∏
e:s(e)=1

pe
∏

e:s(e)=−1

(1− pe) det(xI + dI −As)

is real-rooted where d is the degree of G. To that end, we define for each edge e = (a, b) the matrices
L1
e = (ea − eb)(ea − eb)> and L−1

e = (ea + eb)(ea + eb)
> where ea, eb are standard basis vectors.

Note that L1
e, L

−1
e are positive semidefinite. Furthermore, for any signing s : E(G)→ {±1},

det(xI +D −As) = det(xI +
∑

e∈E(G)

Ls(e)e )

Finally, consider the polynomial Q in variables x, {ue}e∈E(G), {ve}e∈E(G) defined by

Q := det(xI +
∑

e∈E(G)

ueL
1
e + veL

−1
e )

By a fact above, Q is real-stable. By applying (8.29) for each edge in G, we see that

(Te1 . . . Tem) (Q) =
∑

s:E(G)→{±1}

∏
e:s(e)=1

pe
∏

e:s(e)=−1

(1− pe) det(xI +
∑

e∈E(G)

Ls(e)e )

As Te preserves real stability and our final polynomial only depends on x, the theorem follows.

8.4 Further Directions

The proof given is probabilistic in nature, and for some applications, a polynomial-time construction
is necessary. Thankfully, [7] gives a polynomial-time constructive proof of the existence of a 2-lift
which is Ramanujan. Another relevant issue is that 2-lifts double of the number of vertices at
each step, and so the size of our Ramanujan graphs grow exponentially. This issue will be rectified
in Interlacing Families 4, the next talk in the ABACUS seminar. Finally, these graphs must be
bipartite, and it is a major open problem find nice constructions of non-bipartite Ramanujan graphs.

9 High Dimensional Expanders

In previous weeks, we have seen several different (but morally equivalent) types of expansion on
standard graphs, and seen numerous applications of these objects throughout combinatorics. It is
natural then to wonder whether these definitions generalize to hypergraphs, the standard higher
dimensional variant of graphs, and whether such objects might be equally useful. In these notes
we will study one such natural combinatorial generalization: Spectral Link HDX’s. This version of
high dimensional expansion has come onto the scene relatively recently, and has already shown a
number of important applications in computer science and combinatorics (e.g. for counting matroid
bases or independent sets, building locally testable codes) and seems like a promising direction to
make advances on other important problems like the Unique Games Conjecture.
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In these notes we will review the definition of Spectral HDX’s, and cover Izhar Oppenheim’s Trickle
Down Theorem. This structural theorem not only simplifies analysis and understanding of spectral
HDX, but also nicely exhibits their “local to global” behavior, a useful paradigm that shows how
one can leverage local structure to prove global results.

We will consider a special class of hypergraphs known as pure simplicial complexes as Misha Gro-
mov’s seminal work on the topological overlapping property resulted in further studies of high
dimensional expanders.

Definition 9.1 (Pure Simplicial Complex). A d-dimensional pure simplicial complex is a hyper-
graph H(V,E) satisfying three conditions:

9.1. E is downward closed

9.2. The largest edges (faces) in E are of size d+ 1

9.3. Every face e ∈ E is contained in at least one face of size d+ 1.

Equivalently, one can think of a d-dimensional pure simplicial complex as the result of the downward
closure of some (d + 1)-uniform hypergraph. Let’s look at an example of 2-dimensional simplicial
complex called the fish complex:

c

da

b e

f

Figure 1: The Fish Complex

It is common to write a simplicial complex X by partitioning it into its i-dimensional faces for
−1 ≤ i ≤ d, denoted X(i):

X(i) = {S ⊂ V ∪ E : |S| = i+ 1}.

In this case we think of the entire complex as the union of these sets:

X =
d⋃

i=−1

X(i).

Note that X(−1) is {∅}, a notational convenience that often is useful when working on simplicial
complexes. Let’s write these sets for the fish complex as an example:

The Fish Complex may be written as:

X(−1) = {∅}
X(0) = {a, b, c, d, e, f}
X(1) = {(ab), (ac), (bc), (bd), (cd), (de), (df), (ef)}
X(2) = {(abc), (bcd), (def)}

29



Perhaps a more intuitive or visual way to draw a simplicial complex is through a Hasse diagram
ordered by inclusion. In fact while we will not touch on this in these notes, there is a way to extend
this material to graded posets such as the Grassmann poset. Let’s take a look at the fish complex
from this viewpoint:

X(−1):

X(0):

X(1):

X(2):

∅

a b c d e f

ab ac bc bd cd de df ef

abc bcd def

Figure 2: The Fish Complex as a Hasse Diagram.

This viewpoint gives a nice visual overview of the global structure of our simplicial complex. How-
ever, our definition of expansion is going to focus on local properties of the complex, so let’s take
a look at breaking down X into local structures. In a graph, the most fundamental local structure
at a vertex v is its neighborhood, the set of vertices it is connected to. In a simplicial complex, the
corresponding structure is called a link. Links can be defined for a face s of any dimension in the
simplicial complex, and corresponds to higher dimensional faces which include s.

Definition 9.2. The link of a face s ∈ X(i) is:

Xs = {T : T ∪ {s} ∈ X}

c

b e

f

Figure 3: Link Xd of the Fish Complex

While not strictly necessary, it is convenient to lower the dimension of the link by removing s itself
from each edge as we have done in the above definition. This allows us to talk about the underlying
graph of the link, which is just G(V,E) s.t. V = Xs(0) and E = Xs(1). At this point we’ve pretty
much shown our cards: we would like to define global expansion through the spectral expansion of
these local links across the complex.
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9.1 Weighted Expansion

There is, however, an issue with applying this definition naively. Our simplicial complexes are not
restricted to being regular–and at this point we have only defined spectral expansion for regular
graphs, as well as how to correctly weight simplicial complexes.

A weighted graph is a graph G(V,E) in which each edge is endowed with some positive real
weight. These weights may be renormalized to give a distribution πE over E (this can be seen as a
generalization of the non-weighted case, which would be endowed with the uniform distribution).

We can define a random walk operator on G(V,E) based on πE that is analogous to the normalized
adjacency matrix of an unweighted graph.

Definition 9.3 (Weighted Adjacency Matrix). The weighted adjacency matrix (from here on just
adjacency matrix) of a weighted graph G(V,E) with induced distribution πE is simply the natural
random walk defined by πE , that is:

Av,w =
πE((v, w))∑

(u,w)∈E
πE((u,w))

We will sometimes refer to Av,w as P (v|w), the probability of picking w given v.

It’s clear that A has some of the same properties as our standard normalized adjacency matrix
simply due to being stochastic. For instance we have:

9.1. The all 1’s vector is an eigenvector with eigenvalue 1

9.2. All eigenvalues λ satisfy −1 ≤ λ ≤ 1

To define expansion analogously to the case of regular graphs, the only remaining property we need
is that A is diagonalizable. As a low-dimensional warmup for Oppenheim’s theorem, we will prove
this with a “local to global” method. The edge distribution πE induces a distribution over vertices
πV in the following sense:

πV (v) =
1

2

∑
(w,v)∈E

πE(w, v).

In other words, πV can be described as the process of picking a random edge from πE , and then
choosing uniformly a vertex from that edge. To show that A is diagonalizable, we define an inner
product space with respect to this distribution, and show that A is self-adjoint with respect to this
inner product. In particular, for functions f, g : V → R, define their inner product by:

〈f, g〉 =
∑
v∈V

πV (v)f(v)g(v)

The key to understanding why the adjacency matrix is self adjoint is noticing that picking an edge
from πE can be done locally. In particular, drawing a random edge from πE is the same as drawing
a random vertex v from πV , and then drawing a random neighbor w based on P (v|w). Keeping
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this in mind, let’s expand 〈f,Ag〉:

〈f,Ag〉 =
∑
v∈V

πV (v)f(v)Ag(v) (Global view)

=
∑
v∈V

πV (v)f(v)
∑

(w,v)∈E

Pr(w|v)g(w)

= E
v
[f(v)] E

w|v
[g(w)] (Local view from node v)

= E
v,w

[f(v)g(w)]

= 〈Af, g〉

Since A is self-adjoint, it is diagonalizable by the spectral theorem, and thus we have recovered all
the properties of our standard spectral expansion for regular graphs. Thus we can safely define
spectral expansion analogously to this case:

Definition 9.4 (Weighted Spectral Expansion). Let A be the adjacency matrix of a weighted
graph G(V,E), then A has eigenvalues:

1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1.

We say G(V,E) is a λ spectral expander if:

max(|λ2|, |λn|) ≤ λ.

We say G(V,E) is a one-sided λ spectral expander if:

λ ≤ λ2

9.2 Weighted Simplicial Complexes

We will endow each level of our simplicial complex with a distribution πi analogous to how we
defined the distributions πE and πV for a standard graph. Just as we chose a distribution for the
top level faces (edges) of the standard graph and used it to induce a distribution over vertices,
in a simplicial complex we pick an arbitrary distribution πd across the top level faces and induce
distributions across all lower levels. If a simplicial complex X is endowed with such probabilistic
structure, we call it a weighted simplicial complex.

Definition 9.5 (Weighted Simplicial Complex). A Weighted Pure Simplicial Complex (X,Π) is
a Pure Simplicial Complex X endowed with a joint distribution Π = (π−1, . . . , πd) over each level
such that:

9.1. πd is arbitrary

9.2. For −1 ≤ i < d, πi is given by the following process: draw a d-face s from πd, and pick
uniformly at random some i-face t ⊂ s

Since our definition of spectral expansion will rely on the local link structure of the complex, we
need to be careful as well about how we induce distributions over our links. To this end, we will
define the weighted links associated to a weighted complex:
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Definition 9.6 (Weighted Link). Let X,Π be a d-dimensional weighted simplicial complex. The
weighted link of a face s ∈ X(i) is the weighted complex:

Xs = {T : T ∪ {s} ∈ X},

with distribution Πs induced from the distribution across top level faces πsd−i:

πsd−i(t) =
πd(t ∪ s)∑

w∈Xs
πd(w ∪ s)

.

Notice that πsd−1 is not necessarily equivalent to the normalization of πd−i restricted to the link.
The reason for our choice of distribution is that it will allow us to decompose X at any level into
a convex combination of its links. This is a key technique when trying to connect local and global
properties on an HDX. Going back to our initial example, let’s take a look at how these distributions
play out if we endow the Fish Complex with a uniform π2.

9.3 Spectral Link Expansion and the Trickle Down Theorem

Now that we have developed background on weighted expansion and taken a look at some basic
examples of our structures, we can define high dimensional expansion in a single sentence.

Definition 9.7 (Spectral Link Expansion). A weighted simplicial complex (X,Π) is a (one-sided)
λ Spectral Link Expander if the underlying graph of every link of co-dimension at least 2 is a
(one-sided) λ spectral expander.

We only consider links of co-dimension at least 2 since the underlying graphs of the highest two
dimensions are respectively the emptyset, and a disjoint set of vertices. Note that the emptyset
is always of co-dimension at least 2 (even in standard graphs), and so we always require that the
underlying graph of X itself is a spectral expander. Indeed, this is the only requirement for a
1-dimensional graph, which makes this definition a direct generalization of standard spectral ex-
pansion.

Now that we’ve managed to define our objects of interest, the next question to tackle is whether
or not such objects even exist. Let’s examine the high dimensional analogue of a classic example
from standard graphs, the complete graph.

The d-dimensional Complete Complex (also known as the Johnson Complex) on n vertices is the
complex made up of all

(
n

[d+1]

)
subsets of [n]. The Complete Complex is a 1

n−d spectral link expander.
This follows from the fact that every link the complete complex is itself a lower dimensional complete
complex, and thus the underlying graph of every link is the complete graph. Dense random graphs
are also good spectral link expanders, but unlike standard expansion, this is no longer true in the
sparse case, as it is likely some link won’t even be connected, much less an expander.

To my knowledge, there are currently only a few known examples of constant degree spectral link
expanders, and they come from algebraic constructions. Covering even one of these constructions
would take more than a full lecture, so instead we will instead focus on a theorem that simplifies
the definition of spectral link expanders, and provides a nice intuition for their local-to-global
phenomenon.
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9.4 The Trickling Down Theorem

In particular, we will take a look at Izhar Oppenheim’s Trickling Down Theorem. In the standard
definition of expansion, we need every link to be a spectral expander. Oppenheim’s theorem states
that in fact we only need a much more local condition to be true: as long as the underlying graph
of each link is connected and each link of co-dimension 2 is a good enough expander, then the entire
complex is an expander:

Theorem 9.8 (Trickling Down Theorem). Let (X,Π) be a d-dimensional weighted simplicial com-
plex such that the underlying graph of every link of co-dimension at least two is connected, and
every link of exactly co-dimension two is a λ expander. The entire complex (X,Π) is a λ

1−(d−1)λ
expander.

We will sketch the easiest version of this theorem, for one-sided two dimensional expanders, focusing
in particular on the local-to-global flavor of the result. The higher dimensional argument follows
immediately from repeated application, but two-sided expansion requires some additional work.

Theorem 9.9 (Trickling Down Theorem (2-dim)). Let (X,Π) be a 2-dimensional weighted simpli-
cial complex with an underlying connected graph such that the link of every vertex v ∈ X(0) is a λ
one-sided spectral expander. Then (X,Π) is a λ

1−λ expander.

Proof. Let A be the adjacency matrix of the underlying graph of X, and f : X(0) → R some
unit norm eigenfunction perpendicular to the all 1’s vector 1. Our goal is to bound the eigenvalue
corresponding to f , which we denote by γ. Our first step will be to look at γ from a local view, in
particular as an expectation over the links of X:

γ = 〈f,Af〉 (1)

= E
(v,w)

[f(v)f(w)] (2)

= E
v∈X(0)

[
E

(u,w)∈Xv
[f(u)f(w)]

]
(3)

Here, (2) follows by the same reasoning as in our previous analysis of a standard weighted graph.
(3) follows from our definition of πv1 , which ensures that picking an edge from π1 is equivalent
to first picking a vertex v from π0, and then picking an edge from πv1 . This expression for γ is
particularly useful since the information we are trying to leverage is local to the links themselves.

Since we are focusing on links, let’s define the restriction of f to the link Xv as fv, and Av to
be the weighted adjacency matrix corresponding to Xv. Notice that since our expectation is al-
ready over links, we can re-write everything in terms of fv:

γ = E
v∈X(0)

[
E

(u,w)∈Xv
[f(u)f(w)]

]
= E

v∈X(0)

[
E

(u,w)∈Xv
[fv(u)fv(w)]

]
= E

v∈X(0)
[〈fv, Avfv〉]

Remember that each link Xv is an λ spectral expander. If fv were perpendiculuar to 1, we could
immediately use this fact to bound γ given the above form. Unfortunately, while this is true for f
itself, it is not necessarily true upon restricting to links. Instead, we define gv = fv − γf(v)1 to
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be the projection of fv onto the orthogonal component of 1. Since gv is orthogonal to 1, we can
massage the above slightly to get our desired bound:

γ = E
v∈X(0)

[〈fv, Avfv〉]

= E
v∈X(0)

[〈gv + γf(v)1, Avg
v + γf(v)1〉]

= E
v∈X(0)

[〈gv, Avgv〉] + γ2 E
v∈X(0)

[f(v)]2

= E
v∈X(0)

[〈gv, Avgv〉] + γ2

Using the standard argument for the adjacency matrices of spectral expanders:

γ − γ2 = E
v∈X(0)

[〈gv, Avgv〉]

≤ λ E
v∈X(0)

[〈gv, gv〉]

= λ(1− γ2)

Noting that γ < 1 due to our assumption that the underlying graph is connected finishes the proof.
We have focussed mostly on finding and applying the local view in this proof sketch and brushed
under the rug the analysis of the other terms.

For a full explanation of this proof, see this lecture from Yotam Dikstein.
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