
MODEL ANSWERS TO THE NINTH HOMEWORK

1. (i) We just have to show that T is non-empty, closed under addition
and scalar multiplication.
0 ∈ T as 1 · 0 = 0. Thus T is non-empty.
Suppose that m and n belong to T . Then we may find non-zero r and
s such that rm = 0 and sn = 0. Note that rs 6= 0 as R is an integral
domain and that

(rs)(m+ n) = (rs)m+ (rs)n

= (sr)m+ (rs)n

= s(rm) + r(sn)

= s0 + r0

= 0 + 0

= 0.

Thus m+ n ∈ T . It follows that T is closed under addition.
Now suppose that m ∈ T and s ∈ R. By assumption we may find
r ∈ R such that rm = 0 and r 6= 0. We have

r(sm) = (rs)m

= (sr)m

= s(rm)

= s0

= 0.

Thus sm ∈ T . Thus T is closed under scalar multiplication.
It follows that T is indeed a submodule.
(ii) (a) The whole of Q/Z.
Indeed, if a/b ∈ Q then

b(a/b) = a ∈ Z.

Thus the left coset

a/b+ Z ∈ T.
(b) Q/Z.
Indeed, we have already seen that

T ⊂ Q/Z.
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Suppose that r ∈ R and a ∈ Z such that

ar = b ∈ Z.

Solving for r gives

r =
b

a
∈ Q.

(c) 0.
Indeed, if r ∈ R and a ∈ Z such that

ar = b/c ∈ Q

then solving for r gives

r = b/(ca) ∈ Q.

Thus r is a rational.
(iii) (a) Yes, this is clear.
(b) No. Q is certainly not cyclic. Suppose that q = a/b and r = c/d ∈
Q. Then

(ad)r − (bc)q = ac− ac = 0.

Thus no two elements of Q generate a free subgroup of rank 2. But
any free group of rank at least two contains a free subgroup of rank 2.
(c) No. If q1, q2, . . . , qk belong to Q and qi = ai/bi then the sub-
group they generate belongs to the group generated by 1/b where
b = b1b2 . . . bk. But 1/(b+ 1) ∈ Q is not of this form.
2. (i) By the classification of finitely generated modules over a PID M
is isomorphic to F ⊕ T . In this case M/T ' F . It is clear that F is
maximal with this property.
(ii) This is again immediate from the classification, just consider the
map

F −→ T ⊕ F given by f −→ (0, f).

(iii) Consider Z⊕ Z2. Then F ' Z. There are two inclusions

Z −→ Z⊕ Z2 given by n −→ (n, 0) and n −→ (n, n).

The image of the first is the subgroup 〈(1, 0)〉 image of the second is
the subgroup 〈(1, 1)〉. Both subgroups are isomorphic to Z.
3. (i) We start with

A =

−4 −6 7
2 2 4
6 6 15

 .

Since one entry is 2 and there are odd entries, the gcd of the entries of
A is 1. If we take the second row multiply by −2 and add it the first
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row we get −8 −10 −1
2 2 4
6 6 15

 .

Now we if multiply the first row by −1 we get8 10 1
2 2 4
6 6 15

 .

Now we swap the first and third columns to get 1 10 8
4 2 2
15 6 6

 .

Now the entry in the top left hand corner is the gcd of the entries of
A. We now eliminate the entries in the first column and the first row.
We take the first row, multiply by −4 and add it to the second row. 1 10 8

0 −38 −30
15 6 6

 .

Now we take the first row, multiply by −15 and add it to the third row1 10 8
0 −38 −30
0 −144 −114

 .

Now we use the first column to eliminate the entries in the first row1 0 0
0 −38 −30
0 −144 −114

 .

We multiply the second and third rows by −11 0 0
0 38 30
0 144 114

 .

We focus on the matrix (
38 30
144 114

)
.

Every entry is even. So the gcd is even. The first entry is 38 = 2 · 19.
The second entry is coprime to 19. So the gcd is 2.
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If we temporarily divide every entry by 2 we get(
19 15
72 57

)
.

The gcd is now one. If we subtract the second column from the first
we get (

4 15
15 57

)
.

If we take the first column, multiply by −4 and add it to the second
column then we get (

4 −1
15 −3

)
.

Now we multiply the last column by −1 to get(
4 1
15 3

)
.

The next step is to switch the first and second columns.(
1 4
3 15

)
.

Now we use the entry in the first row and first column to eliminate all
the other entries in the first row and first column. We take multiply
the first row by −3 and add it to the second row.(

1 4
0 3

)
.

Now we use the first column to eliminate the entry in the first row.(
1 0
0 3

)
.

We put this back into the original 3×3 matrix, remembering to double
every entry. 1 0 0

0 2 0
0 0 6

 .

(ii) We already checked that the gcd of the entries of A (the 1 × 1
minors) is 1. As the second row is even (that is, every entry in the
second row is even) it is easy to see that every 2 × 2 minor is even.
Thus the gcd is even.
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In fact we can divide the second row by 2−4 −6 7
1 1 2
6 6 15


and we just need to show that the gcd of the 2×2 minors is 1 and that
the absolute value of the determinant (3× 3 minor) is 6. The top left
2× 2 minor is 2. The bottom right 2× 2 minor is 3. The gcd of these
number is 1 and so the gcd of the 2× 2 minors is one, as expected.
To compute the determinant, we first divide the third row by 3, to get−4 −6 7

1 1 2
2 2 5


The determinant is 2, as expected.
(iii) Each row and column operation may be represented by a 3 × 3
matrix. Just take the identity matrix and apply one of the elementary
operations. For example if you pre-multiply A by one of the three
matrices−2 0 0

0 1 0
0 0 1

 0 1 0
1 0 0
0 0 1

 and

 1 0 0
−5 1 0
0 0 1

 .

you will either multiply the first row by −2, or you will swap the first
and second rows, or you will take the first row, multiply it −5 and add
it to the second row.
Similar considerations apply to the elementary column operations, ex-
cept now this is represented by post-multiplication. Now to get from A
to D we simply applied a bunch of row and column operations. This is
encoded by a product of matrices Q and P (note that the order in which
we apply the operations does not matter, as matrix multiplication is
associative). As each elementary matrix is invertible and the product
of invertible matrices is invertible, P and Q are both invertible.
4. We start with the first matrix.

A =


2x− 1 x x− 1 1
x 0 1 0
0 1 x x
1 x2 0 2x− 2

 .
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The gcd of the entries is obviously one. Let us swap the first and third
columns and then the first and second rows to get
x− 1 x 2x− 1 1

1 0 x 0
x 1 0 x
0 x2 1 2x− 2

 and


1 0 x 0

x− 1 x 2x− 1 1
x 1 0 x
0 x2 1 2x− 2

 .

Now let us use the top left entry to eliminate the entries in the first
column. We multiply the first row by x − 1 and subtract it from the
second row and then multiply the first row by x and subtract it from
the third row:

1 0 x 0
0 x −x2 + 3x− 1 1
x 1 0 x
0 x2 1 2x− 2

 and


1 0 x 0
0 x −x2 + 3x− 1 1
0 1 −x2 x
0 x2 1 2x− 2

 .

Now we use the first column to eliminate the entries in the first row
and then we swap the second and third rows to get

1 0 0 0
0 x −x2 + 3x− 1 1
0 1 −x2 x
0 x2 1 2x− 2

 and


1 0 0 0
0 1 −x2 x
0 x −x2 + 3x− 1 1
0 x2 1 2x− 2

 .

Now we multiply the second row by −x and add it to the third row
and then by −x2 and add it to the fourth row.

1 0 0 0
0 1 −x2 x
0 0 x3 − x2 + 3x− 1 1− x2
0 x2 1 2x− 2

 and


1 0 0 0
0 1 −x2 x
0 0 x3 − x2 + 3x− 1 1− x2
0 0 x4 + 1 −x3 + 2x− 2

 .

Note that the gcd of the entries of the bottom right 2 × 2 submatrix
is 1. Instead of continuing, to compute the last entry just take the
determinant,

d(x) = x5 − 2x4 − 3x3 + 9x2 − 8x+ 1.

It follows that the Smith normal form is
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 d(x)

 .

6



For the second matrix

B =


x2 + 2x 0 0 0

0 x2 + 3x+ 2 0 0
0 0 x3 + 2x2 0
0 0 0 x4 + x3


this matrix is almost already in Smith normal form. It is much better
to use this fact rather than try elimination.
We have

x2 + 2x = x(x+ 2)

x2 + 3x+ 2 = (x+ 1)(x+ 2)

x3 + 2x2 = x2(x+ 2)

x4 + x3 = x3(x+ 1).

To find the gcd of the products, we just need to consider the largest
powers of x, x+ 1 and x+ 2 which divides every product.
The gcd of these polynomials is 1. The gcd of pairwise products is
x(x+ 2). The gcd of triple products is x3(x+ 1)(x+ 2)2. The product
is x6(x+ 1)2(x+ 2)3. The ratios are

1 x(x+ 2) x2(x+ 1)(x+ 2) and x3(x+ 1)(x+ 2).

Thus the Smith normal form is
1 0 0 0
0 x(x+ 2) 0 0
0 0 x2(x+ 1)(x+ 2) 0
0 0 0 x3(x+ 1)(x+ 2)

 .

5. G is isomorphic to

Z3

K
where K = 〈(6, 6, 0), (10, 0, 10), (0, 15, 15)〉.

We want a linear map with image K. We write down the matrix whose
columns are the generators for K (since the columns of a matrix span
the image of the linear map):

A =

6 10 0
6 0 15
0 10 15

 .

This data is encoded by the group homomorphism (or Z-linear map)

Z3 −→ Z3 given by (x, y, z) −→ (6x+10y, 6x+15z, 10y+15z),

since then the image is K.
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We have to put A into Smith normal form. The easiest thing to do is
probably to compute the gcd of the minors, since A is almost in Smith
normal form. The entries of A have prime factors 2, 3 and 5. But one
entry is odd, one entry, 10, is not divisible by 3 and one entry, 6, is
not divisible by 5. Thus the gcd of the entries of A is one. Every 2× 2
minor has at least one zero in it. So each 2 × 2 minor is a product of
two entries of A. The minors, up to sign, are

150 90 60 150 90 60 150 90 and 60.

The gcd of the minors is then 2 · 3 · 5 = 30. Finally the determinant is

−6 · 10 · 15− 10 · 6 · 15 = −1800

Thus the Smith normal form is1 0 0
0 30 0
0 0 60

 .

The quotient group of the corresponding linear map is then

Z30 × Z60.

6. A is a 9 × 9 matrix, as the characteristic polynomial has degree 9.
The entries on the main diagonal are the zeroes of the characteristic
polynomial. Thus there are 6 minus ones and 3 twos.
As the minimal polynomial has (x+1)3 as a factor it follows that there
is a 3× 3 (and no larger) Jordan block with −1 on the main diagonal.
As the minimal polynomial has (x−2)2 as a factor it follows that there
is a 2× 2 (and no larger) Jordan block with 2 on the main diagonal.
Consider the Jordan blocks with eigenvalue −1. There is one of size 3.
If the other Jordan blocks are of type ai × ai, a1, a2, . . . , ak decreasing
then we must have ∑

ai = 6− 3 = 3.

The three possible solutions are k = 1, a1 = 3; k = 2, a1 = 2 and
a2 = 1; k = 3, a1 = a2 = a3 = 1.
Now consider the Jordan blocks with eigenvalue 2. There is one of size
2. The only possibility is that there is one more of size 1. There are thus
three possibilities, the first, two 3 × 3 Jordan blocks with eigenvalue
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−1 

2 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 −1


the second, one 3× 3, one 2× 2, one 1× 1 Jordan block, eigenvalue −1

2 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1


and the third, one 3× 3, and three 1× 1 Jordan blocks, eigenvalue −1

2 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1


.

7. Suppose that A is an invertible matrix. Note that A is similar to A′

if and only if A′ is invertible and A are conjugate in the general linear
group.
Therefore we can describe the conjugacy classes by writing down a
preferred member of the conjugacy class, using one of the canonical
forms.
Since these fields are not algebraically closed, we use rational canonical
form.
Note that invertible matrices don’t have zero as an eigenvalue.
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(i) The characteristic polynomial is a monic quadratic polynomial. The
quadratic polynomials are

x2 x2 + 1 = (x+ 1)2 x2 + x = x(x+ 1) and x2 + x+ 1.

Recall that the last polynomial is irreducible. Since 0 is not an eigen-
value we can eliminate the first and third possibility. Thus the charac-
teristic polynomial is either

(x+ 1)2 or x2 + x+ 1.

The minimal polynomial divides the characteristic polynomial and has
the same roots.
Thus the minimal polynomial is x + 1, (x + 1)2, with characteristic
polynomial (x + 1)2 or x2 + x + 1, with the same characteristic poly-
nomial.
The first possibility corresponds to the identity matrix(

1 0
0 1

)
.

This corresponds to two copies of the companion matrix of x+ 1. The
order is 1. If we have the second possibility then we have the companion
matrix of x2 + 1, (

0 1
1 0

)
.

The order is 2. If we have the third possibility then we have the com-
panion matrix of x2 + x+ 1 (

0 1
1 1

)
.

The order is 3.
(ii) The characteristic polynomial is a monic cubic polynomial and zero
is not a root. The cubic polynomials which don’t have zero as a root
are

(x+ 1)3 = x3 + x2 + x+ 1 x3 + x2 + 1 and x3 + x+ 1

Recall that the last two polynomials are irreducible.
The minimal polynomial divides the characteristic polynomial and has
the same roots.
Thus the minimal polynomial is x + 1, (x + 1)2, or (x + 1)3, with
characteristic polynomial (x+ 1)3 or x3 +x2 + 1 or x3 +x+ 1, with the
same characteristic polynomial.
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The first possibility corresponds to the identity matrix1 0 0
0 1 0
0 0 1

 .

This corresponds to three copies of the companion matrix of x+1. The
order is 1. If we have the second possibility then we have one copy of
the companion matrix of x+ 1 and one copy of the companion matrix
of x2 + 1, 1 0 0

0 0 1
0 1 0

 .

The order is 2. If we have the third possibility then we have the com-
panion matrix of x3 + x2 + x+ 10 1 0

0 0 1
1 1 1

 .

The order is 4. If we have the fourth possibility then we have the
companion matrix of x3 + x2 + 10 1 0

0 0 1
1 0 1

 .

The order is 7. If we have the fifth possibility then we have the com-
panion matrix of x3 + x+ 1 0 1 0

0 0 1
1 1 0

 .

The order is 7.

Challenge Problems: (Just for fun)

(iii) First note that if A has determinant one and A′ is similar to A
then A′ has determinant one. Suppose that

A′ = BAB−1.

Then B is an invertible matrix, so that the determinant b is non-zero.
Then b = 1, ω or 1 + ω. If b = 1 then let c = 1. If b = ω then let
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c = 1 + ω. We have

c2 = (1 + ω)2

= 12 + ω2

= 1 + ω + 1

= ω

= b.

If b = 1 + ω then let c = ω. We have

c2 = ω2

= 1 + ω

= b.

Thus b always has a square root c. If

C =
1

c
B

then C is invertible,

detC =
1

c2
detB

=
b

b
= 1

and

CAC−1 =
c

c
BAB−1

= A′.

Thus A and A′ are conjugate in

SL2(F4).

Thus we just need to find all possible rational canonical forms.
We start by determining all of the characteristic polynomials. Note
that if we start with A − xI2 and set x = 0 then we get A. Thus the
determinant of A is the constant term of the characteristic polynomial.
Thus the characteristic polynomial has constant term 1.
The characteristic polynomial is a monic quadratic polynomial. The
quadratic polynomials with constant term one are

x2+1 = (x+1)2 x2+x+1 x2+ωx+1 and x2+(1+ω)x+1.

By construction, ω is a root of the second polynomial. It is easy to check
that 1 + ω is the other root. It follows that the last two polynomials
are irreducible.
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The minimal polynomial divides the characteristic polynomial and it
has the same roots. Thus the minimal polynomial is x+1 or it is equal
to the characteristic polynomial.
The first possibility corresponds to the identity matrix(

1 0
0 1

)
.

This corresponds to two copies of the companion matrix of x+ 1. The
order is 1. If we have the second possibility then we have the companion
matrix of x2 + 1, (

0 1
1 0

)
.

The order is 2. If we have the third possibility then we have the com-
panion matrix of x2 + x+ 1 (

0 1
1 1

)
.

The order is 3. If we have the fourth possibility then we have the
companion matrix of x2 + ωx+ 1(

0 1
1 omega

)
.

The order is 5. If we have the fifth possibility then we have the com-
panion matrix of x2 + (1 + ω)x+ 1(

0 1
1 1 + omega

)
.

The order is 5.
8. (i) Clear, since

G = { (r1, r2, . . . , rn − 1., 0) | r1, r2, . . . , rn−1 } ' Rn−1.

(ii) Induction on n.
(iii) Q is a submodule of R and so Q is an ideal of R. As R is a PID,
Q = 〈a〉, for some a ∈ R. As f is surjective, a = f(e), some e.
(iv) Suppose that m ∈ M . Then f(m) ∈ Q and so f(m) = ra, some
r ∈ R. Let n = m− re. Then

f(n) = f(m− re)
= f(m)− rf(e)

= f(m)− ra
= f(m)− f(m)

= 0.
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Thus n ∈ N . It follows that we may find r1, r2, . . . , rl such that

n =
∑
i≤l

rifi.

In this case

n =
∑
i≤l

rifi + re.

Thus N is generated by f1, f2, . . . , fl, e. Note that r is determined, so
that r1, r2, . . . , rl are determined and so f1, f2, . . . , fl, e are free gener-
ators of M .
(v) Thus M is a free module of rank l + 1 ≤ n.
9. Note that A is a zero of x2+1 ∈ R[x]. Thus the minimal polynomial
mA(x) divides x2 + 1. As x2 + 1 is irreducible and monic in fact

mA(x) = x2 + 1.

We put A into canonical form. We choose the rational canonical form,
as R is not algebraically closed. The companion matrix of x2 + 1 is(

0 1
−1 0

)
The rational canonical form for A consists of m blocks of these 2 × 2
matrices. Thus n = 2m is even and the rational canonical form is
unique.
There are now two ways to proceed. For the first we carefully choose
a new basis for A, to put it into the desired form.
Or we can argue as follows. The matrix

B =

(
0 −Im
Im 0

)
satisfies the equation

B2 + In = 0.

As the rational canonical form is unique, there is only one conjugacy
class for such matrices and so A is similar to B.
10. Define a sequence of functions

fn : [0, 1] −→ R given by fn(x) = cos 2πnx.

Then f1, f2, . . . is an infinitely differentiable function.
Now consider the sequence of ideals

I1 ⊂ I2 ⊂ I3 ⊂ . . . given by In = 〈f1, f2, . . . , fn〉.
It is not hard to see that this sequence is strictly increasing. Thus R
is not Noetherian.
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11. Let J be a Jordan block of size n. Consider J2. J has minimal
polynomial xn. If n = 2m then J2 has minimal polynomial xmm and
if n = 2m + 1 then J2 has minimal polynomial xm+1. It is then not
too hard to check that if n = 2m is even then the Jordan canonical
form for J2 consists of two Jordan blocks of size m with the square of
the eigenvalue for J and that if n = 2m + 1 is odd then the Jordan
canonical form for J2 is one Jordan block of size m+ 1 and one of size
m with the square of the eigenvalue for J .
(a) This is not possible. Consider the size of the Jordan blocks for A.
There are none of size 1, since A2 has no Jordan blocks of size 1. But
then A2 would have an even number of blocks.
(b) This is possible, if A has one Jordan block of size 8 and one of size
1.
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